
An Introduction to the Cray X1E

Richard Tran Mills
(with help from Mark Fahey and Trey White)

Scientific Computing Group
National Center for Computational Sciences

Oak Ridge National Laboratory

2006 NCCS Users Meeting
February 14, 2006

This work was performed using resources at the National Center for Computational Sciences at ORNL, which is
supported by the U.S. Department of Energy under Contract Number DE-AC05-00OR22725.

Outline

Phoenix is the world’s largest X1E system (well, almost)
 1024 multi-streaming processors
 2 TB aggregate memory

This talk will introduce Phoenix and briefly discuss:

1. X1E hardware platform
2. Some practicalities:

 Compiling and linking code
 Running jobs
 Debugging

3. Performance analysis and tuning

Part I: X1E hardware platform

 NUMA system consisting of up to 2048 nodes (1024 modules)
 Nodes are logical entities of 4 multi-streaming processors (MSPs)

 Memory shared SMP-style within a node
 Jobs that span nodes behave as on MPP distributed memory system

 Each node has local memory…
 …but memory is globally addressable between nodes

Models of parallelism

The X1E architecture supports several models of parallelism:

 Two levels of SIMD, loop-level parallelism:
 Vectorization within SSP
 Multistreaming within MSP

 OpenMP within node

 Between nodes (or processors)
 MPI-1 two-sided message passing
 MPI-2 one-sided communication
 SHMEM one-sided communication
 Co-Array Fortran remote memory
 Direct load/store using pointers

Cray X1E compute module

 Compute module contains 4 multichip modules (MCMs):

 Each MCM consists of 2 multistreaming processors (MSPs):

Cray X1E multistreaming processor (MSP)

 MSP consists of 4 tightly-coupled single-streaming processors (SSPs)
 Each SSP consists of:

 One 2-way superscalar processing unit (565 MHz)
 Two-pipe vector processing unit (1.13 GHz)

2 MB cache

SSP SSP SSP SSP

Is an MSP one or four processors?
 One!

 Fast synchronization, shared cache
 Can be treated as one 8-pipe processor

 Four!
 Each SSP can operate independently
 Treat as MPI processor or use OpenMP-like directives

X1E Interconnect

 “Enhanced” 3D torus
 Modules connected in a 3D torus.
 One torus dimension is fully connected.

 12 GB/s measured MPI bandwidth

 Globally addressable memory:
 Load/store memory on any node
 Remote memory refs routed through interconnect
 W/ contiguous nodes, remote address translation possible

(System scales w/ number of nodes w/o additional TLB misses)
 Low latency

Phoenix strengths and weaknesses

 Strengths:
 Very powerful processors (18 Gflop/sec peak)
 Low effective latency

 Vector processors hide local latency
 Globally addressable memory hides/minimizes global latency

 Very high memory bandwidth (global and local)
 Good for stride-1, strided, and random access

 Weaknesses:
 Scalar processing slow
 “Some tuning required”
 Limited memory per MSP

Part II: Practicalities

 Logging into a front end
 Using the Programming Environment

 Choosing compiler versions
 Special features of Cray compilers
 Libraries provided by Cray

 Code-porting issues
 Running jobs
 Debugging

Phoenix front-ends

 Users can ssh into two different front-ends for Phoenix:

 phoenix.ccs.ornl.gov
 Compile, load, performance tool commands transparently

offloaded to Cray Programming Environment Server (CPES)
 Some standard tools (e.g., emacs, complete Python) unavailable

 robin.ccs.ornl.gov
 Linux cross-compiler box
 Cross-mounts Phoenix scratch space
 Can submit and manage Phoenix jobs
 Much faster than CPES! (5x or more!)

Phoenix front-ends

We recommend working on robin whenever possible.
It is much faster and friendlier!

There are a few cases where you need to use phoenix:
 Using ‘psview’ to display Psched (system scheduler) information
 Using ‘nm’ command to view symbols in binary objects
 autoconf that does not support cross-compilation

(Note: Python-based configuration needs to be done on robin!)

Cray Programming Environment

Cray Programming Environment provides:
 Fortran compiler ‘ftn’
 C compiler ‘cc’
 C++ compiler ‘CC’
 MPI include files and libraries available by default

 Compiler, MPT versions determined by PrgEnv module version
 pe-version tells version of PrgEnv and components
 To load another PE version, do

module swap PrgEnv PrgEnv.newversion

 Best to swap entire PrgEnv, not individual components
 Possible exception: MPT version

Special Cray compiler flags

Compiler flags are documented completely in man pages.
We outline some Cray-specific ones here.

-G options to specify debug level:
 -g: Full debugging w/ breakpoints on every executable line.

 Very slow; all optimizations turned off.
 Bugs often dissapear!

 -G1 (ftn) or -Gp (CC/cc): block-by-block debugging

 Multistreaming disabled
 -G2 (ftn) or -Gf: Debugging w/ full optimization

 In Fortran, only postmortem debugging
 In C/C++, can set breakpoints at function entry/exit

Special Cray compiler flags

 Executables can be built for three different modes on Phoenix
 MSP mode (the default)

 May also want to use -h gen_private_callee so that
subroutines can be called from multistreamed regions

 SSP mode (compiler flag: -h ssp)
 “command” mode (compiler flag: -h command)

 Executable can run on service node w/o help from aprun
 Probably no real need for this now that Robin is available

 Which to use?
 Lots of loop-level parallelism suggests MSP
 Very scalable code suggests SSP

 Best to start w/ MSP but try both

Cray LibSci routines

Cray provides a collection of several highly-optimized kernels in LibSci:

Single processor support for:
 Fast Fourier Transform (FFT), convolution, filtering
 BLAS, LAPACK
 Basic Linear Algebra Communication Subprograms (BLACS)
 Sparse direct solvers

 Multiprocessor distributed memory support for
 FFT routines
 Scalable LAPACK (ScaLAPACK) routines
 Basic Linear Algebra Communication Subprograms (BLACS)

 OpenMP versions of all level 3 BLAS and some level 2 BLAS

 Link with -lsci normally
 -lsci64 of -sdefault64 routines
 -lompsci for OpenMP support

Common code porting problems

 Beware of old #ifdef CRAY directives!

 X1E is very different from old Cray machines:
 Some library calls may be unsupported, or work differently.
 Default Fortran data sizes: 32 bit integers, 32 bit reals
 Use -sdefault64 to default to 64 bit integers and reals

(and to link w/ MPI, BLAS, etc., that assume this)
 Can also use -sreal64 to get 32 bit integers, 64 bit reals

 Need to manually check each #ifdef CRAY to see if it makes sense.

 Auto-configuration problems
 Configure scripts that cannot cross-compile must be run on Phoenix
 Build systems relying on Python may need to run on Robin

Running jobs

 Phoenix uses PBS for job submission
(see http://info.nccs.gov/resources/phoenix/batch)

 Use aprun within job script to launch parallel jobs

 Specify number of MSPs in resource list with mppe=N.
(This also works for SSP jobs -- ask for mppe=N/4, N the # SSPs)

 Multi-node jobs (>4 MSPs) must request a multiple of 8 MSPs!
(Scheduler places jobs on hardware module boundaries)

 Run out of /tmp/work/$USER if doing even moderate IO

 Memory limits:
 Default memory limit is 2 GB per MSP (512 MB per SSP)
 Request more with -m option to aprun

 If requesting more, ask PBS for more MPPE’s than aprun will use
 May also need to increase env variables; see man 7 memory

Debugging: Postmortem

 Set TRACEBK to 30 to get automatic traceback when code crashes
 aprun needs ‘-c core=unlimited’ to generate core files

DO NOT do this unless running in “/tmp/work/$USER”!

 Can view corefiles with gdb or Totalview
 phoenix> gdb a.out core

 phoenix> totalview a.out core

 Traceback gives hints as to what corefiles to look at:

Traceback for process 64311(ssp mode) apid 64184.229 on node 7

Suggests starting with core file 229.

Debugging: Interactive

 To use Totalview interactively to debug an N process job:
 totalview -app “-n N” a.out [totalview options] [-a

<program options>]
 Use totalviewcli for command-line

 This can be very useful, but may be slow

 Can also use gdb
 Fast and responsive
 Debugging parallel programs difficult (impossible?)
 Unsupported by Cray

Part III: Performance analysis and tuning

 Always generate performance profile BEFORE code tuning!
 Routines that are negligible on other systems may be bottlenecks

on X1E!

 Basic code tuning steps:
1. Generate performance profile and identify hotspots.
2. Examine loopmark listings for hotspots.
3. Then do some combination of:

1. Insert compiler directives
2. Manually unroll loops, switch loop indices, etc.
3. Rearrange data structures

4. Return to step 1 and iterate until performance is “good enough”.

Introduction to CrayPAT

Basic steps in using Cray Performance Analysis Toolkit:

1. Generate executable for Phoenix
2. run ‘pat_build’ to generate instrumented executables

 robin> pat_build [options] a.out a.out.inst

 Note that object files must be present!
3. submit batch jobs using ‘qsub’

 Run with ‘aprun’ to generate ‘.xf’ file,
then run ‘pat_report’ to generate performance report

 OR, run with ‘pat_run’ to run and generate report
(Provides somewhat simpler interface)

4. Optionally, use Cray Apprentice (‘app2’) to visualize performance

Types of performance experiments

 Three basic types of performance experiments
 “Profiling”

 Simplest experiment; lowest overhead
 Samples program counter by user and system time

 Sampling
 Sample program counter, call stack, HW counters

at specified intervals or specific events
 Tracing

 At function entry/exit, record performance data, function
arguments, return values

 pat_build must be instructed to instrument specific functions

 Many options for pat_run, pat_report. Too many to list here! See
 http://info.nccs.gov/resources/phoenix/pat
 Chapter 2 of Optimizing Applications on Cray X1 Series Systems

(available at docs.cray.com)

Performance reports

 I like PAT_RT_EXPERIMENT=‘samp_cs_time’ to profile and sample callstack
(Very useful: See where time is spent in calltree)

100.0% | 100.0% | 154438 |Total

|--

| 25.0% | 25.0% | 38644 |pe.3

||---
|| 7.9% | 7.9% | 12160 |MatSetValuesLocal

|||--

||| 7.9% | 7.9% | 12159 |matsetvalueslocal_

||| | | | thcjacobian@thc_module_

||| | | | oursnesjacobian

||| | | | SNESComputeJacobian

||| | | | SNESSolve_LS

||| | | | SNESSolve
||| | | | snessolve_

||| | | | pflowgrid_step@pflow_grid_module_

||| | | | main

||| 0.0% | 7.9% | 1 |DAGetMatrix3d_MPIAIJ

||| | | | DAGetMatrix

||| | | | dagetmatrix_

||| | | | pflowgrid_setup@pflow_grid_module_

||| | | | main

Optimization priorities

 Profile should always guide where optimization is done

 In hotspots routines, optimization priorities:
1. Vectorization (10x or more speedup)
2. Multistreaming (4x)
3. Low-latency communication (2x)
4. Register blocking (< 2x)
5. Cache blocking (< 2x)

Vectorization

Exploiting fine-grain parallelism with vectorization is #1 priority on X1E!

 One vector instruction == many loop iterations
 Need a large enough number of loop iterations

 SSP vector register holds 64 doubles
 More than 64 iterations is ideal (for pipelining, multistreaming)
 Fewer iterations means lower efficiency

 No procedure calls inside loop
 No loop-carried data dependencies

 Some exceptions, e.g., reduction operations

Multistreaming

 Multistreaming takes additional advantage of loop-level parallelism.
 Loop iterations divided among 4 SSPs within an MSP
 Usually 2nd most important priority: Up to 4x speedup

 Many of the same considerations as w/ vectorization
 Additional wrinkle: When to stream vs. vectorize?

 For streamed and vectorized loop nests,
want to vectorize loop with trip count that results in long vectors

 May need to help the compiler by telling it
 what to stream (!dir$ preferstream)
 what to vectorize (!dir$ prefervector)

What compilers can/can’t do

The compiler can do a lot for us:
 Re-arrange loop nests
 Reductions, (un)pack, scatter/gather
 Fuse loops and array statements
 Inline procedures (one level down)
 if statements within loops (Vector masks, some loss of efficiency)

But it cannot do things like:
 Make short vector loops efficient
 Make stride-1 (or -0) scatter/gather efficient
 Know that index arrays don’t repeat
 do j = 1, n

 x(i(j)) = x(i(j)) + …
 Effectively inline many levels down

Loopmark listings

 With profile in hand, examine loopmark listings for hotspot routines,
to see what the compiler could and couldn’t do.

 Loopmark listings show the compiler optimizations applied:
 What vectorized?
 What multistreamed?
 What was unrolled?
 Why was X not vectorized?

 To obtain:
 robin> ftn -rm myprog.f

 robin> cc -hlist=m myprog.c

Example loopmark listing: Vectorized/streamed

 1. subroutine vectorize1(nx,a,b,c,d)
 2. real a(nx),b(nx),c(nx),d

 3.
 4. MVr--< do i = 1, nx

 5. MVr c(i) = a(i) * b(i) + d
 6. MVr--> end do

 7.
 8. end subroutine

ftn-6005 ftn: SCALAR File = vectorize1.ftn, Line = 4

 A loop starting at line 4 was unrolled 2 times.

ftn-6204 ftn: VECTOR File = vectorize1.ftn, Line = 4

 A loop starting at line 4 was vectorized.

ftn-6601 ftn: STREAM File = vectorize1.ftn, Line = 4
 A loop starting at line 4 was multi-streamed.

What if code doesn’t vectorize/multistream?

 Last slide showed perfectly vectorized/multistreamed loop
 When this doesn’t happen, try (in order of difficulty):

1. Using compiler option flags:
 -h aggress to attempt more aggressive loop optimizations

2. Using compiler directives to give compiler hints:
 !dir$ in Fortran, #pragma _CRI in C/C++
 e.g. !dir$ concurrent to assert loop is free of dependencies

3. Rewriting code
 Simple stuff: switching loop indices, fusing loops, etc.
 Complicated stuff: Rewriting data structures,

choosing more vectorizable algorithms (extreme case)

Example loopmark: partial vectorization

Here, indirect addressing prevents compiler from knowing if index collisions occur:

 6. Vp----< DO i = 1,n

 7. VP r-<> e(ix1(i)) = e(ix1(i)) - a(i)

 8. VP----> END DO

 9.

10. end

f90-6371 f90: VECTOR File = gs-2.f, Line = 6

 A vectorized loop contains potential conflicts due to indirect

 addressing at line 7, causing less efficient code to be generated.

f90-6204 f90: VECTOR File = gs-2.f, Line = 6

 A loop starting at line 6 was vectorized.

Example loopmark: Using ‘concurrent’ directive

Fix by using !dir$ concurrent to assert that loop has no vector dependencies:

 6. !dir$ concurrent
 7. MV--< DO i = 1, n

 8. MV e(ix1(i)) = e(ix1(i)) - a(i)

 9. MV--> END DO

 10.

 11. end

f90-6203 f90: VECTOR File = gs-2.f, Line = 7

 A loop starting at line 7 was vectorized because an IVDEP

 or CONCURRENT compiler directive was specified.

f90-6203 f90: STREAM File = gs-2.f, Line = 7

 A loop starting at line 7 was streamed because an IVDEP

 or CONCURRENT compiler directive was specified.

Example loopmark: IO within loop

Here, IO needs to be moved outside of a loop by the programmer:

 1. subroutine io1(nx,a,b,c)
 2. real a(nx),b(nx),c(nx)

 3.

 4. open(8,file='c_array',access='direct', &

 5. form='formatted',status='replace')

 6. 1--< do i = 1, nx

 7. 1 c(i) = a(i) * b(i)

 8. 1 write(8,'(1x,f12.4)',rec=i) c(i)

 9. 1--> end do

10.

11. end subroutine

ftn-6286 ftn: VECTOR File = io1.ftn, Line = 6

 A loop starting at line 6 was not vectorized because it contains

 input/output operations at line 8.

ftn-6709 ftn: STREAM File = io1.ftn, Line = 6

 A loop starting at line 6 was not multi-streamed because it contains

 input/output operations.

Example loopmark: IO moved outside

The problem is fixed by manually segmenting the loop:

 1. subroutine io2(nx,a,b,c)
 2. real a(nx),b(nx),c(nx)

 3.

 4. open(8,file='c_array',access='direct', &

 5. form='formatted',status='replace')

 6.

 7. MVr--< do i = 1, nx
 8. MVr c(i) = a(i) * b(i)

 9. MVr--> end do

10.

11. write(8,'(1x,f12.4)',rec=i) (c(i),i=1,nx)

12.

13. end subroutine

ftn-6005 ftn: SCALAR File = io2.ftn, Line = 7
 A loop starting at line 7 was unrolled 2 times.

ftn-6204 ftn: VECTOR File = io2.ftn, Line = 7

 A loop starting at line 7 was vectorized.

ftn-6601 ftn: STREAM File = io2.ftn, Line = 7

 A loop starting at line 7 was multi-streamed.

Other optimization priorities

Haven’t discussed other priorities:

 Communication latency can be reduced by
 Strategic use of Co-Array Fortran
 Use of SHMEM, UPC, or MPI-2
 Remote load-store using pointers
 See docs.cray.com. Or see the Cray folks at this meeting!

 Register blocking, cache blocking
 Standard techniques covered in many sources
 E.g., O’Reilly High Performance Computing by Severance and Dowd

Where to go for more help

 Much of the information discussed here can be found at
http://info.nccs.gov/resources/phoenix

 Many more documents available at http://docs.cray.com
 Cray X1 Series System Overview
 Migrating Applications to the Cray X1 Series Systems
 Optimizing Applications on Cray Series Systems

(Some of my examples came from here)
 Cray Fortran, C/C++ reference manuals

 Attend the Cray tutorial/workshop this Wednesday.

 Email help@nccs.gov

