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Outline

Phoenix is the world’s largest X1E system (well, almost)
 1024 multi-streaming processors
 2 TB aggregate memory

This talk will introduce Phoenix and briefly discuss:

1. X1E hardware platform
2. Some practicalities:

 Compiling and linking code
 Running jobs
 Debugging

3. Performance analysis and tuning



Part I: X1E hardware platform

 NUMA system consisting of up to 2048 nodes (1024 modules)
 Nodes are logical entities of 4 multi-streaming processors (MSPs)

 Memory shared SMP-style within a node
 Jobs that span nodes behave as on MPP distributed memory system

 Each node has local memory…
 …but memory is globally addressable between nodes



Models of parallelism

The X1E architecture supports several models of parallelism:

 Two levels of SIMD, loop-level parallelism:
 Vectorization within SSP
 Multistreaming within MSP

 OpenMP within node

 Between nodes (or processors)
 MPI-1 two-sided message passing
 MPI-2 one-sided communication
 SHMEM one-sided communication
 Co-Array Fortran remote memory
 Direct load/store using pointers



Cray X1E compute module

 Compute module contains 4 multichip modules (MCMs):

 Each MCM consists of 2 multistreaming processors (MSPs):



Cray X1E multistreaming processor (MSP)

 MSP consists of 4 tightly-coupled single-streaming processors (SSPs)
 Each SSP consists of:

 One 2-way superscalar processing unit (565 MHz)
 Two-pipe vector processing unit (1.13 GHz)

2 MB cache

SSP SSP SSP SSP

Is an MSP one or four processors?
 One!

 Fast synchronization, shared cache
 Can be treated as one 8-pipe processor

 Four!
 Each SSP can operate independently
 Treat as MPI processor or use OpenMP-like directives



X1E Interconnect

 “Enhanced” 3D torus
 Modules connected in a 3D torus.
 One torus dimension is fully connected.

 12 GB/s measured MPI bandwidth

 Globally addressable memory:
 Load/store memory on any node
 Remote memory refs routed through interconnect
 W/ contiguous nodes, remote address translation possible

(System scales w/ number of nodes w/o additional TLB misses)
 Low latency



Phoenix strengths and weaknesses

 Strengths:
 Very powerful processors (18 Gflop/sec peak)
 Low effective latency

 Vector processors hide local latency
 Globally addressable memory hides/minimizes global latency

 Very high memory bandwidth (global and local)
 Good for stride-1, strided, and random access

 Weaknesses:
 Scalar processing slow
 “Some tuning required”
 Limited memory per MSP



Part II: Practicalities

 Logging into a front end
 Using the Programming Environment

 Choosing compiler versions
 Special features of Cray compilers
 Libraries provided by Cray

 Code-porting issues
 Running jobs
 Debugging



Phoenix front-ends

 Users can ssh into two different front-ends for Phoenix:

 phoenix.ccs.ornl.gov
 Compile, load, performance tool commands transparently

offloaded to Cray Programming Environment Server (CPES)
 Some standard tools (e.g., emacs, complete Python) unavailable

 robin.ccs.ornl.gov
 Linux cross-compiler box
 Cross-mounts Phoenix scratch space
 Can submit and manage Phoenix jobs
 Much faster than CPES! (5x or more!)



Phoenix front-ends

We recommend working on robin whenever possible.
It is much faster and friendlier!

There are a few cases where you need to use phoenix:
 Using ‘psview’ to display Psched (system scheduler) information
 Using ‘nm’ command to view symbols in binary objects
 autoconf that does not support cross-compilation

(Note: Python-based configuration needs to be done on robin!)



Cray Programming Environment

Cray Programming Environment provides:
 Fortran compiler ‘ftn’
 C compiler ‘cc’
 C++ compiler ‘CC’
 MPI include files and libraries available by default

 Compiler, MPT versions determined by PrgEnv module version
 pe-version tells version of PrgEnv and components
 To load another PE version, do

module swap PrgEnv PrgEnv.newversion

 Best to swap entire PrgEnv, not individual components
 Possible exception: MPT version



Special Cray compiler flags

Compiler flags are documented completely in man pages.
We outline some Cray-specific ones here.

-G options to specify debug level:
 -g: Full debugging w/ breakpoints on every executable line.

 Very slow; all optimizations turned off.
 Bugs often dissapear!

 -G1 (ftn) or -Gp (CC/cc): block-by-block debugging

 Multistreaming disabled
 -G2 (ftn) or -Gf: Debugging w/ full optimization

 In Fortran, only postmortem debugging
 In C/C++, can set breakpoints at function entry/exit



Special Cray compiler flags

 Executables can be built for three different modes on Phoenix
 MSP mode (the default)

 May also want to use -h gen_private_callee so that
subroutines can be called from multistreamed regions

 SSP mode (compiler flag: -h ssp)
 “command” mode (compiler flag: -h command)

 Executable can run on service node w/o help from aprun
 Probably no real need for this now that Robin is available

 Which to use?
 Lots of loop-level parallelism suggests MSP
 Very scalable code suggests SSP

 Best to start w/ MSP but try both



Cray LibSci routines

Cray provides a collection of several highly-optimized kernels in LibSci:

Single processor support for:
 Fast Fourier Transform (FFT), convolution, filtering
 BLAS, LAPACK
 Basic Linear Algebra Communication Subprograms (BLACS)
 Sparse direct solvers

 Multiprocessor distributed memory support for
 FFT routines
 Scalable LAPACK (ScaLAPACK) routines
 Basic Linear Algebra Communication Subprograms (BLACS)

 OpenMP versions of all level 3 BLAS and some level 2 BLAS

 Link with -lsci normally
 -lsci64 of -sdefault64 routines
 -lompsci for OpenMP support



Common code porting problems

 Beware of old #ifdef CRAY directives!

 X1E is very different from old Cray machines:
 Some library calls may be unsupported, or work differently.
 Default Fortran data sizes: 32 bit integers, 32 bit reals
 Use -sdefault64 to default to 64 bit integers and reals

(and to link w/ MPI, BLAS, etc., that assume this)
 Can also use -sreal64 to get 32 bit integers, 64 bit reals

 Need to manually check each #ifdef CRAY to see if it makes sense.

 Auto-configuration problems
 Configure scripts that cannot cross-compile must be run on Phoenix
 Build systems relying on Python may need to run on Robin



Running jobs

 Phoenix uses PBS for job submission
(see http://info.nccs.gov/resources/phoenix/batch)

 Use aprun within job script to launch parallel jobs

 Specify number of MSPs in resource list with mppe=N.
(This also works for SSP jobs -- ask for mppe=N/4, N the # SSPs)

 Multi-node jobs (>4 MSPs) must request a multiple of 8 MSPs!
(Scheduler places jobs on hardware module boundaries)

 Run out of /tmp/work/$USER if doing even moderate IO

 Memory limits:
 Default memory limit is 2 GB per MSP (512 MB per SSP)
 Request more with -m option to aprun

 If requesting more, ask PBS for more MPPE’s than aprun will use
 May also need to increase env variables; see man 7 memory



Debugging: Postmortem

 Set TRACEBK to 30 to get automatic traceback when code crashes
 aprun needs ‘-c core=unlimited’ to generate core files

DO NOT do this unless running in “/tmp/work/$USER”!

 Can view corefiles with gdb or Totalview
 phoenix> gdb a.out core

 phoenix> totalview a.out core

 Traceback gives hints as to what corefiles to look at:

Traceback for process 64311(ssp mode) apid 64184.229 on node 7

Suggests starting with core file 229.



Debugging: Interactive

 To use Totalview interactively to debug an N process job:
 totalview -app “-n N” a.out [totalview options] [-a

<program options>]
 Use totalviewcli for command-line

 This can be very useful, but may be slow

 Can also use gdb
 Fast and responsive
 Debugging parallel programs difficult (impossible?)
 Unsupported by Cray



Part III: Performance analysis and tuning

 Always generate performance profile BEFORE code tuning!
 Routines that are negligible on other systems may be bottlenecks

on X1E!

 Basic code tuning steps:
1. Generate performance profile and identify hotspots.
2. Examine loopmark listings for hotspots.
3. Then do some combination of:

1. Insert compiler directives
2. Manually unroll loops, switch loop indices, etc.
3. Rearrange data structures

4. Return to step 1 and iterate until performance is “good enough”.



Introduction to CrayPAT

Basic steps in using Cray Performance Analysis Toolkit:

1. Generate executable for Phoenix
2. run ‘pat_build’ to generate instrumented executables

 robin> pat_build [options] a.out a.out.inst

 Note that object files must be present!
3. submit batch jobs using ‘qsub’

 Run with ‘aprun’ to generate ‘.xf’ file,
then run ‘pat_report’ to generate performance report

 OR, run with ‘pat_run’ to run and generate report
(Provides somewhat simpler interface)

4. Optionally, use Cray Apprentice (‘app2’) to visualize performance



Types of performance experiments

 Three basic types of performance experiments
 “Profiling”

 Simplest experiment; lowest overhead
 Samples program counter by user and system time

 Sampling
 Sample program counter, call stack, HW counters

at specified intervals or specific events
 Tracing

 At function entry/exit, record performance data, function
arguments, return values

 pat_build must be instructed to instrument specific functions

 Many options for pat_run, pat_report.  Too many to list here!  See
 http://info.nccs.gov/resources/phoenix/pat
 Chapter 2 of Optimizing Applications on Cray X1 Series Systems

(available at docs.cray.com)



Performance reports

 I like PAT_RT_EXPERIMENT=‘samp_cs_time’ to profile and sample callstack
(Very useful: See where time is spent in calltree)

100.0% |    100.0% | 154438 |Total

|--------------------------------------------

|  25.0% |     25.0% |  38644 |pe.3

||-------------------------------------------
||   7.9% |      7.9% |  12160 |MatSetValuesLocal

|||------------------------------------------

|||   7.9% |      7.9% |  12159 |matsetvalueslocal_

|||        |           |        | thcjacobian@thc_module_

|||        |           |        |  oursnesjacobian

|||        |           |        |   SNESComputeJacobian

|||        |           |        |    SNESSolve_LS

|||        |           |        |     SNESSolve
|||        |           |        |      snessolve_

|||        |           |        |       pflowgrid_step@pflow_grid_module_

|||        |           |        |        main

|||   0.0% |      7.9% |      1 |DAGetMatrix3d_MPIAIJ

|||        |           |        | DAGetMatrix

|||        |           |        |  dagetmatrix_

|||        |           |        |   pflowgrid_setup@pflow_grid_module_

|||        |           |        |    main



Optimization priorities

 Profile should always guide where optimization is done

 In hotspots routines, optimization priorities:
1. Vectorization (10x or more speedup)
2. Multistreaming (4x)
3. Low-latency communication (2x)
4. Register blocking (< 2x)
5. Cache blocking (< 2x)



Vectorization

Exploiting fine-grain parallelism with vectorization is #1 priority on X1E!

 One vector instruction == many loop iterations
 Need a large enough number of loop iterations

 SSP vector register holds 64 doubles
 More than 64 iterations is ideal (for pipelining, multistreaming)
 Fewer iterations means lower efficiency

 No procedure calls inside loop
 No loop-carried data dependencies

 Some exceptions, e.g., reduction operations



Multistreaming

 Multistreaming takes additional advantage of loop-level parallelism.
 Loop iterations divided among 4 SSPs within an MSP
 Usually 2nd most important priority: Up to 4x speedup

 Many of the same considerations as w/ vectorization
 Additional wrinkle: When to stream vs. vectorize?

 For streamed and vectorized loop nests,
want to vectorize loop with trip count that results in long vectors

 May need to help the compiler by telling it
 what to stream (!dir$ preferstream)
 what to vectorize (!dir$ prefervector)



What compilers can/can’t do

The compiler can do a lot for us:
 Re-arrange loop nests
 Reductions, (un)pack, scatter/gather
 Fuse loops and array statements
 Inline procedures (one level down)
 if statements within loops (Vector masks, some loss of efficiency)

But it cannot do things like:
 Make short vector loops efficient
 Make stride-1 (or -0) scatter/gather efficient
 Know that index arrays don’t repeat
 do j = 1, n

  x(i(j)) = x(i(j)) + …
 Effectively inline many levels down



Loopmark listings

 With profile in hand, examine loopmark listings for hotspot routines,
to see what the compiler could and couldn’t do.

 Loopmark listings show the compiler optimizations applied:
 What vectorized?
 What multistreamed?
 What was unrolled?
 Why was X not vectorized?

 To obtain:
 robin> ftn -rm myprog.f

 robin> cc -hlist=m myprog.c



Example loopmark listing: Vectorized/streamed

 1.         subroutine vectorize1(nx,a,b,c,d)
 2.         real a(nx),b(nx),c(nx),d

 3.
 4.  MVr--< do i = 1, nx

 5.  MVr      c(i) = a(i) * b(i) + d
 6.  MVr--> end do

 7.
 8.         end subroutine

ftn-6005 ftn: SCALAR File = vectorize1.ftn, Line = 4

  A loop starting at line 4 was unrolled 2 times.

ftn-6204 ftn: VECTOR File = vectorize1.ftn, Line = 4

  A loop starting at line 4 was vectorized.

ftn-6601 ftn: STREAM File = vectorize1.ftn, Line = 4
  A loop starting at line 4 was multi-streamed.



What if code doesn’t vectorize/multistream?

 Last slide showed perfectly vectorized/multistreamed loop
 When this doesn’t happen, try (in order of difficulty):

1. Using compiler option flags:
 -h aggress to attempt more aggressive loop optimizations

2. Using compiler directives to give compiler hints:
 !dir$ in Fortran, #pragma _CRI in C/C++
 e.g. !dir$ concurrent to assert loop is free of dependencies

3. Rewriting code
 Simple stuff: switching loop indices, fusing loops, etc.
 Complicated stuff: Rewriting data structures,

choosing more vectorizable algorithms (extreme case)



Example loopmark: partial vectorization

Here, indirect addressing prevents compiler from knowing if index collisions occur:

 6.  Vp----< DO i = 1,n

 7.  VP r-<> e(ix1(i)) = e(ix1(i)) - a(i)

 8.  VP----> END DO

 9.

10. end

f90-6371 f90: VECTOR File = gs-2.f, Line = 6

  A vectorized loop contains potential conflicts due to indirect

  addressing at line 7, causing less efficient code to be generated.

f90-6204 f90: VECTOR File = gs-2.f, Line = 6

  A loop starting at line 6 was vectorized.



Example loopmark: Using ‘concurrent’ directive

Fix by using !dir$ concurrent to assert that loop has no vector dependencies:

      6.       !dir$ concurrent
    7.  MV--<       DO i = 1, n

    8.  MV            e(ix1(i)) = e(ix1(i)) - a(i)

    9.  MV-->       END DO

   10.

   11.             end

f90-6203 f90: VECTOR File = gs-2.f, Line = 7

  A loop starting at line 7 was vectorized because an IVDEP

  or CONCURRENT compiler directive was specified.

f90-6203 f90: STREAM File = gs-2.f, Line = 7

  A loop starting at line 7 was streamed because an IVDEP

  or CONCURRENT compiler directive was specified.



Example loopmark: IO within loop

Here, IO needs to be moved outside of a loop by the programmer:

 1.       subroutine io1(nx,a,b,c)
 2.       real a(nx),b(nx),c(nx)

 3.

 4.       open(8,file='c_array',access='direct', &

 5.            form='formatted',status='replace')

 6.  1--< do i = 1, nx

 7.  1      c(i) = a(i) * b(i)

 8.  1      write(8,'(1x,f12.4)',rec=i) c(i)

 9.  1--> end do

10.

11.       end subroutine

ftn-6286 ftn: VECTOR File = io1.ftn, Line = 6

  A loop starting at line 6 was not vectorized because it contains

  input/output operations at line 8.

ftn-6709 ftn: STREAM File = io1.ftn, Line = 6

  A loop starting at line 6 was not multi-streamed because it contains

  input/output operations.



Example loopmark: IO moved outside

The problem is fixed by manually segmenting the loop:

 1.         subroutine io2(nx,a,b,c)
 2.         real a(nx),b(nx),c(nx)

 3.

 4.         open(8,file='c_array',access='direct', &

 5.              form='formatted',status='replace')

 6.

 7.  MVr--< do i = 1, nx
 8.  MVr      c(i) = a(i) * b(i)

 9.  MVr--> end do

10.

11.         write(8,'(1x,f12.4)',rec=i) (c(i),i=1,nx)

12.

13.         end subroutine

ftn-6005 ftn: SCALAR File = io2.ftn, Line = 7
  A loop starting at line 7 was unrolled 2 times.

ftn-6204 ftn: VECTOR File = io2.ftn, Line = 7

  A loop starting at line 7 was vectorized.

ftn-6601 ftn: STREAM File = io2.ftn, Line = 7

  A loop starting at line 7 was multi-streamed.



Other optimization priorities

Haven’t discussed other priorities:

 Communication latency can be reduced by
 Strategic use of Co-Array Fortran
 Use of SHMEM, UPC, or MPI-2
 Remote load-store using pointers
 See docs.cray.com.  Or see the Cray folks at this meeting!

 Register blocking, cache blocking
 Standard techniques covered in many sources
 E.g., O’Reilly High Performance Computing by Severance and Dowd



Where to go for more help

 Much of the information discussed here can be found at
http://info.nccs.gov/resources/phoenix

 Many more documents available at http://docs.cray.com
 Cray X1 Series System Overview
 Migrating Applications to the Cray X1 Series Systems
 Optimizing Applications on Cray Series Systems

(Some of my examples came from here)
 Cray Fortran, C/C++ reference manuals

 Attend the Cray tutorial/workshop this Wednesday.

 Email help@nccs.gov


