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Abstract. The paper presents the state-of-the-art algorithmic developments for simulating
the fracture of disordered quasi-brittle materials using discrete lattice systems. Large scale
simulations are often required to obtain accurate scaling laws; however, due to computational
complexity, the simulations using the traditional algorithms were limited to small system
sizes. We have developed two algorithms: a multiple sparse Cholesky downdating scheme for
simulating 2D random fuse model systems, and a block-circulant preconditioner for simulating
3D random fuse model systems. Using these algorithms, we were able to simulate fracture of
largest ever lattice system sizes (L = 1024 in 2D, and L = 64 in 3D) with extensive statistical
sampling. Our recent simulations on 1024 processors of Cray-XT3 and IBM Blue-Gene/L
have further enabled us to explore fracture of 3D lattice systems of size L = 200, which is a
significant computational achievement. These largest ever numerical simulations have enhanced
our understanding of physics of fracture; in particular, we analyze damage localization and its
deviation from percolation behavior, scaling laws for damage density, universality of fracture
strength distribution, size effect on the mean fracture strength, and finally the scaling of crack
surface roughness.

1. Introduction
The statistical properties of fracture in disordered media are interesting not only in view
of practical applications, but also for purely theoretical reasons(1). Despite considerable
progress, there exist many controversial issues between the theoretically estimated results and
the experimentally measured values, and also among various theoretical and numerical models
used for studying fracture of disordered media. Among these partly still controversial issues, is
the scaling of crack geometries; in particular, the origin of both the scaling and the universality
of the fracture surface roughness exponent is at the heart of the controversy.

From a practical applications point of view, the main issue associated with the fracture of
quasi-brittle materials (such as concrete and ceramics) is the scaling of material strength; In
particular, its probability distributions and its scaling with sample size, also known as the size-
effect. In addition to understanding the universality of crack surface roughness, fracture of
disordered (heterogeneous) materials poses many fundamental questions in statistical physics
such as the relation between fracture and phase transitions, and the crackling noise associated
with acoustic emission experiments. The importance of these acoustic emission signatures is that
they are not only related to the energy release rate but also serve as a prognostic methodology
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for forecasting the impending structural failure.
Experiments on several materials under different loading conditions have shown that the

fracture surface is self-affine (2) and the out of plane roughness exponent displays a universal
value of � 0.8 irrespective of the material studied (3). In particular, experiments have been done
in metals (4), glass (5), rocks (6) and ceramics (7), covering both ductile and brittle materials.
However, the current understanding that has emerged is that crack roughness displays a universal
value of � 0.8 only at larger scales and at higher crack speeds, whereas another roughness
exponent in the range of 0.4− 0.6 is observed at smaller length scales under quasi-static or slow
crack propagation (3).

It was later shown that the roughness exponent conventionally measured describes only the
local properties, while the fracture surface instead exhibits anomalous scaling (8): the global
exponent describing the scaling of the crack width with the sample size is larger than the local
exponent measured on a single sample (9; 10). It is thus necessary to define two roughness
exponents a global one (ζ) and a local one (ζloc). Only the latter appears to be universal with a
value ζloc � 0.8 (3) that is independent of the material tested (11). In comparison, the roughness
exponents obtained from experiments on quasi two-dimensional materials are: ζloc = 0.68±0.04
in thin wood planks (12), and ζloc ≈ 0.73 for crack lines in wet paper (13).

The situation that exists today is that there is a large discrepancy between theoretical
estimates and experimentally measured values of roughness exponents, and hence numerical
methods are in common use. A well established numerical model that deals with explicit
description of disorder is based on lattice models, which describe the medium as a discrete
set of elastic bonds with randomly distributed failure thresholds (1; 14; 15; 16; 17; 18). In the
last 20 years, the cornerstone of fracture simulations using discrete lattice models has been the
Random Fuse Model (RFM), a lattice model of the fracture of solid materials in which as a key
simplification vectorial elasticity has been substituted with a scalar field. The RFM represents
one of the simplest imaginable pictures of strongly interacting systems that are complicated by
the presence of disorder.

The paper is organized as follows: in Section 2, we briefly describe the random fuse model.
The state-of-the-art computational algorithms used for simulating fracture in the RFM are
presented in Section 3. Section 4 discusses further developments in large scale simulation
of fracture using high-performance computing. The scientific significance of these large scale
simulations is discussed in Section 5.

2. Random Fuse Model
The RFM has been extensively investigated in the literature over the last two decades
(1; 14; 15; 16; 17; 18). In the random thresholds fuse model, the lattice is initially fully intact
with bonds having the same conductance, but the bond breaking thresholds, t, are randomly
distributed based on a thresholds probability distribution, p(t). The burning of a fuse occurs
irreversibly, whenever the electrical current in the fuse exceeds the breaking threshold current
value, t, of the fuse. Periodic boundary conditions are imposed in the horizontal direction to
simulate an infinite system and a constant voltage difference, V , is applied between the top and
the bottom of lattice system bus bars.

Numerically, a unit voltage difference, V = 1, is set between the bus bars and the Kirchhoff
equations are solved to determine the current flowing in each of the fuses. Subsequently, for each
fuse j, the ratio between the current ij and the breaking threshold tj is evaluated, and the bond
jc having the largest value, maxj

ij
tj

, is irreversibly removed (burnt). The current is redistributed
instantaneously after a fuse is burnt implying that the current relaxation in the lattice system is
much faster than the breaking of a fuse. Each time a fuse is burnt, it is necessary to re-calculate
the current redistribution in the lattice to determine the subsequent breaking of a bond. The
process of breaking of a bond, one at a time, is repeated until the lattice system falls apart. In
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this work, we consider a uniform probability distribution, which is constant between 0 and 1.
Numerical simulations on large system sizes are essential to understand the scaling laws of

fracture and universality of crack surface roughness exponents. It is believed that roughness
measurements based on numerical results obtained using large system sizes are necessary
to bridge the gap that exists between numerically estimated roughness exponents and the
experimentally measured roughness exponents. Unfortunately, large scale numerical simulation
of these discrete lattice networks has often been hampered for two reasons.

• First, a new large set of equations has to be solved everytime a new lattice bond is broken.
This becomes especially severe with increasing lattice system size, Ld (where L is the linear
dimension of the lattice and d is the spatial dimension of the lattice system (d = 2 in 2D
and d = 3 in 3D)), since the number of broken bonds at failure, nf , increases with system
size L as nf ∼ O(L1.8) in 2D and nf ∼ O(L2.7) in 3D.

• Second, critical slowing down associated with the iterative solvers close to the macroscopic
fracture. That is, as the lattice system gets closer to macroscopic fracture, the condition
number of the system of linear equations increases, thereby increasing the number of
iterations required to attain a fixed accuracy. This becomes particularly significant for
large lattices.

In addition, since the response of the lattice system corresponds to a specific realization
of the random breaking thresholds, an ensemble averaging of numerical results over Nconfig

configurations is necessary to obtain a realistic representation of the lattice system response. This
further increases the computational time required to perform simulations on large lattice systems.
In the following, we describe the state-of-the-art computational algorithms that significantly
reduced the computational time thereby enabling the simulation of fracture using large lattice
system sizes.

3. State-of-the-art Algorithms
Algebraically, the process of simulating fracture using discrete lattice systems is equivalent to
solving a new set of linear equations

Anxn = bn, n = 0, 1, 2, . . . , (1)

every time a new lattice bond is broken. An important feature of fracture simulations using
the discrete lattice systems is that, for each n = 0, 1, 2, . . ., the new matrix An+1 of the lattice
system after the (n + 1)th broken bond is equivalent to a rank-p downdate of the matrix An

(19). The matrix An refers to the lattice conductance matrix in the case of fuse models and the
lattice stiffness matrix in the case of spring and beam models, bn refers to the applied nodal
current or force vector, and xn nodal potential or displacement vector.

Traditionally, iterative techniques based on preconditioned conjugate gradient (PCG) method
have been used to simulate fracture using fuse networks (see Ref. (20) for a excellent review
of iterative methods; see Ref. (21) for a review of multigrid method). However, large-scale
numerical simulations using iterative solvers have often been hindered due to the critical slowing
down associated with the iterative solvers as the lattice system approaches macroscopic fracture.
As a remedy, Fourier accelerated PCG iterative solvers (22; 23; 24) have been suggested to
alleviate the critical slowing down. The Fourier acceleration algorithm proposed in Refs. (22; 23)
chooses an ensemble averaged matrix Ā (25; 26) as the preconditioner, where Ā(i, j) = r(dw−df ),
r = |i− j|, the distance between the nodes i and j, and df and dw refer to the fractal dimension
of the current-carrying backbone and the random-walk dimension respectively. However, the
ensemble averaged matrix Ā is not the optimal circulant preconditioner since it does not
minimize the norm ‖I − C−1A‖F over all non-singular circulant matrices C.
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Even with the usage of Fourier accelerated algorithms, earlier simulations were limited to
much smaller lattice systems of sizes L = 256 in 2D and L = 48 in 3D, and that too with a
relatively small statistical sampling. In the following, we present two state-of-the-art algorithms,
namely, the multiple sparse Cholesky downdating algorithm for 2D simulations and the block-
circulant preconditioner for 3D simulations that have significantly reduced the computational
time thereby enabling the simulation of fracture using much larger lattice system sizes.

3.1. Multiple-rank sparse Cholesky downdating algorithm
An important feature of fracture simulations using discrete lattice models is that, for each
n = 0, 1, 2, . . ., the new matrix An+1 of the lattice system after the (n + 1)th broken bond is
equivalent to a rank-p downdate of the matrix An (19; 27). Mathematically, in the case of the
fuse and spring models, the breaking of a bond is equivalent to a rank-one downdate of the
matrix An, whereas in the case of beam models, it is equivalent to multiple-rank (rank-3 for
2D, and rank-6 for 3D) downdate of the matrix An. Thus, an updating scheme of some kind is
therefore likely to be more efficient than solving the new set of equations formed by Eq. (1) for
each n.

Consider the Cholesky factorizations

PAnPt = LnLt
n (2)

for each n = 0, 1, 2, · · ·, where P is a permutation matrix chosen to preserve the sparsity of
Ln. Since the breaking of bonds is equivalent to removing the edges in the underlying graph
structure of the matrix An, for each n, the sparsity pattern of the Cholesky factorization Ln+1

of the matrix An+1 must be a subset of the sparsity pattern of the Cholesky factorization Ln of
the matrix An. Hence, for all n, the sparsity pattern of Ln is contained in that of L0. That is,
denoting the sparsity pattern of L by L, we have

Lm ⊇ Ln ∀ m < n (3)

For two-dimensional lattice simulations, in Ref. (19), we proposed an efficient algorithm
based on multiple-rank sparse Cholesky downdating scheme of Davis and Hager (28; 29) to
successively downdate the Cholesky factorizations Ln of An to Ln+1 of An+1, i.e., Ln → Ln+1

for n = 0, 1, 2, · · ·. Since Ln ⊇ Ln+1, it is necessary to modify only a part of the non-zero entries
of Ln in order to obtain Ln → Ln+1. This results in a significant reduction in the computational
time. Once the factorization Ln+1 of An+1 is obtained, the solution vector xn+1 is obtained from
Ln+1Lt

n+1xn+1 = bn+1 by two triangular solves (19). Using this algorithm (19), the authors
have reported numerical simulation results for large 2D lattice systems (e.g., L = 1024), which to
the authors knowledge, was so far the largest lattice system used in studying damage evolution
using discrete lattice systems.

3.2. Optimal and superoptimal circulant preconditioners
Although the sparse direct solver algorithm presented in (19) is superior to iterative solvers in
two-dimensional lattice systems, for 3D lattice systems, the memory demands brought about
by the amount of fill-in during sparse Cholesky factorization favor iterative solvers. The main
observation behind developing preconditioners for the iterative schemes is that the operators on
discrete lattice network result in a circulant block structure. Hence, a fast Poisson type solver
with a circulant preconditioner can be used to obtain the solution in O(N logN) operations
using FFTs of size N , where N denotes the number of degrees of freedom. However, as the
lattice bonds are broken successively, the initial uniform lattice grid becomes a diluted network.
Consequently, although the matrix A0 is Toeplitz (also block Toeplitz with Toeplitz blocks)
initially, the subsequent matrices An, for each n, are not Toeplitz matrices. However, depending
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on the pattern of broken bonds, An may still possess block structure with many of the blocks
being Toeplitz blocks.

The authors have developed an algorithm based on a block-circulant preconditioned conjugate
gradient (CG) iterative scheme (30) for simulating 3D random fuse networks. The block-
circulant preconditioner was shown to be superior compared with the optimal point-circulant
preconditioner for simulating 3D random fuse networks (30). Since these block-circulant
and optimal point-circulant preconditioners achieve favorable clustering of eigenvalues, these
algorithms significantly reduced the computational time required for solving large lattice systems
in comparison with the Fourier accelerated iterative schemes used for modeling lattice breakdown
(24; 31).

Using this block circulant preconditioner, we were able to simulate fracture in lattice systems
of sizes up to 64×64×64, which is the largest ever discrete lattice system used in 3D for fracture
simulation of broadly disordered materials. The simulation begins with an intact lattice system
and is carried out by breaking one bond at a time until the macroscopic fracture occurs. Table
1 presents a summary of computational times required for simulating the fracture of one such
sample configuration of a 3D cubic lattice system. These simulations have been performed
on a IBM 1.3 GHz Power4 processor. The CPU times taken for simulating a cubic lattice
system of size (L × L × L) scales as O(L6.5), which poses severe computational requirements
for simulating fracture of even larger lattice system sizes that are required to obtain accurate
scaling laws of fracture in 3D. This is precisely the scenario where massively parallel simulation
offers significant advantages. In the following, we present massively parallel simulations of large
3D lattice systems for studying fracture of disordered materials.

Table 1: Block Circulant PCG (3D Cubic Lattice)
Size CPU(sec) Iterations
10 16.54 16168
16 304.6 58756
24 2154 180204
32 12716 403459
48 130522 1253331
64 1180230

4. High-Performance Computing
Since iterative solvers exhibit excellent scalability with respect to number of processors, parallel
iterative solvers are especially suitable for performing large scale fracture simulations using 3D
lattice networks. Using PETSc (32; 33; 34), we were able to start from our existing serial
code and rapidly parallelize the most time-consuming (solvers) portions of the computation. At
each simulation step, the PETSc KSPSolve() routine is used to solve for the current flowing
in each of the fuses using a parallel preconditioned Krylov iterative solver; in the simulations
described here, we used conjugate gradient with a block-Jacobi preconditioner in which ILU(0)
was applied on each block. The preconditioner we chose is likely not ideal for this system, but
has the advantage of being highly parallel. Because the coefficient matrices between steps differ
only by a rank-1 update, we do not update the ILU(0) factors at each step; in our simulations
we recalculated the factors every 1000 steps.

Using PETSc, fracture of a L = 64 cubic lattice system can be simulated within 3 hours
(compare this with 14 days of CPU time on a single processor using the block-circulant
preconditioner) on 128 Cray-XT3 processors (2.4 GHz). Our largest simulation, a fracture
simulation on a lattice system of size L = 100 in 3D requires a day of computational time on
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512 processors of Cray-XT3 (see Fig. 1 for comparison of performance scaling on Cray-XT3
and Blue-Gene/L at Argonne). Figure 1 illustrates the performance of our parallel code on a
1003 lattice benchmark for up to 1024 processors. Performance on both the BlueGene/L and
Cray XT3 systems is encouraging, especially given the rapidly-prototyped nature of our code.
Currently, we are simulating fracture of 3D lattice systems of sizes up to L = 200, which is
significant not only because of this first ever computational achievement but also because of the
scientific results such as scaling laws and size effects that are obtained from these largest ever
system size simulations.
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Figure 1. Performance comparison of the parallel RFM code in simulating a large 3D cubic
lattice system of size L = 100 on Cray-XT3 (Jaguar) at ORNL and on Blue-Gene/L at ANL.

Along with massive parallelization, it may be worthwhile to look into alternative algorithmic
strategies/preconditioners for solving the system of equations that arise in the simulation of large
3D lattice systems. Currently, we are pursuing recycling of Krylov subspaces (35) determined
while solving Anxn = bn and use it to reduce the cost of solving the subsequent system
An+1xn+1 = bn+1 with minimal effort. Such a recycling process amounts to a reduction of
iteration count required to solve the new linear system An+1xn+1 = bn+1, and hence increases
the overall efficiency of the algorithm. Our preliminary work using these recycled subspaces
resulted in an algorithm that is 30% faster than the corresponding algorithm that does not use
recycling techniques.

5. Scientific Significance
In the following, we present the significant scientific results that are obtained through these large
scale simulations. We focus on four different aspects of fracture in disordered systems. First
of all, we resolve the long standing controversy whether damage and (even possibly correlated)
percolation are in the same universality class. Second, our numerical results resolve the issue of
whether fracture is akin to a first-order or second-order phase transition. Third, we show that
for strongly disordered systems, a lognormal distribution is a better fit for fracture strength
distribution than the classical Weibull or Gumbel distributions. In addition, we resolve the
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inconsistency between the logarithmic size effect observed in statistical physics models and
the more traditional inverse square root size effect observed in classical engineering fracture
models. Lastly, our numerical results show for the first time that crack surface roughness
exhibits anomalous scaling as observed in recent experiments on granite and wood samples. In
addition, we note that multiscaling of crack surface roughness is observed only at small scales
and crosses over to a self-affine scaling at large scales.

5.1. Damage and Percolation
Disorder and long-range interactions are two of the key components of material failure. When the
disorder is narrowly (weakly) distributed, materials breakdown without significant precursors.
As the disorder increases, substantial damage is accumulated prior to failure and the dynamics
resembles percolation. Indeed, in the limit of infinite disorder, the damage accumulation process
can exactly be mapped onto a percolation problem. An interesting question is whether damage
accumulation in the case of broad (large, but finite) disorder is in the same universality class as
percolation.

Using simulations on small system sizes, Hansen and Schmittbuhl (36) have argued that
fracture of broadly disordered systems is in the same universality as that of uncorrelated
percolation. Based on the similarities with percolation, they (36) suggested the following finite
size scaling law for the fraction of broken bonds, given by

pf − pc ∼ L− 1
ν ∼ N

− 1
dν

el (4)

In the Eq. (4), pf and pc represent the fracture thresholds in a lattice system size of L and
infinity, respectively, and d denotes the dimension (d = 2 in 2D and d = 3 in 3D). As the system
size L → ∞, the broken bonds at failure pf → pc. The correlation critical exponent ν was found
in Ref. (36) to be consistent with the percolation value ν = 4/3. An additional test is provided
by the damage standard deviation at failure ∆f (31) which should scale as

∆f ∼ L− 1
ν ∼ N

− 1
dν

el (5)

Using our large scale simulations that span a wider finite size range than that of Ref. (36),
wherein simulations with sizes up to L = 60 are used, we tested this percolation hypothesis
and found that the the mean fraction of broken bonds at failure pf does not scale linearly with
N

−3/8
el for system sizes L > 100. While to accept the percolation hypothesis one should observe

a linear regime, a net curvature is apparent in the data especially for sizes L > 100. The same
result is obtained with a very broad disorder or thresholds distribution (37). Using these large
scale simulations, we have also resolved the controversy that fracture is akin to a correlated
percolation (see Ref. (37)).

5.2. First-order or Second-order Phase Transition
A long standing controversy in statistical physics of fracture is whether fracture is akin to a first-
order or second-order phase transion. The data from our large scale simulations and extensive
statistical sampling for various lattice system sizes and various lattice topologies indicate that
the cumulative probability distribution for the fraction of broken bonds at failure (also termed
as cumulative failure probability distribution) can be collapsed onto a single master curve
suggesting that the failure probability distribution is universal. In addition, our data suggest
that a Gaussian distribution adequately describes the failure probability distribution (37).

The fact that damage is Gaussian distributed suggests that there is no divergent correlation
length at failure. Long-range correlations in the damage would imply that the central limit
theorem does not hold and hence the normal distribution would not be an adequate fit to the
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Figure 2. The 50% survival probability ps (top) and the mean fraction of broken bonds pf

(bottom) plotted as a function of N
−3/8
el for the uniform threshold distribution. If percolation

scaling is obeyed, the data should follow a straight line. A net curvature is instead observed in
all the data for large lattice sizes.

data. The absence of long-range corralation is again in agreement with the hypothesis that
fracture is analogous to a first-order transition (16; 37).

5.3. Fracture Strength and Size Effects
Traditionally, Weibull and (modified) Gumbel distributions based on ”weakest-link” approach
have been widely used to describe the strength of brittle materials. These distributions naturally
arise from extreme-value statistics of defect cluster distributions. However, in heterogeneous
materials with broad distribution of disorder, Weibull and Gumbel distributions may not
adequately represent the fracture strengths corresponding to the peak load response (38).

The results of our large scale simulations allow to determine the form of the fracture strength
distribution and its dependence on the lattice size. Figure 3 shows the fracture strength density
distributions for random thresholds fuse and spring models using the standard Lognormal
variable, ξ̄, defined as ξ̄ = Ln(σf )−η

ζ , where σf refers to the fracture strength defined as the
peak load divided by the system size L, and η and ζ refer to the mean and the standard
deviation of the logarithm of σf . The excellent collapse of the data for various fuse and spring
lattices clearly indicates the universality of the fracture strength density distribution.

In addition, the collapse of the data in Fig. 3 suggests that P (σ ≤ σf ) = Ψ(ξ̄), where
P (σ ≤ σf ) refers to the cumulative probability of fracture strength σ ≤ σf , Ψ is a universal
function such that 0 ≤ Ψ ≤ 1, and ξ̄ = Ln(σf )−η

ζ is the standard Lognormal variable. The
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inset of Fig. 3 presents a Lognormal fit for fracture strengths, tested by plotting the inverse
of the cumulative probability, Φ−1(P (σf )), against the standard Lognormal variable, ξ̄. In
the above description, Φ(·) denotes the standard normal probability function. As discussed in
Ref. (39), a Lognormal distribution is an adequate fit for 3D random fuse models as well. This
further confirms the notion of universality of fracture strength distribution in broadly disordered
materials.
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Figure 3. Universality of fracture strength distribution in the random thresholds fuse and
spring models. Data are for different lattice system sizes, L, corresponding to triangular
fuse lattice with uniform disorder (L = {4, 8, 16, 24, 32, 64, 128}), diamond fuse lattice with
uniform disorder (L = {4, 8, 16, 24, 32, 64, 128}), triangular fuse lattice with power law disorder
(L = {4, 8, 16, 24, 32, 64, 128}), and triangular spring lattice with uniform disorder (L =
{8, 16, 24, 32, 64, 128}). The inset reports a Lognormal fit for the corresponding cumulative
distributions.

5.3.1. Strength of Notched Specimens The statistical physics models predict a logarithmic size
effect in the unnotched specimens. However, from an engineering point of view, scaling of
fracture strength in pre-notched specimens is of significant interest (40; 41; 42; 43; 44). The
size effect in this case is often given by a scaling of the form µf ∝ a−1/2, where a = a0 + cf is
the effective crack size, a0 is the initial crack (notch) size, and cf is the FPZ size surrounding
the crack tips (40; 41; 42; 43; 44). This study bridges the gap between a−1/2 size effect in the
engineering literature (40; 41; 42; 43; 44) and the typical logarithmic size effect in the statistical
physics literature, and this difference is due to two aspects: i) initial relative crack size a0/L,
and ii) disorder.

The size effects obtained in such notched specimens using the 2D RFM with uniform
thresholds disorder are presented in Fig. 4. The data shows the scaling of fracture strength
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with system size for a fixed initial crack size, a0/L. The results can be fitted by a power law of
the type

µf ∝ L−m, (6)

where the scaling exponent m is significantly influenced by a0/L: for small a0/L values, m is
very small, and is equivalent to a logarithmic correction as in unnotched specimens while for
large a0/L values, m approaches 1/2 as predicted by LEFM (40). The reason for this behavior
is that in the small a0/L regime, fracture is dominated by disorder, whereas in the large a0/L
regime, fracture is controlled by the initial crack. Similarly, a weak disorder leads to the standard
m = 1/2 scaling, while for strong disorder we have a logarithmic size effect.
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Figure 4. Size effects in notched specimens with uniform thresholds disorder. The effective
scaling exponent of mean fracture strength depends on (a) the ratio a0/L. (b) the disorder ∆.

5.4. Crack Roughness
Lattice models for fracture have been used in the past to analyze the roughness of the crack
surfaces in various geometries. The RFM has been numerically simulated in two (11; 45; 46; 47)
and three dimensions (24; 47) using various types of disorder. Due to numerical limitations,
earlier numerical simulations mostly considered global measurements for the crack roughness,
while more recent results explored other quantities and the possibility of anomalous scaling.

In Fig. 5a we report the local width for triangular random fuse lattices for different sizes L.
The curves for different system sizes do not overlap even for l � L which would be the scenario
when anomalous scaling is present. The global width scales with an exponent ζ = 0.83±0.02 (11).
On the other hand the local width increases with a smaller exponent, that can be estimated
for the larger system sizes as ζloc � 0.7. The data reported in Fig. 5b are collapsed using
ζ − ζloc = 0.13. More precise values for the local and global roughness exponents are obtained
from the power spectrum results, which yields instead a local exponent ζloc = 0.74, implying
ζ = 0.87 for the global exponent. Although the value of ζ − ζloc is small, it is significantly larger
than zero so that we would conclude that anomalous scaling is present.

Our recently performed extensive simulations of 3D RFM have obtained similar results. In
particular, an analysis of the width and the power spectrum data results in a value of ζ � 0.52,
with possible anomalous scaling corresponding to a local value of ζloc � 0.42 (see Fig. 6).
Finally, our results on notched specimens indicate that the roughness is neither dependent on
the disorder nor on the a0/L ratio.
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6. Conclusions
We have presented two state-of-the-art algorithms for simulating fracture of disordered quasi-
brittle materials using 2D and 3D discrete lattice systems. These algorithms have enabled
us to simulate fracture of largest ever lattice systems, which are necessary to obtain accurate
scaling laws of fracture. We have further expanded this finite size scaling regime using massively
parallel simulations on thousands of processors of Cray-XT3 (Jaguar) and IBM Blue-Gene/L.
Using these parallel algorithms, we can currently simulate fracture of a 3D lattice system of size
L = 64 within 3 hours on Cray-XT3 (within 9 hours on IBM Blue-Gene/L), whereas it requires
14 days of computational time on a single processor. We can currently simulate fracture of
3D lattice systems of sizes up to L = 200, which is a significant computational achievement
considering that traditionally fracture of lattice systems of sizes up to L = 48 were simulated,
and that computational complexity increases as O(L6.5).

The numerical results obtained through these large scale system sizes in conjunction with
extensive statistical sampling have advanced the current understanding of physics of fracture.
In particular, these large scale simulations have been instrumental in understanding the following
aspects of fracture phenomena:

• Fracture of strongly disordered systems is not in the same universality class as that of
(uncorrelated or even possibly correlated or gradient) percolation. Damage is accumulated
in an uniform manner in the pre-peak regime and then suddenly localizes in the post-
peak regime. Damage profiles are unform in the pre-peak regime, and show a peak with
exponential tails in the post-peak regime.

• The failure probability distribution (both in 2D and 3D) is universal and is Gaussian, which
indicates a lack of divergent correlation length thereby suggesting that fracture is akin to a
first-order phase transition.

• For broadly disordered material systems, fracture strength distribution follows neither the
classical Weibull nor the Gumbel distributions. Instead, a lognormal distribution appears to
represent the fracture strength distribution adequately. For unnotched samples, we obtain
a logarithmic size effect on the mean fracture strength. However, the size-effect depends
crucially on the relative crack size a0/L in the notched samples, and on the amount of
disorder. We show for the first time that as the relative crack size or the disorder is varied,
the size-effect transitions from a logarithmic size effect to the 1/

√
(a0) observed in classical

LEFM.
• Our large scale numerical results show for the first time that crack surface roughness exhibits

anomalous scaling as observed in recent experiments on granite and wood samples. This
was not possible in earlier simulations due to small system sizes. The local roughness is
estimated to be 0.72 ± 0.03 and is universal, whereas the global roughness is estimated to
be 0.83 ± 0.04. In addition, the global width distribution is found to be universal as well.
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[10] Morel S, Schmittbuhl J, López J M and Valentin G 1998 Phys. Rev. E 58, 6999
[11] Nukala P K V V, Zapperi S and S. Simunovic S 2005 Phys. Rev. E 71, 066106
[12] Engoy T, Maloy K J, Hansen A and Roux S 1994 Phys. Rev. Lett. 73, 834
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E T, Alava M J and Niskanen K J 2001 Eur. Phys. J. B 19, 259; Salminen L I, Alava M J
and Niskanen K J 2003 ibid 32, 369

[14] de Arcangelis L, Redner S and Herrmann H J 1985 J. Phys. (Paris) Lett. 46 585
[15] Sahimi M and Goddard J D 1986 Phys. Rev. B 33, 7848
[16] Zapperi S, Ray P, Stanley H E and Vespignani A 1997 Phys. Rev. Lett. 78, 1408; 1999

Phys. Rev. E 59, 5049
[17] Hansen A and Roux S 2000 Statistical toolbox for damage and fracture, 17-101, in book

Damage and Fracture of Disordered Materials, eds. Krajcinovic D and van Mier J G M,
Springer Verlag, New York.

[18] Alava M J, Nukala P K V V and Zapperi S 2006 Advances in Physics (in press)
[19] Nukala P K V V and Simunovic S 2003 J. Phys. A: Math. Gen. 36, 11403
[20] Barrett R et. al. 1994 Templates for the Solution of Linear Systems: Building Blocks for

Iterative Methods, 2nd Edition, SIAM, Philadelphia
[21] Briggs W L, Van Emden Henson and McCormick S F 2000 A Multigrid Tutorial, 2nd

Edition, SIAM, Philadelphia
[22] Batrouni G G, Hansen A and Nelkin M 1986 Phys. Rev. Lett. 57, 1336
[23] Batrouni G G, Hansen A and Nelkin M 1988 J. Stat. Phys. 52, 747
[24] Batrouni G G and Hansen A 1998 Phys. Rev. Lett. 80, 325
[25] O’Shaughnessy and Procaccia I 1985 Phys. Rev. Lett. 54, 455
[26] O’Shaughnessy and Procaccia I 1985 Phys. Rev. A 32, 3073
[27] Nukala P K V V, Simunovic S and Guddati M N 2005 Int. J. Numer. Meth. Engng. 62,

1982
[28] Davis T A and Hager W W 1999 SIAM J. Matrix Anal. Appl. 20(3), 606-27
[29] Davis T A and Hager W W 2001 SIAM J. Matrix Anal. Appl. 22(4), 997-1013
[30] Nukala P K V V, and Simunovic S 2004 J. Phys. A: Math. Gen. 37, 2093

290



[31] Ramstad T, Bakke J O H, Bjelland J, Stranden T and Hansen A 2004 Phys. Rev. E 70,
036123

[32] Balay S et. al. 2001 http://www.mcs.anl.gov/petsc
[33] Balay S et. al. 2004 ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, Argonne,

IL
[34] Balay S et. al. 1997 Modern Software Tools in Scientific Computing, 163-202, (Birkhäuser
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