
Geometric and Algebraic Multigrid Solvers in PETSc on Many-GPU
Supercomputer Architectures

Richard Tran Mills

(contributions from Hannah Morgan, Mark Adams, Karl Rupp, Hong Zhang, and Barry Smith)

SIAM Conference on Parallel Processing for Scientific Computing
February 13, 2020

PETSc: The Portable, Extensible Toolkit for Scientific Computation
I PETSc is a suite of data structures and routines for the scalable (parallel) solution of scientific

applications modeled by partial differential equations; it also incorporates the Toolkit for
Advanced Optimization (TAO) library for solving numerical optimization problems.

I I will talk about GPU developments in PETSc, with focus on its multigrid solver framework.
I Multigrid methods are asymptotically optimal solvers for important classes of linear systems:

I Cycle through a hierarchy of discretizations of the problem, restricting approximate solutions onto
coarser grids to obtain corrections that are prolongated back to finer grids

I Simple iterative methods (Jacobi, SOR, Chebyshev) called smoothers (because they quickly reduce
high-frequency components of the error) are applied on each level. (Involves SpMV or similar
operations.)

Illustration of multigrid v-cycle.
https://fastmath-scidac.llnl.gov/research/

multigrid-and-multilevel-methods.html

2 / 23

https://fastmath-scidac.llnl.gov/research/multigrid-and-multilevel-methods.html
https://fastmath-scidac.llnl.gov/research/multigrid-and-multilevel-methods.html

What is driving current HPC trends?

Moore’s Law (1965)

I Moore’s Law: Transistor density doubles roughly every two years
I (Slowing down, but reports of its death have been greatly exaggerated.)
I For decades, single core performance roughly tracked Moore’s law growth, because smaller

transitors can switch faster.

Dennard Scaling (1974)

I Dennard Scaling: Voltage and current are proportional to linear dimensions of a transistor;
therefore power is proportional to the area of the transistor.

I Ignores leakage current and threshold voltage; past 65 nm feature size, Dennard scaling breaks
down and power density increases, because these don’t scale with feature size.

Power Considerations
I The “power wall” has limited practical processor frequencies to around 4 GHz since 2006.
I Increased parallelism (cores, hardware threads, SIMD lanes, GPU warps, etc.) is the current

path forward.

3 / 23

Microprocessor Trend Data

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 1970 1980 1990 2000 2010 2020

Number of
Logical Cores

Frequency (MHz)

Single-Thread
Performance
(SpecINT x 10

3
)

Transistors
(thousands)

Typical Power
(Watts)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2017 by K. Rupp

Year

42 Years of Microprocessor Trend Data

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

4 / 23

Current trends in HPC architectures
Emerging architectures are very complex...

I Lots of hardware cores, hardware threads
I Wide SIMD registers
I Increasing reliance on fused-multiply-add (FMA), with multiple execution ports, proposed quad

FMA instructions
I Multiple memories to manage (multiple NUMA nodes, GPU vs. host, normal vs. high-bandwidth

RAM, byte-addressable NVRAM being introduced, ...)
I Growing depth of hierarchies: in memory subsystem, interconnect topology, I/O systems
I GPU accelerators now providing bulk of computing power for most new supercomputers

...and hard to program

I Vectorization may require fighting the compiler, or entirely re-thinking algorithm.
I Must balance vectorization with cache reuse.
I Host vs. offload adds complexity; large imbalance between memory bandwidth on device vs.

between host and device
I Growth in peak FLOP rates have greatly outpaced available memory bandwidth.

5 / 23

OLCF Summit Supercomputer

System totals
I ∼ 200 PFlop/s theoretical peak

143 PFlop/s LINPACK—#1 in TOP500
I 4,608 compute nodes

Node configuration
I Compute:

I Two IBM Power9 CPUs, each 22 with
cores, 0.5 DP TFlop/s

I Six NVIDIA Volta V100 GPUs, each with 80
SMs–32 FP64 cores/SM, 7.8 DP TFlop/s

I Memory:
I 512 GB DDR4 memory
I 96 (6 × 16) GB high-bandwidth GPU

memory
I 1.6 TB nonvolatile RAM (I/O burst buffer)

Almost all compute power is in GPUs!

6 / 23

Some principles guiding our development work

I Defer algorithmic choices until execution time, and
enable complex composition of multi-layered solvers
via runtime options

I Strive to separate control logic from computational
kernels
I Allow injecting new hardware-specific computational

kernels without having to rewrite the entire solver
software library

I Hand-optimize small kernels only, and design to
maximize reuse of such kernels
I Cf. the BLIS framework, which expresses all level-3

BLAS operations in terms of one micro-kernel.

I Reuse existing, specialized libraries (e.g., MKL,
cuSPARSE) when feasible

0:6 F. Van Zee and T. Smith

4th loop around micro-kernel

5th loop around micro-kernel

3rd loop around micro-kernel

mR

mR

1

+=

+=

+=

+=

+=

+=

nC nC

kC

kC

mC mC

1

nR

kC

nR

Pack Ai → Ai
~

Pack Bp → Bp
~

nR

A Bj Cj

Ap

Ai

Bp
Cj

Ai
~ Bp

~

Bp
~ Ci

Ci

kC

L3 cache
L2 cache
L1 cache
registers

main memory

1st loop around micro-kernel

2nd loop around micro-kernel

micro-kernel

Fig. 1. An illustration of the algorithm for computing high-performance matrix multiplication, as expressed
within the BLIS framework [Van Zee and van de Geijn 2015].

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 2016.

[F. Van Zee, T. Smith, ACM TOMS 2017]

7 / 23

Overview of GPU Support in PETSc
Transparently use GPUs for common matrix and vector operations, via runtime options
— no change of user code required.

CUDA/cuSPARSE:
I CUDA matrix and vector types:

-mat type aijcusparse -vec type cuda
I GPU-enabled preconditioners:

I GPU-based ILU: -pc type ilu -pc factor mat solver type cusparse
I Jacobi: -pc type jacobi

ViennaCL:
I ViennaCL matrix and vector types:

-mat type aijviennacl -vec type viennacl

I Compute backend selection (CUDA, OpenCL, or OpenMP):
-viennacl backend opencl

I Switch between CUDA, OpenCL, or OpenMP (CPU) at runtime
I GPU-enabled preconditioners:

I Fine-grained parallel ILU: -pc type chowiluviennacl
I Smoothed aggregation AMG: -pc type saviennacl

8 / 23

GPU Support—How Does it Work?

Host and Device Data

struct _p_Vec {
...
void *data; // host buffer
void *spptr; // device buffer
PetscOffloadMask offloadmask; // indicates which copies are valid

};

Possible Flag States

typedef enum {PETSC_OFFLOAD_UNALLOCATED,
PETSC_OFFLOAD_GPU,
PETSC_OFFLOAD_CPU,
PETSC_OFFLOAD_BOTH} PetscOffloadMask;

9 / 23

GPU Support—How Does it Work?

Fallback-Operations on Host

I Data becomes valid on host (PETSC_OFFLOAD_CPU)

PetscErrorCode VecSetRandom_SeqCUDA_Private(..) {
VecGetArray(...);
// some operation on host memory
VecRestoreArray(...);

}

Accelerated Operations on Device

I Data becomes valid on device (PETSC_OFFLOAD_GPU)

PetscErrorCode VecAYPX_SeqCUDA(..) {
VecCUDAGetArrayReadWrite(...);
// some operation on raw handles on device
VecCUDARestoreArrayReadWrite(...);

}

10 / 23

Example

KSP ex12 on Host
I

$> ./ex12
-pc_type none -m 200 -n 200 -log_summary

KSPGMRESOrthog 1630 1.0 4.5866e+00
KSPSolve 1 1.0 1.6361e+01

KSP ex12 on Device
I

$> ./ex12 -vec_type cuda -mat_type aijcusparse
-pc_type none -m 200 -n 200 -log_summary

MatViennaCLCopyTo 1 1.0 5.6108e-02
KSPGMRESOrthog 1630 1.0 5.5989e-01
KSPSolve 1 1.0 1.0202e+00

11 / 23

GPU Pitfalls

Pitfall: Function Pointers
I Pass CUDA function “pointers” through library boundaries?
I OpenCL: Pass kernel sources, user-data hard to pass
I Composability?

Pitfall: Repeated Host-Device Copies

I PCI-Express transfers kill performance
I Complete algorithm needs to run on device
I Problematic for explicit time-stepping, etc.

Pitfall: Wrong Data Sizes

I Data set too small: Kernel launch latencies dominate
I Data set too big: Out of memory

12 / 23

GPU Pitfalls
Pitfall: GPUs are too fast for PCI-Express

I Example system: 720 GB/sec from GPU-RAM, 16 GB/sec for PCI-Express
I 40x imbalance! (Gets better with NVLink, but large imbalance remains.)

N

N

N

Compute vs. Communication

I Take N = 512, so each field consumes 1 GB of GPU RAM
I Boundary communication: 2 × 6 × N2: 31 MB
I Time to load field: 1.4 ms
I Time to load ghost data: 1.9 ms (!!)

13 / 23

AXPY operations on Summit: CPU vs. GPU

Figure: Effect of vector size on AXPY performance and memory throughput (one MPI rank per GPU) on a single
node of the OLCF Summit system. As vector sizes become large, GPUs perform significantly better than the 42
Power9 CPU cores available, but the CPU cores can be significantly faster for smaller vector sizes, due to much
smaller CPU latency. Figure on the right presents an alternative, work-time spectrum view of the data: in this
view, both asymptotic bandwidth and latency of the operations can be read directly from the figure.

14 / 23

Table: Summary of PETSc vector operation performance on Summit, using a linear model in which time for data transfer is
characterized by a start-up latency l and a bandwidth b (subscripts C and G denote CPU and GPU, respectively). In our linear
model, the fraction of peak achieved will be beta = n

l×b . Small vectors have n = 103–105 entries, medium 105–107, and large
107–108. Latency is in 10−6 seconds, bandwidth in 8,000 Mbytes/second.

Vec size CPU interconnect GPU
Sockets 2 2
Cores/GPUs 42 6
Latency

VecDot
small 17 - 70
large - - 89

VecAXPY
small 9 - 47
large - - 89

VecCopy
small 4 48 -
large - 43 32

Bandwidth
VecDot

medium 32 567
large 33 667

VecAXPY
medium 40 375

large 28 627
VecCopy

small 36 42 -
medium 32 - 559

large 24 35 593
Launch time of null kernel 10
CPU-GPU synchronization after launch 11
CPU-GPU synchronization when free 6

Size for 90% of peak VecAXPY 2.268 × 106 5.022 × 108

Nodes for the time of 10lG 20.2 1
Nodes for the time of 10lC 222 -

15 / 23

Binding an object to CPU

struct _p_Vec {
...
void *data; // host buffer
void *spptr; // device buffer
PetscOffloadMask offloadmask; // indicates which copies are valid
PetscBool boundtocpu; // flag: perform operations on CPU only?

};

/*@
MatBindToCPU - marks a matrix to temporarily stay on the CPU and

perform computations on the CPU

Input Parameters:
+ A - the matrix
- flg - bind to the CPU if value of PETSC_TRUE

Level: intermediate
@*/
PetscErrorCode MatBindToCPU(Mat A,PetscBool flg)
{
...
}

16 / 23

OLCF Summit Supercomputer

System totals
I ∼ 200 PFlop/s theoretical peak

143 PFlop/s LINPACK—#1 in TOP500
I 4,608 compute nodes

Node configuration
I Compute:

I Two IBM Power9 CPUs, each 22 with
cores, 0.5 DP TFlop/s

I Six NVIDIA Volta V100 GPUs, each with 80
SMs–32 FP64 cores/SM, 7.8 DP TFlop/s

I Memory:
I 512 GB DDR4 memory
I 96 (6 × 16) GB high-bandwidth GPU

memory
I 1.6 TB nonvolatile RAM (I/O burst buffer)

Almost all compute power is in GPUs!

17 / 23

Early Summit Results: SNES ex19 with geometric multigrid

Running SNES ex19 (velocity-vorticity formulation for nonlinear driven cavity) with 37.8 million total
degrees of freedom on single Summit node.

CPU only command line:

jsrun -n 6 -a 7 -c 7 -g 1 ./ex19 -cuda_view -snes_monitor -pc_type mg
-da_refine 10 -snes_view -pc_mg_levels 9 -mg_levels_ksp_type chebyshev
-mg_levels_pc_type jacobi -log_view

(6 resource sets, each assigned 7 MPI ranks, 7 cores, 1 GPU: 42 MPI ranks/cores, 6 GPUs total)

CPU + GPU hybrid command line:

jsrun -n 6 -a 4 -c 4 -g 1 ./ex19 -cuda_view -snes_monitor -pc_type mg
-dm_mat_type aijcusparse -dm_vec_type cuda -da_refine 10 -snes_view
-pc_mg_levels 9 -mg_levels_ksp_type chebyshev -mg_levels_pc_type jacobi
-log_view

(6 resource sets, each assigned 4 MPI ranks, 4 cores, 1 GPU: 24 MPI ranks/cores, 6 CPUs total)

18 / 23

Early Summit Results: SNES ex19 with geometric multigrid

 0

 5

 10

 15

 20

 25

 30

SNESSolve

SNESSetUp

Function/Jacobian Eval

KSPSolve

KSPGMRESOrthog

MatMult/Add/Transpose

PCSetUp

PCApply

M
ax

 ti
m

e
(s

)

CPU only

 0

 5

 10

 15

 20

 25

 30

SNESSolve

SNESSetUp

Function/Jacobian Eval

KSPSolve

KSPGMRESOrthog

MatMult/Add/Transpose

PCSetUp

PCApply

M
ax

 ti
m

e
(s

)

CPU + GPU hybrid

19 / 23

SNES ex19 with multigrid, times per level

Can examine time per multigrid level (use -pc mg log) for 24 ranks on CPU vs. GPU:

 0.001

 0.01

 0.1

 1

 10

 100

 0 1 2 3 4 5 6 7 8

W
a
ll-

cl
o
ck

 t
im

e
 (

se
co

n
d
s)

Grid level (0 is coarsest)

Total Time Per Multigrid Level, CPU vs. GPU (lower is better)

CPU
GPU

I GPU latency effects
apparent in flat line for
levels 1–5.

I 52 direct solves on
coarsest level (0)

I 52 MGResid, 104
MGSmooth, 104
MGInterp on levels > 0

I Five coarsest levels are
faster on CPU (about 4X
faster in total).

I Potential 1.14X speedup
in MG Apply by placing
levels 0–4 on CPU

20 / 23

GAMG Execution Time Breakdown: SNES ex56 on Single Summit Node
I GAMG provides native (uses PETSc PCMG framework)

smoothed aggregation algebraic multigrid in PETSc
I At left, breakdown of GAMG performance on SNES ex56

linear elasticity example on single Summit node
I PCApply: Smoothers and cycling through levels.

Running fairly well on GPU.
I GAMGGraph + GAMGCoarse:

Mesh setup; on CPU
I MatPtAP: Coarsened operator setup;

on CPU (where it benefits from large caches)

Developing GPU implementation maximal independent sets (used in GAMGCoarsen)
I GAMG CPU implementation is targeted for distributed

memory and is ill-suited for conversion to CUDA
routines.

I Consider reusing AmgX code, but difficult because of
differences in decomposition across MPI ranks.

I ViennaCL algorithm exploits fine-grain parallelism but
cannot be used directly on PETSc’s parallel matrix.

4 Bell, Dalton, Olson

Algorithm 2: Strength of connection: strength

parameters: Ak ⌘ (I, J, V), COO sparse matrix
return: Ck ⌘ (Î , Ĵ , V̂), COO sparse matrix

M = {0, . . . , nnz(A)� 1}
D 0

1 for n 2M {extract diagonal}
if In = Jn

D(In) Vn

2 for n 2M {check strength}
if |Vn| > ✓

p
|D(In)| · |D(Jn)|

(În̂, Ĵn̂, V̂n̂) (In, Jn, Vn)

2. For each remaining unaggregated node i, sweep i into an adjacent aggregate.

The first phase of the algorithm visits each node and attempts to create disjoint
aggregates from the node and its 1-ring neighbors. It is important to note that the
first phase is a greedy approach and is therefore sensitive to the order in which the
nodes are visited. We revisit this artifact in Section 3.2, where we devise a parallel
aggregation scheme that mimics the standard sequential algorithm up to a reordering
of the nodes.

Nodes that are not aggregated in the first phase are incorporated into an adjacent
aggregate in the second phase. By definition, each unaggregated node must have at
least one aggregated neighbor (otherwise it could be the root of a new aggregate)
so all nodes are aggregated after the second phase. When an unaggregated node is
adjacent to two or more existing aggregates, an arbitrary choice is made. Alterna-
tively, an aggregate with the largest/smallest index or the aggregate with the fewest
members, etc., could be selected. Figure 1.1 illustrates a typical aggregation pattern
for structured and unstructured meshes.

(a) Structured Mesh Aggregates (b) Unstructured Mesh Aggregates

Fig. 1.1. Example of a mesh (gray) and aggregates (outlined in black). Nodes are labeled
with the order in which they are visited by the sequential aggregation algorithm and the root nodes,
selected in the first phase of the algorithm, are colored in gray. Nodes that are adjacent to a root
node, such as nodes 1 and 6 in 1.1a are aggregated in phase 1. Nodes that are not adjacent to a
root node, such as nodes 8, 16, and 34 in 1.1a are aggregated in second phase.

21 / 23

Performance of GAMG on Summit at Scale

Figure: Initial performance of GAMG on Summit at scale, running the SNES ex56 3D linear elasticity benchmark.
Preconditioner setup is performed on the CPU, while the multigrid solve happens on the GPU. The left plot is a
weak scaling plot (flat lines are desired) for CPU only runs; the right plot shows a work-time spectrum view (GPU
and CPU) that shows both latency and asymptotic throughput. Speedup of GPU vs. CPU at scale is about 12.

22 / 23

Summary and Future Directions

Current GPU support in PETSc
I GPU support is a key focus in recent releases of PETSc; NVIDIA, AMD, and Intel GPUs supported.
I Basic matrix and vector primitives supported, as well as simple multigrid smoothers (Jacobi, Chebyshev)
I Support for some complex on-node preconditioners (GPU-friendly ILU, smoothed aggregation) through

ViennaCL
I PCMG multigrid framework fully supports GPUs and shows good performance on machines like Summit
I GAMG algebraic multigrid displays good performance in numerical “solve” phase on GPUs
I For NVIDIA machines, CUDA-aware MPI now supported (recent work by Junchao Zhang)

Significant work on GPGPU support in PETSc is also ongoing
I Algorithmic developments: GPU-enabled mesh setup, numerical setup for GAMG; new SpMV approaches
I Continuing to look for performance optimizations for GPU/accelerators both major (e.g., recent to use

CUDA-aware MPI) and minor (e.g., identifying additional places to use XXXBindToCPU(), adding more
control over use of pinned host memory, etc.)

I Adding additional GPU back-ends: Intel oneAPI MKL, Kokkos kernels, libaxb (meta back-end), etc.
I Performance engineering work for upcoming systems (Aurora 21, Frontier)
I As always, input from users should guide this work—let us hear from you!

23 / 23

