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Abstract—Inefficient parallel I/O is known to be a major
bottleneck among scientific applications employed on super-
computers as the number of processor cores grows into the
thousands. Our prior experience indicated that parallel I/O
libraries such as HDF5 that rely on MPI-IO do not scale well
beyond 10K processor cores, especially on parallel file systems
(like Lustre) with single point of resource contention. Our
previous optimization efforts for a massively parallel multi-phase
and multi-component subsurface simulator (PFLOTRAN) led to
a two-phase I/O approach at the application level where a set of
designated processes participate in the I/O process by splitting the
I/O operation into a communication phase and a disk I/O phase.
The designated I/O processes are created by splitting the MPI
global communicator into multiple sub-communicators. The root
process in each sub-communicator is responsible for performing
the I/O operations for the entire group and then distributing the
data to rest of the group. This approach resulted in over 25X
speedup in HDF I/O read performance and 3X speedup in write
performance for PFLOTRAN at over 100K processor cores on the
ORNL Jaguar supercomputer. This research describes the design
and development of a general purpose parallel I/O library called
Scorpio that incorporates our optimized two-phase I/O approach.
The library provides a simplified higher level abstraction to the
user, sitting atop existing parallel I/O libraries (such as HDF5)
and implements optimized I/O access patterns that can scale on
larger number of processors. Performance results with standard
benchmark problems and PFLOTRAN indicate that our library
is able to maintain the same speedups as before with the added
flexibility of being applicable to a wider range of I/O intensive
applications.

Keywords-Parallel I/O; High Performance Computing; Subsur-
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I. INTRODUCTION

This paper describes the development of a highly scal-
able application layer parallel I/O library, SCORPIO (SCal-

able block-ORiented Parallel I/O) for scientific applications.
SCORPIO provides a higher level API (Application Program-
ming Interface) to read and write large scientific datasets in
parallel at very large processor counts. The primary design
goal is to abstract away the complexity of dealing with
lower level parallel I/O libraries (HDF5 [1], netCDF [2],
MPI-IO [3] etc.) while ensuring performance scalability. This
is accomplished by dividing the traditional I/O operations
(read/write) into two phases, a communication phase and an
I/O phase.

The rest of the paper is organized as follows. In Section II,
we present the motivation for developing a parallel I/O library
by illustrating the I/O patterns used and scalability issues that
were encountered for a large scale reactive multiphase flow
and transport code, PFLOTRAN. We then discuss the two-
phase I/O strategy developed by Sripathi et al. [4] [5] for
PFLOTRAN that resolved the performance issues identified
in Section III. Section IV describes the design of the general
purpose parallel I/O library (SCORPIO) incorporating the two-
phase I/O strategy into any application. Section V presents
performance results for some PFLOTRAN test problems using
SCORPIO.

II. PFLOTRAN

The U.S Department of Energy (DOE) is interested in
studying the effects of geologic sequestration of CO2 in deep
reservoirs and migration of radionuclides and other environ-
mental contaminants in groundwater. Modeling of subsurface
flow and reactive transport is necessary to understand these
problems. PFLOTRAN [6] [7] is a highly scalable subsurface
simulation code that solves multi-phase groundwater flow and
multicomponent reactive transport in three-dimensional porous



media. It is written in an object-oriented style in Fortran 90
and employs domain-decomposition parallelism and makes
extensive use of PETSc (Portable, Extensible Toolkit for
Scientific Computation) [8] numerical solvers and distributed
data structures. It uses MPI (Message Passing Interface) [9]
through PETSc for inter-process communication and parallel
HDF5 (Hierarchical Data Format 5) [1] library to perform
simulation I/O.

A. PFLOTRAN I/O

The execution of PFLOTRAN can be divided into 4 differ-
ent phases: initialization, flow, transport and output. The ini-
tialization phase mainly consists of subroutines which read the
simulation data from HDF5 input files. The HDF5 input files
are internally organized as a collection of HDF5 groups with
each group containing multiple 1-dimensional HDF5 datasets.
The largest test problem used reads multiple datasets where
each dataset contains 1.7 billion elements. The simulation
output comprises of multiple 3-dimensional datasets written to
a single file. Each process writes to a non-contiguous region
of the file and all such writes are interleaved between the
processes. HDF5 collective I/O access mode is used to reduce
the number of I/O disk accesses by combining the small non-
contiguous write requests from different processes into larger
contiguous write requests. All processes participate in the
parallel I/O operations.

There are two different read access patterns in PFLOTRAN
and one write pattern as illustrated in Fig. 1.

• Read Pattern-1: Read the same contiguous region of a
dataset.

• Read Pattern-2: Read a chunk of the dataset determined
by the process specific offset values.

• Write Pattern-1: Each process writes a 3-d block of data
to a specified offset in the global dataset.

Read Pattern-1 is used for reading datasets like boundary con-
nectivity list that are not evenly distributed across processors.
Hence all processors read the entire dataset although each
processor may only need portions of the list. Read Pattern-
2 is used for datasets that map directly to the grid such as
porosity and permeability datasets where offsets can be easily
calculated.

B. Performance

We briefly present performance analysis of PFLOTRAN
using a 270 million DoF (degrees of freedom) test problem
on Jaguar, the Cray XT5 supercomputer previously deployed
at Oak Ridge National Laboratory. It can be observed from
Fig. 2 that there is significant performance degradation in
both initialization (read) and write phases as we increase the
number of processors. HDF5 collective mode is used for writes
in this scenario. In contrast, HDF5 independent mode would
incur even higher performance penalty at scale due to an in-
creased number of independent I/O requests. The performance
penalty at scale can be traced to large number of I/O requests
and inordinately expensive file open calls. Whenever a process
needs to open or close a file, it needs to poll the MDS (Meta

Data Server) of the Lustre parallel file system [10]. As there
is only one MDS for the entire file system, it becomes a
performance bottleneck because of resource contention. As
the number of processors increases, the file open and close
calls become very expensive thereby becoming a scalability
impediment. This has been identified as a scalability problem
in previous studies [11] [12]. This problem is aggravated when
using shared computing resources where the target application
is run along with other applications that also stress the I/O
system on the machine. For further details, the reader is
referred to the performance analysis study by Sripathi [4].

III. OPTIMIZED I/O PATTERN

To alleviate the aforementioned scalability issues, Sripathi
[5] identified the following:

• Need to combine multiple small I/O disk requests into
one large disk request to decrease the number of I/O disk
accesses at higher processor counts.

• Moreover, all processors cannot afford to access the
file simultaneously because of current Lustre file system
limitations (One Meta Data Server).

Hence the two-phase I/O approach was developed [4] [5]
wherein all processes participate in the communication phase
but only a limited number of processes participate in the I/O
phase. For file read operations, the I/O phase is followed by
the communication phase and conversely for write operations.
Fig. 3 illustrates the access patterns involved in the two-phase
I/O protocol.

The two-phase I/O method is implemented at the application
level by splitting the MPI global communicator into multiple
sub-communicators. The total MPI processes are divided into
groups of sequentially ranked processes and a MPI commu-
nicator is created for each such group. The size of the group
is a configuration parameter. The final group will have fewer
processes than the number specified by group size when the
total number of processes is not exactly divisible by group
size.

The root process in each sub-communicator is responsible
for performing the I/O operations for the entire group and then
distributing the data to the rest of the group. By careful selec-
tion of the I/O root processes we avoid network congestion
during the communication phase. Similarly communicators
are created for performing write operations. The size of the
sub-communicators determines the number of I/O processes
created.

The access pattern within PFLOTRAN is either a contiguous
access or an interleaved contiguous access to a dataset. So, the
root I/O process consolidates the numerous independent disk
requests into a large contiguous disk request and reads the data.
Once the root process reads the data, it distributes the data to
the rest of the group. The I/O processes need not allocate extra
memory when performing read pattern-1 because all processes
need to read the same contiguous data. On the other hand, they
need to allocate temporary storage for the entire group while
performing read pattern-2.



Fig. 1. PFLOTRAN Default I/O access patterns

Fig. 2. PFLOTRAN performance on Jaguar using default I/O

Fig. 4 shows the impact of group size on performance
of initialization phase on Jaguar. It can be observed that a
large group size results in better performance due to fewer
readers. Using the two-phase I/O approach, we were able to
achieve 25X improvement in the initialization (read) phase of
PFLOTRAN at 65,536 cores of Cray XT5. The single process
I/O by process 0 in Fig. 4 refers to the case when all the
input data is read and broadcast by one process. It must be
noted that this scenario is inherently non-scalable for petascale
applications because of memory limitations in case of large
datasets. We observe from Fig. 4 that read performance is
effectively identical for group sizes of 1024 and higher. Based

on this empirical evidence, we recommend 1024 as a good
choice for read group size at large processor counts for this
application. Generally, read group size should be determined
based upon the amount of data to be read and total number of
parallel processes.

The default write method does not scale well despite using
collective I/O mode. This can be traced to the overhead
associated with collective I/O at higher processor counts.
Hence we reduced the number of processes participating in a
collective write call by pooling them into groups and assigning
an I/O root process to write for each group. Fig. 5 shows a 3X
improvement in write performance by using improved versions



Fig. 3. Optimized two-phase I/O access patterns

Fig. 4. Performance of optimized PFLOTRAN Initialization phase on Jaguar

of HDF5 write operations with a group size of 16.
The performance improvement in write phase is lower

relative to improvement in read phase because of the noncon-
tiguous nature of write pattern which prevents consolidation
of multiple write requests into a single contiguous request.
Thus each I/O root process has to issue separate write requests
for each process in its I/O group. Consequently, a large
write group size would degrade performance as each I/O root
process would be issuing a large number of write requests
in sequence. Hence care must be taken while selecting write

group size to balance the number of writers with the number of
separate I/O requests by each I/O root process. We recommend
starting out with a small group size unless consolidation is not
supported for specific access patterns.

The 3X improvement in write performance and 25X im-
provement in read performance on 64k cores of Jaguar on this
test problem resulted in an overall speedup of 5X for the entire
application [4].



Fig. 5. Performance of optimized PFLOTRAN write phase on Jaguar

IV. SCORPIO LIBRARY

This research has evolved into part of a larger Department
of Energy initiative, Advanced Simulation Capability for Envi-
ronmental Management (ASCEM) [13]. This project is divided
into three thrust areas of which the development of parallel I/O
algorithms (SCORPIO library) plays a key role in the success
of the HPC simulator. This library was envisioned to leverage
our earlier I/O optimization experience to build a scalable
general purpose parallel I/O capability for any application.
Specifically, the goal is to take advantage of existing parallel
I/O libraries, such as HDF5 which are being widely used by
scientific applications and modify these algorithms to better
scale on larger number of processors.

A. Related Work

The idea of decomposing I/O into two stages, namely
communication and I/O has previously been explored [16],
including in ROMIO [3]. Sripathi et al. [5] recognized the
potential for such an approach to mitigate I/O performance
issues on current leadership class supercomputers by reducing
the number of readers and writers. Compared to some related
work that targets I/O layers at a lower level including ROMIO,
our approach enables us to tailor the I/O configuration in-
cluding buffering strategy to better suit the target application
requirements.

Recently ADIOS [14] developed some capabilities
(MPI_AMR transport) for I/O aggregators. To our knowledge,
their approach requires use of a custom data format and
results in generation of multiple sub-files (one per aggregator)
which may necessitate additional processing using ADIOS
utility programs. In contrast, our approach works directly
with HDF5 files and reads/writes to a single HDF5 file.

Choudhary et al. [17] demonstrated optimizations such
as subfiling for parallel netCDF that resulted in substan-
tial improvements in write bandwidth. Liao and Choud-
hary [19] developed a new file domain partitioning method
(group-cyclic) as a replacement to the even partitioning
model used by ROMIO [3] that delivered much better write
performance on Lustre filesystems.

B. Architecture

The SCORPIO library implements the two-phase I/O ap-
proach wherein the total number of processors will be grouped
into a small number of I/O pools and in each I/O pool a single
processor will be designated as the I/O processor to perform
disk I/O operations. For reads, these I/O processors will first
read the entire data associated with its group and then scatter
it to each processor within its group using a user specified
format. For writes, these I/O processors will first gather the
data from each processor within its group and then write to the
disk. The gathering and scattering of data is carried out using
MPI library calls (MPI_Scatterv, MPI_Gatherv).

The basic architecture of the SCORPIO library is depicted in
Fig. 6. The user specifies the I/O group size and basic attributes
of the I/O operation (file name, read/write, contiguous/non-
contiguous, offsets, data dimensions etc.). The library creates
MPI sub-communicators equal to the number of I/O groups
i.e., the total number of processors divided by I/O group size.
Advanced users can create multiple concurrent I/O groups
of different sizes customized for different kinds of access
patterns.

The first phase of the library has been completed and
tested with up to 144K cores on the ORNL Jaguar machine.
The library includes support for various types of read and
write operations through well-defined Fortran and C bindings



Fig. 6. Overall architecture of the SCORPIO library

(compatible with C++) and hence callable from Fortran, C and
C++ applications.

C. Supported I/O Patterns

The SCORPIO library supports various commonly used
I/O patterns. Fig. 7 illustrates some supported uniform and
nonuniform contiguous access patterns. In both scenarios,
each process accesses a contiguous region in the dataset.
Each dataset is partitioned among all processes (four processes
in the illustrations shown). In the uniform scenario, every
process accesses the same extent/length of data whereas in
the nonuniform scenario, each process can access different
extents of the dataset. In case of n-dimensional datasets,
the data partitioning is performed along the first dimension.
Advanced users have the flexibility to customize their I/O
requests and offsets according to their needs using the non-
uniform access pattern.

In addition to these patterns, a generic block writing pattern
is implemented to support writing an n-dimensional data
block to a specified offset in the global dataset. Applications
such as PFLOTRAN benefit from this extension as every
process writes several non-contiguous 3-dimensional blocks
at a specified offset during the output phase.

The library enhances user productivity by implicitly calcu-
lating the requisite offsets and lengths wherever possible. In
case of uniform_contiguous access pattern, an I/O root
process can derive the offset at which data has to be written
from the overall dimensions of the dataset and the total num-
ber of parallel processes. For nonuniform_contiguous
access pattern, additional coordination is required among the
I/O root processes to calculate the offset.

D. Brief description of user callable routines

The SCORPIO library consists of a number of routines
that the user can invoke for performing I/O operations as
described in Table 1. These routines perform operations such
as initialization, opening/closing of a file, read operations, and
write operations. In Table 1, it is implied that each library call
is prefixed by scorpio_.

V. PERFORMANCE

A micro-benchmark that includes part of PFLOTRANs
I/O behavior (Read pattern-2 and 1-d write of same data)
was developed to test the efficacy of the SCORPIO library.
Performance analysis was carried out on the ORNL Jaguar PF
(Cray XT5) machine employing up to 144K cores using two
real datasets associated with the PFLOTRAN application. The
performance of the two-phase SCORPIO library was compared
against that of the default HDF collective I/O approach in
Fig. 8. The read and write group sizes used in the two-phase
approach for the results presented in this section are 1024 and
16 respectively.

The I/O operation consists of reading two one-dimensional
datasets from an input file used in the PFLOTRAN application
and then writing them to an output file. The validation was
performed by doing an h5diff between the original file and
the written file. We investigated two test scenarios, (a) reading
two 960 × 960 × 240 datasets from a file (1.7 GB) and writing
them back to an output file and (b) reading two 1920 × 1920
× 480 datasets from a larger file (14 GB) and writing them
out.

The read and write bandwidth obtained for the I/O bench-
mark using the 14 GB dataset on 144k cores are 301 MB/s and
407 MB/s respectively for two-phase I/O method. The band-
width calculations include communication as well as HDF5



Fig. 7. Supported Access Patterns

TABLE I
SCORPIO USER CALLABLE FUNCTIONS

Function Description
IOgroup init Initializes I/O groups by splitting the user

given communicator into a number of sub-
communicators equal to the specified num-
ber of I/O groups.

open file Opens a file for read or write
operation. Available file modes are
FILE_CREATE, FILE_READONLY and
FILE_READWRITE.

read dataset Read data from a previously opened file.
A number of read patterns are available
including uniform_contiguous,
nonuniform_contiguous, and
entire_dataset. Various datatypes are
supported including float, double, integer,
long, char and byte. Block reads from
multidimensional arrays are also supported.

write dataset Write data to a previously opened file. All
functional equivalents to available read pat-
terns are available in writes.

write dataset block Writes a n-d block of data at the provided
offsets in the global dataset in the file.

read same sub dataset Every process reads the same portion of the
dataset.

get dataset size Query the total size of a dataset from a
previously opened file.

get dataset ndims Query the number of dimensions of a spec-
ified dataset.

get dataset dims Query the detailed dimensions of a specified
dataset.

create dataset group Creates a group within a HDF file that is
used for writing datasets.

close dataset group Closes a group in a HDF file that is previ-
ously opened using create dataset group.

close file Closes a previously opened file.

I/O operations. Additionally, shared-file I/O performance de-
grades at scale due to lock contention from file system
consistency control mechanism [18]. While these bandwidth

numbers are low compared to expected Lustre performance,
these numbers are comparable to the values of < 1 GB/s
reported in Choudhary et al. [17] for single shared-file I/O
for Flash I/O at lower processor counts on Jaguar.

We observed significant performance variability during
these experiments that may be attributed to system noise.
During our investigation, we found that default I/O method
required considerably higher Cray message portal resources
to work with the 14 GB dataset. This is a pertinent benefit of
two-phase I/O approach when dealing with large datasets at
scale.

Timing is nearly flat for SCORPIO for the large file scenario
whereas for default HDF I/O it increases nearly exponentially.
SCORPIO is around 12 times faster than default I/O for 1.7
GB file scenario and more than 4 times faster for the 14 GB
file.

The timing breakdown in Fig. 9 shows that most of the
performance gain comes while opening the file. In the default
HDF I/O, all processors participate in opening the file making
it very expensive at large processor counts. In SCORPIO,
most of the performance loss is in the Init operation where
the MPI sub-communicators are created. Further analysis
indicated that MPI_Comm_split does not scale due to an
inefficient sorting scheme among other issues in the MPI
library. Communication with the MPI developers revealed that
they fixed this in the upcoming release.

We integrated the two-phase I/O library with PFLOTRAN
and used it to study performance gains over the default I/O
approach for a 960 × 960 × 240 grid test problem (1.7 GB
input and 5.8 GB output) as shown in Fig 10. We expect the
performance gains to improve further for larger test problems
using multiple datasets as PFLOTRAN invokes a file open/read
call for every dataset read and file open is an expensive call at
scale as demonstrated in Fig. 9. Moreover, write performance



Fig. 8. I/O performance of default I/O (HDF collective) with two-phase SCORPIO library. At 144k cores the wallclock time for default I/O method is 535
secs compared to 129 secs for two-phase library method for the 14 GB file scenario.

Fig. 9. Detailed performance analysis of Parallel I/O benchmark.

can be further enhanced by consolidating the writes in the
two-phase I/O library.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented SCORPIO, an application layer par-
allel I/O library that implemented a two-phase I/O strategy.
Performance results demonstrated that SCORPIO can im-
prove the scalability of large scale scientific applications like
PFLOTRAN on leadership class supercomputers. Furthermore,
we facilitate multiple I/O group configurations to co-exist
during runtime to cater to different stages of the application.
Hence an application can choose an appropriate group size for
various phases of execution (e.g., initialization, input, output,
checkpointing).

In order to derive further performance gains while writ-
ing multi-dimensional blocks, consolidation strategies are de-
signed and currently in development to reduce the number of
independent I/O requests. The current version of the SCORPIO

library assumes that I/O segments associated with each proces-
sor do not overlap except for the cases where the entire dataset
or same portion of the dataset is being read by all processors.
This limitation will be removed in a future release. Another
limitation in the current library is the assumption that adequate
memory is available in each I/O processor to hold the data
from all processors in its group. Future releases will include
increasingly sophisticated buffering strategies including the
provision to customize the maximum I/O buffer size that can
be used by each I/O processor. Additionally, SCORPIO library
can incorporate improvements in the underlying I/O libraries
such as the ones carried out by Choudhary et al. [17] if they
are extended to HDF5. Ongoing work focuses on extending
support for multidimensional unstructured data. SCORPIO
supports native HDF format and with little additional effort
can support netCDF (version 4.0) [2] as it internally uses HDF
format for storage. Extensions to support other data formats
such as XDMF [15] are planned in future releases.



Fig. 10. PFLOTRAN performance with default I/O and two-phase I/O library on Jaguar.
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