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ABSTRACT

As commodity computers and networking technologies have become faster and more
affordable, fairly capable machines have become nearly ubiquitous while the effective “dis-
tance” between them has decreased as network connectivity and capacity has multiplied.
There is considerable interest in developing means to readily access such vast amounts of
computing power to solve scientific problems, but the complexity of these modern com-
puting environments pose problems for conventional computer codes designed to run on a
static, homogeneous set of resources. One source of problems is the heterogeneity that is
naturally present in these settings. More problematic is the competition that arises be-
tween programs for shared resources in these semi-autonomous environments. Fluctuations
in the availability of CPU, memory, and other resources can cripple application perfor-
mance. Contention for CPU time between jobs may introduce significant load imbalance in
parallel applications. Contention for limited memory resources may cause even more severe
performance problems: If the requirements of the processes running on a compute node
exceed the amount of memory present, thrashing may increase execution times by an order
of magnitude or more.

Our goal is to develop techniques that enable scientific applications to achieve good
performance in non-dedicated environments by monitoring system conditions and adapting
their behavior accordingly. In this work, we focus on two important shared resources, CPU
and memory, and pursue our goal on two distinct but complementary fronts: First, we
present some simple algorithmic modifications that can significantly improve load balance
in a class of iterative methods that form the computational core of many scientific and
engineering applications. Second, we introduce a portable framework for enabling scientific
applications to dynamically adapt their memory usage according to current availability of
main memory. An application-specific caching policy is used to keep as much of the data set
as possible in main memory, while the remainder of the data are accessed in an out-of-core
fashion. This allows a graceful degradation of performance as memory becomes scarce.

We have developed modular code libraries to facilitate implementation of our techniques,
and have deployed them in a variety of scientific application kernels. Experimental eval-
uation of their performance indicates that our techniques provide some important classes
of scientific applications with robust and low-overhead means for mitigating the effects of
fluctuations in CPU and memory availability.

xiv
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Chapter 1

Introduction

The advent of powerful but inexpensive workstations and fast, affordable networking tech-

nologies has fundamentally altered the landscape of parallel and distributed computing.

Powerful commodity components have led to the emergence of clusters of workstations

(COWs) as the primary means of parallel computing at many institutions. On a much

grander scale, researchers have been taking steps towards geographically distributed com-

puting, building computational “Grids” that link computing resources between different

institutions. Grid environments promise to provide the computational resources necessary

for analyzing petabyte-scale data sets and conducting the most computationally demanding

of simulations. The impact of these technological developments has been particularly felt

in scientific applications, which form a great portion of the high-performance computing

workload.

The category of “scientific applications” is large and evolving, and therefore difficult

to characterize accurately. We make, however, the following broad observations about

scientific applications in parallel and high-performance computing (HPC) environments:

First, the applications often work with large quantities of data, because realistic simulation

of a problem often requires a large number of degrees of freedom. Second, they tend to follow

fairly regular, repetitive data access and communication patterns. Third, they usually have

synchronization points at which collective communications occur.

Many modern parallel computing environments possess a degree of complexity that poses

problems for conventional scientific applications designed to run on dedicated, uniform re-

2



CHAPTER 1. INTRODUCTION 3

sources such as massively-parallel processor (MPP) machines. One source of problems is

the heterogeneity that arises naturally in these new settings. For instance, upgrades to a

COW may occur in stages, with only specific machines being replaced or added. In other

cases, the cluster may simply be a loosely coupled network of personal workstations. In a

computational Grid, disparate resources from different institutions may be used in conjunc-

tion. Traditional parallel programs attempt to distribute work evenly between all nodes

because they target environments in which compute nodes are homogeneous in processing

power and memory capacity. When nodes differ considerably in processing speed, such a

strategy can result in severe load imbalance as faster processors idle at synchronization

points, waiting for their slower brethren to finish. If nodes differ considerably in memory

capacity, nodes with higher memory capacities may be underutilized.

Beyond architectural heterogeneity, competition for non-dedicated, shared resources

poses even greater challenges. Various economic and practical considerations have made

multiprogramming of resources commonplace: In decentralized systems, such as Grid en-

vironments or loose networks of personal workstations, space sharing simply may not be a

viable option. Owners of smaller COWs may not be willing to sacrifice the time necessary

to administer a batch queuing system, or to tolerate the slower turnaround times result-

ing from waiting in the queue, especially during the development and debugging cycles. In

shared memory machines, even when CPUs are space-shared, jobs still compete for memory

and I/O resources.

Fluctuations in the availability of CPU, memory, and other resources can cripple ap-

plication performance. Contention for CPU time between jobs may introduce significant

load imbalance in parallel applications. Contention for limited memory resources may cause

even more severe performance problems: If the requirements of the processes running on

a compute node exceed the amount of memory present, thrashing may increase execution

times by an order of magnitude or more.

It is our thesis that the dynamic and unpredictable nature of resource contention in
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modern parallel environments necessitates a degree of system awareness and adaptivity that

is not present in today’s software. Our goal is to develop techniques that allow scientific

applications to achieve good performance in non-dedicated environments by monitoring

system conditions and adapting their behavior accordingly. In this work, we focus on two

important shared resources, CPU and memory, and pursue our goal on two distinct but

complementary fronts:

1. Application-level dynamic load balancing. We present some simple algorithmic modi-

fications which can significantly improve load balance in a class of iterative methods.

We focus on these methods because they form the computational core of many scien-

tific and engineering applications; improvements to the methods can lead to immediate

performance gains in a variety of scientific codes.

2. Memory adaptation in scientific and data-intensive codes. We introduce a portable

framework for enabling applications to dynamically adapt their memory usage accord-

ing to current availability of main memory. An application-specific caching policy is

used to keep as much of the data set as possible in main memory, while the remainder

of the data are accessed in an out-of-core fashion. This allows a graceful degradation

of performance as memory becomes scarce.

The combination of system-aware mechanisms for dynamic load balancing and memory

adaptation has the potential to change the way computational science is done by enabling

efficient use of shared resources that have hitherto been underutilized. We provide some spe-

cific tools and techniques for implementing these mechanisms in some specific cases, but our

broader goal is to establish an archetype for building system-aware, adaptive applications.

1.1 Contributions

The contributions of this work can be outlined as follows:
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1.1.1 Dynamic load balancing of inner-outer iterative solvers

We have studied a novel strategy for dynamic load balancing of a class of inner-outer itera-

tive methods. Our goal has been to enable parallel, iterative, sparse matrix methods—which

form the core of many scientific applications—to perform well in heterogeneous and mul-

tiprogrammed environments. Our techniques are designed for inner-outer iterative solvers

that employ local solvers for the inner iterations, though they are also applicable to other

algorithms that possess what we term a flexible phase (defined in Chapter 3). We have

written a C-library to facilitate use of our load balancing technique, and have used it to

implement our scheme in some different solver codes.

We have experimentally demonstrated that our scheme can cope with severe load imbal-

ance under unpredictable external loads in a coarse-grained, block Jacobi-Davidson eigen-

solver that independently calculates a different correction vector on each processor. This

work has been published in [63]. We have also used our load-balancing scheme to enable

effective use of a collection of heterogeneous sub-clusters of workstations in a version of

the Jacobi-Davidson solver that fully employs the so-called multigrain parallelism; see our

paper [57]. Finally, we have demonstrated that our method can be used in an additive-

Schwarz preconditioned linear system solver to smooth load imbalances due to differences

in conditioning of the subdomains, and also to smooth out small load imbalances due to

differences in processor speeds.

1.1.2 Dynamic memory adaptation in scientific applications

We have explored a general framework that enables scientific and other data-intensive codes

that repetitively access large data sets to dynamically adapt their memory requirements as

memory pressure arises. We have developed a modular supporting library, MMlib, that

makes it easy to embed memory-adaptivity in many scientific kernels with little coding

effort. The biggest technical hurdle we had to overcome to realize our framework is the

lack of information about memory availability provided by operating systems. We have
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developed an algorithm that can effectively judge memory availability with minimal reliance

on operating system-provided information.

We have used our library to inject memory-adaptivity into three scientific application

kernels: a conjugate-gradient linear system solver, a modified Gram-Schmidt orthogonal-

ization routine (surrounded by a GMRES-like wrapper), and a Monte-Carlo Ising model

simulation. Though simple, these kernels are representative elements of scientific simula-

tions spanning a diverse range of fields. Experimental evaluation of these memory-adaptive

kernels in Linux and Solaris environments has shown that our techniques yield performance

several times better than that obtained by relying on the virtual memory system to handle

memory pressure. Furthermore, we have demonstrated that these performance gains are

not only due to enabling use of application-specific replacement policies, but from avoidance

of virtual memory system overheads and antagonism. We have also shown that multiple

jobs employing our memory-adaptation techniques can coexist on a node without ill-effects.

Our work is presented in [61] and [62].

1.2 Relevance

This work is relevant to both computer scientists and practitioners of computational science.

From a computer science perspective, it is significant because it explores adaptation to

fluctuating system conditions completely at the application-level; traditionally, adaptation

approaches have been more system-oriented. An application-centric approach allows us to

exploit knowledge about the application that system software does not possess.

In our work on load balancing parallel computations under unpredictable external loads,

we utilize knowledge of the numerics of an important class of iterative methods to dynami-

cally modify the computation—without affecting the end result—to achieve good load bal-

ance with very little overhead. This departs from conventional load balancing approaches,

which adaptively schedule a computation but do not modify it.

In our work on dynamic adaptation to high levels of memory pressure, we use knowledge
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of the memory-access characteristics of an application to manage memory using an appropri-

ate replacement policy and to use units of data transfer suited to the granularity of memory

access. Our memory adaptation work is additionally significant because it has explored the

interplay of system and application in multiprogrammed systems under extreme levels of

memory demand. System and application behavior under such conditions can be extremely

unpredictable and has been relatively unexplored; application-specific virtual memory man-

agement schemes, for instance, have usually been designed without multiprogramming in

mind.

From the perspective of computational science practitioners, this work is relevant be-

cause it has the potential to increase their productivity. Many researchers do not have

access to dedicated supercomputers or high-end clusters and must meet their computing

needs by using either local shared resources such as networks of workstations and small

SMPs, or resources shared across a computational grid. The methods we present can en-

able some important classes of scientific applications to effectively use such resources. These

techniques can also improve the productivity of researchers who do have access to dedicated

supercomputers by allowing them to run small to moderate-sized jobs on readily available

non-dedicated resources, allowing them to conserve their supercomputer allocations and

avoid long wait times in compute-center queues.

1.3 Organization

The remainder of this document is organized as follows: Chapter 2 relates our work to the

current state of knowledge in both load balancing and mechanisms for dealing with memory

shortage. Chapter 3 explains our load balancing scheme and presents experimental results

demonstrating its effectiveness in balancing CPU load. In chapter 4, we illustrate how

the load balancing scheme can be extended to attenuate memory pressure, and we outline

the shortcomings of this approach. In chapter 5, we present the essential details of our

memory adaptation framework, and in chapter 6 we provide an overview of our software
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library, MMlib, that facilitates use of the framework. In chapter 7 we present experimental

evaluations of the memory adaptation strategy as used in three scientific application kernels.

Finally, conclusions are presented in chapter 8.



Chapter 2

Background and related work

The goal of our work is to allow some classes of scientific applications to perform well in mul-

tiprogrammed environments where CPU and memory availability can vary unpredictably.

To meet this goal our techniques must maintain good load balance as external CPU loads

fluctuate, and adjust memory utilization gracefully as memory availability changes. In this

chapter, we present a brief overview of related work in load balancing and mechanisms

for addressing memory shortage. Additionally, we describe related work on application-

centric adaptive scheduling techniques that dynamically adapt schedules according to re-

source availability.

2.1 Load balancing

Maintaining good load balance is essential to ensure good performance and efficient uti-

lization of processors by a parallel application. Otherwise, CPU cycles will be wasted as

lightly loaded processors sit idle waiting for their more heavily loaded brethren to finish.

A significant amount of research has focused on the development of methods and software

for load balancing within parallel applications, and we outline some of those approaches in

this section.

Load balancing is essentially a task-mapping problem, and is thus inextricably linked

with the manner in which a computation is decomposed into tasks for parallel execution.

The problem is to map a number of tasks onto a set of processors in a way that ensures that

9
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each processor is assigned an amount of work commensurate with its speed. This mapping

usually must satisfy other objectives as well, such as limiting the amount of communication

required. There are many different strategies for accomplishing these goals, but we can

place them into two broad categories based on whether they take a task-oriented or a data-

oriented approach to mapping the tasks onto processors. The type of approach that is

appropriate is determined by the amount of data required to describe and perform each

task, and the cost of moving that data to the appropriate processor. (So the choice between

task or data orientation depends on both the properties of the problem to be solved and

the properties of the target parallel machine.) If processors can inexpensively obtain the

data required to perform a task, a task-oriented approach can be used. Otherwise, a data-

oriented approach must be employed because the cost of moving the data for a task is the

main limiting factor.

2.1.1 Pools of independent tasks

The task-oriented approach is often known as the pool of tasks paradigm. The problem

to be solved is broken into a pool of independent tasks. Processors that need work fetch

tasks from the pool, and if additional tasks are generated during the computation, they

are placed into the pool. If the size of the tasks is small enough, the pool of tasks ap-

proach usually results in excellent load balance. (Tasks that are too large may result in

one processor continuing to work while others sit idle because all other tasks have been

processed.) In the simplest implementation (master/slave or manager/worker), processors

fetch or receive tasks from a single processor that acts as centralized manager of the pool.

In addition to being very easy to implement, the master/slave approach maintains global

knowledge of the computation state, which facilitates even distribution of tasks and greatly

simplifies termination detection. The master/slave approach cannot scale to large numbers

of processors, however, because communication with the master becomes a bottleneck.

To improve scalability, a hierarchical approach can be employed, in which workers are
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divided into disjoint sets managed by a local sub-master that reports to the central master.

If greater scalability is needed, a completely decentralized scheme can be used, making the

pool of tasks a distributed data structure. In a decentralized scheme, when a processor

runs out of work it sends a potential donor processor a work request. The donor processor

to be polled may be chosen in a number of ways: The simplest way is to choose a donor

randomly, with all processors having equal probability of being selected. Alternatively,

donors can be chosen in a round-robin fashion. The round-robin scheme can employ a

global list of processors, or might be restricted to the nearest neighbors of each processor

in the network interconnect. Note that if a round-robin scheme is completely decentralized,

a donor may receive work requests from multiple processors simultaneously. To prevent

this, a hybrid centralized/distributed system may be employed. In such a scheme, the task

pool is a distributed data structure, but one processor maintains a global variable that

points to the processor to which the next work request should be sent. This improves the

distribution of work requests, though contention for access to the global variable somewhat

limits scalability. Explanations and analysis of several decentralized pool of tasks schemes

and appropriate termination-detection algorithms can be found in [70, 52, 51].

If a computation is decomposed into a large number of small tasks, fetching only one

piece of work at a time can result in excessive scheduling overhead. In such situations,

an allocation method in which a free processor fetches a chunk of several tasks at a time

is usually employed. This reduces scheduling overhead, but care must be taken not to

make the chunks too large, because the coarser task granularity may result in increased

load imbalance. Kruskal and Weiss [50] used probabilistic analysis to determine an optimal

chunk size that balances the trade-offs between very large and very small chunk sizes.

Their analysis relies on the assumption of a number of tasks large enough to cancel out

variations in the task execution times. Because in practice this assumption often does not

hold, other developments in chunk-scheduling employ schemes that start with larger chunk

sizes and then gradually decrease the chunk sizes as the computation progresses to prevent
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processors from finishing at different times. Such approaches include guided self-scheduling

[68], factoring [39], and trapezoidal self-scheduling [85].

The pool of tasks approach can maintain excellent load balance, even in the face of

factors such as large variation in the cost of each task, processor heterogeneity, or dynamic

variation in external processor load on a time-shared system. Unfortunately, the approach is

inapplicable to many scientific problems, since they cannot be broken into independent tasks

that can be executed asynchronously. Additionally, the independent tasks often cannot

be described with an amount of information that is small enough to prevent excessive

communication between master and slave processes.

2.1.2 Data partitioning

If the tasks in a computation cannot be described with a small amount of information, or

if dependencies between tasks necessitate frequent inter-processor communication, a data

partitioning approach to load balancing should be employed: Rather than thinking in terms

of mapping tasks to processors, we map the data objects in the computation (e.g. mesh

points or particles) onto processors. Processors then execute those tasks associated with

their local data. To load balance a computation, we partition the objects into approximately

equal partitions (ensuring load balance) while minimizing the data dependencies between

partitions (thus reducing communication costs). If processors vary in speed, the partition

associated with a given processor is weighted by its relative speed. What we have called data

partitioning is usually referred to as domain partitioning, because it is usually employed

to assign portions of a computational domain to processors. Some of the techniques we

describe here can be applied to any abstract object that can be modeled as a graph, so we

use the more general term “data partitioning”.

The partitioning approaches can be grouped into two broad categories: geometric and

topological. A geometric approach divides a domain based on the locations of objects in a

simulation, and is therefore appropriate for applications such as solid mechanics or particle
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simulations, where interactions between computational objects tend to occur between neigh-

bors. A topological method explicitly bases its partitioning on the connectivity of objects

in a computation. Typically a computational domain is represented as a graph which is to

be equipartitioned in a way that minimizes the edge-cut, which approximates the amount

of communication required.

2.1.2.1 Geometric partitioning

The geometric approaches can be classified into two major types: recursive bisection ap-

proaches and octree approaches. These categories could also be described respectively as

approaches that work with coarse-grained or fine-grained divisions of the geometry. The

basic idea of recursive bisection approaches is to cut a domain into two parts such that each

part contains an approximately equal number of objects. Each part is then further cut into

two smaller parts, and so on, until the required number of partitions have been generated.

The simplest such method is Recursive Coordinate Bisection (RCB) [10], also known as

Coordinate Nested Dissection (CND). RCB recursively divides the set of objects using a

cutting plane orthogonal to the coordinate axis along which the objects are most spread

out. The cut is orthogonal to the long axis to reduce the size of the boundaries between

subdomains, across which communication will have to occur. RCB is simple, fast, easily

parallelizable, and requires little memory, but also tends to produce lower-quality partition-

ings. A modest improvement is Unbalanced Recursive Bisection (URB) [42], which divides

the geometry, rather than the objects, in half. This minimizes the geometric aspect ratio of

the partition and thus reduces communication volume, as the amount of information that

must be exchanged across boundaries is approximately proportional to their length or area.

The effectiveness of both RCB and URB are limited by the somewhat artificial restriction

that cuts are always made along coordinate axes. Recursive Inertial Bisection (RIB) [83]

eliminates this restriction by calculating the principal axes of inertia of the collection of

objects as if they were a collection of particles in a physical system. The domain is then cut
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by a bisecting plane orthogonal to the principal axis associated with the minimum moment

of inertia, which is a naturally “long” direction across which to cut. Geometric bisection

methods need not be limited to the use of cutting planes. Based on some interesting theo-

retical results [34], Gilbert, Miller, and Teng [32] describe a geometric bisection scheme in

which circles or spheres are used to bisect domains.

Octree techniques (also known as space-filling curve techniques) for geometric partition-

ing start with a fine-grained division of the computational domain, and then aggregate these

fine-grained pieces into sets that will make up the partitions. The fine-grained division is

obtained by recursively dividing a space into a hierarchy of octants. For a 3D domain, the

root octant is a cube that encloses the entire domain. This octant is divided into child

octants by simultaneously cutting the root octant in half along each axis (forming eight

child octants in 3D space). Child octants that contain multiple objects are then recursively

divided into sub-octants, and so on, until each object is enclosed by a terminal octant (i.e.,

one that is not further subdivided). The relationship of octants in the hierarchy is described

by a tree data structure known as an octree. Octrees are used to represent space in mesh

generation, computer graphics, and n-body simulations, among other applications. They

also provide a convenient way to partition geometry among processors: By ordering the

terminal octants according to their positions along a space-filling curve such as a Peano-

Hilbert curve [55], a k-way partitioning can easily be generated by cutting the list into k

equal parts [88]. The speed and quality of octree partitioning is roughly equal to that of

geometric recursive bisection techniques.

2.1.2.2 Topological partitioning

Geometric partitionings can be calculated very quickly and can be quite effective for com-

putations in which interaction between objects is a function of geometric proximity, such as

in n-body or solid mechanics problems. If geometric proximity is a poor indicator of inter-

action between objects, however, using a more expensive topological method that explicitly
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considers the connectivity of the objects can yield far superior partitionings.

One of the simplest topological methods is Levelized Nested Dissection (LND) [31]. LND

starts with an initial vertex (a pseudo-peripheral vertex is the best choice), and then visits

neighboring vertices in a breadth-first manner. When half of the vertices have been visited,

the graph is bisected into the set of vertices that have been visited, and those that have

not. This process is applied recursively until the desired number of partitions have been

created. The idea behind LND is actually quite similar to geometric bisection methods:

distance from the initial vertex is used to cut across a “long” dimension of the graph.

Spectral methods [69, 78] use a very different approach for computing partitionings.

The partitioning problem is really a discrete optimization problem: minimize the edge-cut

while dividing the graph into k equal parts. This discrete optimization problem is NP-

complete, but the problem can be approximated by a continuous optimization problem

that is more easily solved. Spectral methods solve the continuous problem by finding some

extremal eigenvalue/eigenvector pairs of a matrix derived from the connectivity information

of the graph. Spectral methods tend to produce high quality partitions, but solving the

eigenproblem can be computationally expensive.

Partition refinement methods refine a sub-optimal partitioning of a graph, and are of-

ten used as graph partitioners themselves by applying them to a random partitioning.

Kernighan and Lin [48] developed an iterative algorithm (known as the KL algorithm) that

improves a graph bisection using a greedy approach to determine pairs of vertices to swap

between partitions. Variations of the KL algorithm are used for refinement in several graph

partitioning contexts, some of which we discuss below.

Some of the most popular graph partitioning methods being used today are multilevel

methods [37, 45]. Multilevel methods form a sequence of increasingly coarse approximations

of the original graph by collapsing together selected vertices from finer representations of the

graph. The graph is initially partitioned at the coarsest level using a single-level algorithm

such as those described above. This partitioning is then propagated back through the finer
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approximations, being refined at each level via a KL-type algorithm. Multilevel approaches

are very effective for two reasons. First, the initial partitioning can be easily computed for

the coarsest graph, because it hides many edges and vertices of the original graph. Second,

incremental refinement algorithms can quickly make large changes to the partitioning by

working with coarser versions of the graph. Chaco [36], METIS/ParMETIS [43, 44], and

JOSTLE [87] are some popular software packages that implement multilevel methods.

2.1.2.3 Load balancing adaptive computations

If external load is not a factor, and if the amount of work per object is known and does

not vary during the course of the computation, a static partitioning can be used. The

partitioning can be computed as a sequential preprocessing step at the beginning of a

simulation, using a package such as METIS or Chaco, or in parallel using a package such as

ParMETIS or JOSTLE. In many computations, however, the amount of work assigned to

each processor can vary unpredictably, either because the number of objects in a partition

can vary, or because the amount of work per object is unknown. For example, if the objects

are grid points in an adaptive mesh refinement (AMR) calculation [12, 11], the amount of

work for a partition may grow as the mesh is refined. If objects are cells in a particle-in-cell

simulation, the amount of work associated with an object varies as particles advect into

and out of the cells. Some simulations utilize adaptive physics, in which the physics model

used at a mesh point—and thus the work associated with that point—may change as the

calculation progresses. In all of these cases, the computational domain must be repartitioned

as the computation progresses, because a partitioning that results in good load balance at

the beginning of the computation may yield very poor load balance later.

Dynamic repartitioning can be done by simply computing a new global partitioning from

scratch. However, this generally incurs an unacceptable amount of costly data migration,

because the new partitioning can be very different from the existing one. Instead, the

old partitioning should be adjusted in a way that mitigates load imbalance, while also
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minimizing the amount of data migration needed to arrive at the new partitioning. Scratch-

remap repartitioners [66] attempt to do this by calculating a new partitioning of the graph

from scratch, and then permuting the labels of the new partitions so their overlap with the

old partitions is maximized.

Scratch-remap approaches result in excellent load balance and low edge-cut, but still

involve a relatively high amount of data movement. For this reason, incremental approaches

that make a series of small changes to the partitions to restore load balance are usually

favored instead. Most of these methods employ a diffusive approach, in which objects move

from heavily loaded processors to more lightly loaded neighbors by a diffusion-like process.

The number of objects to be moved from a processor is based on the processor workload,

while the choice of which objects get moved is usually made using KL-like criteria. In

the simplest incarnations [21], a first-order finite difference discretization of the diffusion

equation is used to calculate the amount of work that should be moved between processors

at each iteration of the method. Because the first-order stencil is compact (only involving

nearest neighbors), such methods can be executed locally by a processor. These methods

can be slow to converge to a load balanced state, however, so more complex methods use

some global information to accelerate convergence to load balance. The method of Hu,

Blake, and Emerson [38] (implemented in ParMETIS and JOSTLE) uses information from

all processors to perform an implicit solve for the steady-state solution of the diffusion

equation, and then migrates data in one step to reach this state of load balance.

Although local methods are usually slower than global methods to achieve load balance,

they can be executed asynchronously, whereas global methods cannot. This is a significant

advantage for two reasons. First, load balance can be corrected as it arises, without having

to wait for the next synchronization. Second, although most scientific applications have

natural synchronization points, certain applications [28, Chapter 14] do not, so the use of

a global method introduces artificial (and costly) synchronizations.

Parallel partitioning packages such as ParMETIS or JOSTLE provide algorithms for
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computing incremental repartitionings, but once the new partitioning is obtained, perform-

ing the actual data migration can be a difficult chore for the application programmer.

Packages such as Zoltan [22] and PREMA [7, 8] provide tools and frameworks for managing

and automatically migrating the objects in adaptive computations. PREMA uses multi-

threading to support asynchronous load balancing, and thus is particularly suited to very

irregular computations.

2.1.3 Load balancing under variable external load

In our discussion so far, we have only considered the load that is internal to an applica-

tion. In a multiprogrammed environment, however, the total load on a processor can vary

unpredictably due to load from processors external to a given application.

Provided that the granularity of the tasks is not too coarse, the pool of tasks paradigm

can work well (and automatically) in the presence of external load. Data partitioning

approaches, however, face major difficulties in dealing with such loads. External load can

conceivably be accounted for by weighting each processor according to its load and then

sizing the partitions based on those weights. However, the high cost of repartitioning

combined with the dynamic and unpredictable nature of external workloads makes this

impractical. If external load conditions stay fairly constant, the cost of repartitioning to

reflect that load can be worthwhile. If the decision to repartition proves wrong—that is, if

the external workload changes dramatically soon after partitioning—it can be very costly.

Because of the difficulties involved in external load prediction, repartitioning is generally

not used to cope with external load.

In Chapter 3 we present a load balancing scheme for a very specific but important class of

scientific algorithms, inner-outer iterative methods that employ local inner iterations. These

algorithms are not amenable to a pool-of-tasks approach, and—for the reasons discussed

above—load balancing by dynamic repartitioning is impractical. We present a scheme that

provides good load balance for these algorithms in the face of dynamic and unpredictable
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load, without any reliance on data migration or performance predictions.

What we call our “load-balancing” scheme differs fundamentally from other load-balancing

schemes in the conventional sense of the word. The pool-of-tasks and data partitioning ap-

proaches we have described distribute a fixed set of tasks in a balanced way across a set of

processors. Our load balancing scheme also distributes tasks in a balanced manner across

a set of processors, but the set from which these tasks are drawn is not fixed. That is, the

set includes optional tasks: each task (hopefully) helps move the algorithm to its target,

but not all tasks must be completed for this target to be reached. The tasks to execute

are chosen to maximize load balance and reach the target as quickly (in wall-clock time)

as possible: tasks are associated with data on a particular processor, and slower processors

execute fewer of the associated tasks. This flexibility in choosing which tasks to execute

stems from the intrinsic properties of the inner-outer iterative methods.

2.2 Addressing memory shortage

Jobs in non-dedicated environments contend not only for CPU time, but for memory re-

sources as well. Memory pressure can cause extreme degradation of performance. Its effects

are especially pronounced if an affected node is part of a synchronous parallel job, as the

immense slowdown experienced by that node can cause incredible load imbalance. In many

cases this imbalance cannot be corrected by load balancing techniques that may be in place

within the application. For instance, if the job is running on a shared-memory computer,

migrating work to other processors on that machine fixes nothing. Even in distributed

memory environments, problems remain: The usually excellent load balance provided by

a pool-of-tasks scheme may disappear as the slowdown on an affected node increases the

granularity of its tasks to excessive levels. If load balancing is performed through domain

repartitioning, memory pressure may render the very cost of computing a new partition-

ing prohibitive! Even when calculating the new partitioning is practical, deciding how to

weight each partition is a difficult problem, as operating systems typically provide very little
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information about memory usage. For these reasons and others, explicit consideration of

memory pressure and its mitigation is needed in non-dedicated environments, in addition

to good CPU-load balancing approaches.

In this section we discuss several approaches that have been used to remedy memory

pressure in dedicated and non-dedicated environments.

2.2.1 Out-of-core algorithms

Since the earliest days of the computer age, researchers have been faced with problems too

large to solve using the main memory of a computer. In response to these problems, many

out-of-core algorithms have been developed. An out-of-core algorithm [84, 86, 25, 71] is one

that has been designed to provide acceptable performance despite the slow nature of access-

ing secondary storage. Such an algorithm may be obtained by taking a conventional (in-core)

algorithm, implementing it to access large, contiguous blocks of data, and re-scheduling its

independent operations in a manner that maximizes the re-use of data that have been

brought into main memory. Some out-of-core algorithms go beyond simply rescheduling

independent operations, altering conventional algorithms so that their data dependencies

are more amenable to data re-use. These alterations may sacrifice some numerical stability

or require more CPU operations, but admit much better out-of-core schedules.

Out-of-core algorithms bear many similarities to cache-optimized algorithms, as the goal

of both is to maximize use of faster levels of a memory hierarchy by scheduling operations

in a manner that provides good spatial and temporal locality. Both types of algorithms

benefit from many of the same optimization techniques: Structuring loop nests to eliminate

strided accesses is important at all levels of the memory hierarchy. Many dense matrix

algorithms are optimized for out-of-core use by structuring them to operate on blocks of

a matrix at a time. Such blocking techniques are also used to achieve cache optimality

in numerical libraries such as BLAS [53, 24, 23] and LAPACK [2]; they are so important,

in fact, that computer vendors make great efforts to precisely tune blocking factors in
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their implementations of these libraries, and the ATLAS project [89, 90] provides software

to automatically tune these factors. Cache-oblivious algorithms [30, 15], such as the one

employed by the popular FFTW library [29], operate using a divide-and-conquer approach

that splits a problem into subproblems that fit into the cache; this approach eliminates the

need to tune hardware-specific parameters. Although these algorithms have been proposed

with cache-optimality in mind, these techniques are also beneficial in out-of-core settings

[20].

Despite their similarities, there are important differences in the design of out-of-core

versus cache-optimized algorithms. These stem from two fundamental differences between

the levels of the memory hierarchy that the two types of algorithms target. First, the

main-memory/disk bandwidth ratio is usually much higher than the cache/main-memory

bandwidth ratio in a computer system. This means that modifications that increase CPU

operations but improve out-of-core performance by reducing disk I/O may perform worse

than unmodified versions when executed in-core, despite possibly higher cache efficiency.

Second, cache memory usually has limited associativity—that is, blocks brought from main

memory cannot be placed anywhere in the cache, but must be placed in a limited number of

specific locations in the cache. Many cache-optimization techniques are designed to reduce

so-called “conflict” misses that stem from limited cache associativity. Because main-memory

is fully associative (i.e., blocks from disk may be placed anywhere), such optimizations do

not improve out-of-core performance.

Out-of-core algorithms have been in use for decades to allow computers to solve prob-

lems too big for their physical memory. These codes have been designed to operate with a

fixed amount of memory, however, and are unsuitable to deal with the transient memory

shortages encountered on multiprogrammed systems. An out-of-core code could certainly

be used to avoid memory pressure, but the utility of such an approach is dubious: Though

the algorithm would work efficiently when memory is scarce and an in-core algorithm would

thrash, when memory is plentiful the out-of-core algorithm will not take advantage, contin-
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uing to use the slow disk instead of the much faster main memory.

2.2.2 Virtual memory system modifications

A virtual memory (VM) system that can transparently handle a high degree of memory

pressure is highly desirable, as this could free the application programmer from having to

worry about memory shortages. Transparent VM systems fall short, however, because no

generic page replacement policy that is appropriate for the memory access patterns of all

applications is known. Most systems employ an LRU-like policy. Under such a policy, an

application that repeatedly loops through a data set, for example, will incur thrashing even

if memory shortage is slight. Recently proposed general-purpose replacement algorithms,

such as LRFU [54] and LIRS [40] and the related CLOCK-Pro algorithm [41], eliminate

some of the shortcomings of LRU at the expense of introducing some additional complexity.

None of these algorithms has yet made its way into a production operating system.

In addition to replacement policy problems, the generic prefetching policy and the fixed

page size employed by most VM systems may be inappropriate for the granularity of data

access in an application. This is especially true when memory pressure forces pages to

be written to swap space, which can be highly fragmented and generally does not support

prefetching. The shortcomings of generic VM systems have led many researchers to propose

operating system modifications that expose portions of the VM subsystem to applications.

The Mach microkernel [1] provided an external pager interface that allowed applications

to control the movement of pages between main memory and secondary storage. It did

not export control over page replacement policy, however. McNamee and Armstrong [60]

extended Mach’s external pager interface to allow application programmers to control page

replacement. Harty and Cheriton [35] designed and implemented an external page-cache

management scheme in the V++ kernel. In their scheme, the VM system provides a cache

of physical pages to an application, and it is the responsibility of the application to manage

that physical memory. Krueger et al. [49] devised a similar scheme, but gave it a mod-
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ular, object-oriented design to allow programmers to use application-defined replacement

policies without having to re-implement large portions of the VM system. Cao et al. [18]

implemented a system to give applications control over file caching, prefetching and disk

scheduling.

Although application-specific virtual memory management schemes are useful in some

situations, they suffer some shortcomings. These schemes have generally not been designed

with multiprogrammed environments in mind, and assume a fixed amount of physical pages

will be available to the process at runtime. Additionally, such schemes are not useful to

the typical computer user precisely because they require significant modifications to an

operating system kernel. This precludes their use in most computing settings because the

operating system does not support such a scheme and cannot be modified to do so. Even

if such a system is available to a code developer, writing an application to use such a

system incurs severe portability penalties. Memory pressure solutions that do not require

OS modification are more desirable to the typical application programmer.

Nikolopoulos [64] developed a runtime system that transparently adapts the memory

footprint of running processes as memory availability fluctuates. This solution requires

no modification of the operating system and is targeted specifically at multiprogrammed

environments. This approach bears many similarities to the memory-adaptation framework

we present in Chapter 5, although our framework is even more application-centric: memory

adaptation decisions are based solely on measurements local to the application, and we use

application-specific replacement policies and units of data transfer.

2.2.3 Memory-adaptive algorithms

Not a great deal of literature on memory-adaptive algorithms exists. Most of it comes from

the field of database management, in which dealing with huge data sets is commonplace.

Pang et al. [67] conducted one of the earliest memory adaptation studies, investigating

external sorting. External (viz., out-of-core) sorts are frequently used in database systems
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to order query results and to perform certain join operations. An external sort is conducted

in two phases, a “split” phase and a “merge” phase. In the split phase, an in-core algorithm

is used to arrange unsorted data into a set of sorted runs. In the merge phase, the runs

are merged into a single sorted run. Pang et al. discussed how the algorithms used for the

split phase could adapt to memory shortage by writing out a run of sorted tuples to reduce

buffer usage. To respond to a memory increase, more relations should be brought into

the buffer for sorting. They also introduced an adaptation strategy for the merge phase,

which they termed dynamic splitting : If memory shortage arises during a merge, it should

be split into smaller steps that can be performed with the available memory. If there is

a memory surplus, then more merges are run at once. Pang et al. did not implement any

of their proposed strategies, however, choosing to only utilize simulation in their study.

A later study by Zhang and Larson [92] also addressed memory adaptation for external

mergesort; it included experimental evaluation of their strategy. Their implementation was

designed only to address memory pressure arising from contention between concurrent sorts.

Because competing sorts all obtain memory through the same buffer manager, determining

the amount of available memory is not a problem. In a general-purpose time-shared system,

however, one of the chief difficulties in implementing memory-adaptive algorithms is devising

an effective way to determine the amount of available memory.

Barve and Vitter [9] have developed a theoretical framework for proving lower bounds

on the resource consumption of memory-adaptive algorithms. Their motivation comes from

database management systems, but they also prove bounds for standard matrix-matrix

multiplication, fast Fourier transform computation, and LU factorization. Their model

assumes that a memory-adaptive algorithm is aware of the amount of memory available to

it at all times. Although operating systems do not provide such information, in Chapter

5 we present an algorithm that uses a “gray-box” approach [4] to closely approximate this

information with minimal reliance on system-provided information.
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2.3 Application-centric adaptive scheduling

Schedulers of parallel programs in non-dedicated environments must consider current and

future system loads in an attempt to match a job with a set of resources that will meet

its requirements. This is a remarkably difficult task, however, and conventional, system-

oriented schedulers usually yield poor results in such settings. In response to the limitations

of such systems, newer, more application centric approaches have emerged. Though very

diverse, these new approaches follow a common thread of interaction between systems and

applications to dynamically adapt their schedules according to resource availability.

Polychronopoulos and Nikolopoulos [65] have presented extensions to the kernel sched-

uler combined with a user-level scheduling module that coordinates the scheduling of com-

municating threads of parallel jobs and also prevents thrashing by suspending threads at

memory-allocation points if memory becomes overcommitted. Such a scheduler could also

be used with memory-adaptive applications (such as those presented in Chapter 7) that

could modify their memory requirements instead of suspending when an allocation request

cannot be met.

Projects such as AppLeS [13, 14] and Active Harmony [46] present complete frameworks

for matching applications to appropriate resources and updating application schedules as

resource availability changes during execution. AppLeS (Application Level Schedulers)

use a completely application-level methodology. An AppLeS-enabled application has its

own, specific application-level scheduler that discovers and identifies viable resource sets,

determines candidate schedules, selects a schedule that best satisfies the user’s performance

criteria, and executes the application using that schedule. For long-running applications,

the AppLeS agent may refine and re-deploy the schedule as resource availability changes.

AppLeS does not provide a custom runtime system; instead, it relies on the existing infras-

tructure (e.g. Globus [27], NetSolve/GridSolve [3], MPI [79]) for discovering and utilizing

compute resources, along with the Network Weather Service [91] to gauge current and pre-

dict future resource utilization. Because the AppLeS methodology is entirely application-
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driven, it is especially suitable to non-centrally controlled computing environments.

Like AppLeS, Active Harmony matches applications to appropriate resources and re-

schedules them as resource availability fluctuates. In Active Harmony, however, decisions

about application scheduling are made by a centralized resource manager rather than the

applications themselves. Centralized decision making is employed in an effort to maximize

overall efficiency and throughput. Active Harmony provides a “tuning interface” through

which applications export information about possible application configurations. A manager

then dynamically tailors the application configuration according to resource availability.

For example, a hybrid client-server database that can process queries on either the client or

server side could be configured to process queries at the server when there are few clients,

but be reconfigured to process queries on client nodes when many clients are using the

system.

Systems like AppLeS or Active Harmony can place quite a burden on the user, as

often very detailed resource-utilization information must be provided. For instance, Active

Harmony requires that the user specify the resource requirements of different options, the

granularity at which configuration changes can be performed, the cost of switching between

the configurations, and (optionally) a way in which the response time of a given configuration

can be calculated. Chang and Karamcheti [19] have developed a resource management

framework that eases the burden on the user by providing a virtual execution environment

which permits automatic, off-line generation of resource-utilization information.

The adaptive scheduling approaches we have just cited and the techniques for dynamic

adaptation to CPU and memory load presented in this dissertation are complementary.

Systems such as AppLeS and Active Harmony attempt to identify the “best” schedule for

an application, and to refine that schedule as resource availability changes. Our techniques,

on the other hand, provide applications with a degree of malleability that enables them to

cope with a set of resources that may at times be far from “best” due to fluctuations in

resource utilization. Using a system such as AppLeS to select the optimal schedule, and
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techniques such as ours to optimize the use of the scheduled resources makes sense. This

seems especially true when one considers the overheads involved in re-scheduling onto a

different set of resources. Applications that can achieve acceptable performance on less-

than-ideal resource sets can reduce the need for re-scheduling and thus avoid some of the

associated costs.



Chapter 3

Load balancing flexible-phase

iterations

In the first phase of this work, we have investigated a novel dynamic load-balancing tech-

nique for parallel inner-outer iterative methods that execute inner iterations locally on each

processor. Our approach takes advantage of what we term the flexibility of the inner phase,

using the fact that the amount of work done by the processors during the inner phase can

vary (within bounds) without detriment to the end result: we limit all processors to the

same time in the inner phase (which performs the bulk of the work), virtually eliminat-

ing load imbalance there. We explore this idea in the context of Krylov-type methods,

which form the core of a number of scientific and engineering applications. We experimen-

tally demonstrate that our scheme can cope with severe load imbalance in a coarse-grained

Jacobi-Davidson eigensolver that applies local corrections to each block. Furthermore, in

a version of the eigensolver code that employs multigrain parallelism, we show that our

scheme allows effective use of heterogeneous networks of clusters. Finally, we also demon-

strate the utility of our technique for smoothing load balance in a linear system solver that

employs a domain-decomposition preconditioner.

28
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3.1 Flexible-phase iteration

A common algorithmic paradigm for parallel programs is that of synchronous iteration, in

which processors perform local work to complete an iteration of a loop, and then synchronize

before proceeding to the next iteration. The following illustrates synchronous iteration on

a single program, multiple data (SPMD) computer where the unique ID of each processor

is denoted by my rank:

while(target state has not been reached) {
body(my rank);

Synchronous interaction(s)

}

We are interested in a very specific but important case of synchronous iteration: one in

which the amount of work completed by each processor during an execution of the body

may be varied arbitrarily without detriment to the end result. With smaller amount of work

per iteration, the target can still be reached, but more iterations are required. A common

example is inexact Newton iteration [47, pp. 95–112], where solving the Jacobian system

to a lower accuracy may require more Newton steps, although eventually the same result

will be reached. We decompose algorithms in this category into two phases: 1) A control

phase, during which synchronous interactions update global knowledge of the current state,

allowing each processor to make better decisions later. 2) A flexible phase, during which

local execution of the body occurs. It is “flexible” insofar as each processor can vary the

amount of work that it does during this phase. We designate this type of parallelism flexible

phase iteration.

Although it is very specific, several important algorithms used in the sciences and en-

gineering fit this model. One class of such algorithms includes stochastic search optimizers

such as genetic algorithms and simulated annealing. In their synchronous formulations,

processors independently perturb an initial set of configurations to search for more optimal
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ones. After a certain number of successes are obtained by each processor, they synchronize

to decide upon new configurations, and then continue their search. Because synchronization

could occur before each processor has had a certain number of successes, the search phase

is a flexible phase. The decision phase is the control phase.

Another important class of algorithms that are amenable to a flexible phase iteration

structure are Krylov-like iterative methods [77]. These methods are widely employed to

solve systems of linear equations, eigenvalue problems, and even non-linear systems. Their

main iteration involves vector updates and synchronous dot-products, which allow for little

flexibility. However, flexibility can be introduced with preconditioning. At each outer,

Krylov iteration, preconditioning improves the current solution of the method by finding

an approximate solution to a correction equation. Flexible variants of Krylov methods

can solve this equation iteratively [75]. In parallel implementations, this allows different

processors to apply different number of iterations on a local correction equation [73]. Thus,

the inner, preconditioning step is a flexible phase, and the outer (Krylov) iteration, where

the processors update their corrections, is a control phase.

Since each processor need not do the same amount of work as its peers, near-perfect

load balance can be achieved during the flexible phase: If all processors are limited to the

same time T for an execution of the flexible phase, any differences in the speed of the

processors—even due to changes in the external load—cannot cause load imbalance. We

have developed an object-based C library, LBlib, to facilitate the use of this load balancing

approach. Appendix A describes its basic functionality and illustrates its usage.

3.2 Coarse-grain Jacobi-Davidson implementation

Any iterative method which employs independent, local preconditioners on each node is

a candidate for the load balancing approach that this work investigates. For the bulk

of our experiments, we have adapted a recent implementation of a coarse-grain paral-

lel, block Jacobi-Davidson solver for eigenvalue problems, JDcg [80]. JDcg employs the
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Jacobi-Davidson (JD) method to approximate a few extreme eigenpairs (λ∗
i , x

∗
i ) satisfying

Ax∗
i = λ∗

i x
∗
i , where A is a large, sparse matrix. For simplicity of presentation, we assume A

to be symmetric. The JD method is a Krylov-like method that starts with an initial vector

and successively builds a basis V for a space K from which approximations (λi, xi) for the

eigenpairs are obtained, usually with the Rayleigh-Ritz procedure [26]. At each step, the

residual ri = (A − λiI)xi is computed, and the solution εi of the correction equation

(I − xix
T
i )(A − λiI)(I − xix

T
i )εi = ri (3.1)

for some approximate eigenpair (Ritz pair) (λi, xi) is obtained and then used to expand the

basis. A block version of JD proceeds in a similar manner, but begins with k initial vectors

and builds the basis by a block of k vectors at a time, with each vector being the solution

of one of k correction equations, each for a different Ritz pair.

In our implementation, we use the iterative method bcgstab to solve the correction

equation (3.1) because of the indefiniteness of the systems, and because bcgstab utilizes

a recurrence with only a small number of terms, allowing us to avoid having to store a

large number of vectors. In addition, available preconditioners can be used in solving the

correction equations.

The JD method can be easily implemented using data parallelism. Each block vector is

broken into subsets of rows, and each processor keeps one of those subsets. This requires

a global reduction (summation) to be performed for each inner product. A parallel ma-

trix vector multiplication routine and preconditioning operations are provided by the user.

Figure 3.1 outlines the data parallel JD algorithm.

In our coarse-grain Jacobi-Davidson code, JDcg, the method is not implemented in a

data-parallel fashion. Instead, it employs a hybrid coarse/fine-grained (“multigrain”) ap-

proach [80, 81] that reduces communication costs and, coincidentally, introduces flexibility

into the inner phase. This approach was motivated by the observation that, in many situa-

tions, every processor can have access to the entire matrix A. This is often possible because
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JD
V starting with k trial vectors, and let W = AV

While not converged do:
1. H = V T W (local contributions)
2. Global Sum(H) over all processors.
3. Solve Hyi = λiyi, i = 1 : k (all procs)
4. xi = V yi, zi = Wyi, i = 1 : k (local rows)
5. ri = zi − λixi, i = 1 : k (local rows)
6. Correction equation Solve eq. (3.1) for each εi

7. Orthogonalize εi, i = 1 : k. Add in V
8. Matrix-vector Wi = AVi, i = 1 : k
end while

Figure 3.1: The data parallel Jacobi-Davidson algorithm.

of the large main memory sizes available today (e.g., a 12th order, 3-D finite difference

matrix of 1 million unknowns can be stored on a PC with 512 MB) or, more importantly,

because many applications do not explicitly store the matrix, providing instead a function

for computing the matrix vector product. In JDcg, the matrix A is available on all proces-

sors, but the basis vectors V are still partitioned by rows. The main JD step (projection

phase), or outer loop, is applied in the traditional data parallel (fine grain) fashion, ig-

noring the matrix redundancy. The inner loop (correction phase) is then performed in a

control parallel (coarse grain) manner, with each node gathering all the rows of one of the

block vectors and performing the matrix-vector product and preconditioner in bcgstab

independently of the other processors. The following pseudocode describes the coarse-grain

interface:

Coarse grain correction equation

All-to-all: send local pieces of xi, ri to proc i,

receive a piece for xmyid, rmyid from proc i

Apply m steps of (preconditioned) bcgstab on eq. (3.1) with the gathered xmyid, rmyid

All-to-all: send the i-th piece of εmyid to proc i,

receive a piece for εi from proc i
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Although an expensive all-to-all communication is required, the coarse grain interface allows

us to arbitrarily improve the parallel speedup of the method because of the independent

solution of the correction equations. By increasing the number of bcgstab iterations

(m), we can shift work from the outer, projection phase to the inner, correction phase, thus

increasing the amount of work performed between communication operations. Larger values

of m and block size k typically reduce the number of outer JDcg iterations but increase

the total number of matrix-vector products, so the algorithm is not work conserving. Large

values of m, however, are required for the solution of numerically difficult problems, and the

coarse granularity presents an ideal opportunity to hide the large communication latencies

of slow networks.

3.3 Load balancing JDcg

JDcg fits the flexible-phase iteration model: The corrections εi need not be computed to

the same accuracy, so the correction phase is flexible. The highly-synchronous projection

phase is the control phase. Thus we can load-balance JDcg by restricting each processor to

a fixed time T in the correction phase [63]. Even though imbalances will persist during the

brief projection phase, overall load imbalance is virtually eliminated, because the correction

phase dominates the execution time. Also, some vectors εi may be computed to lower

accuracy, but this only increases the number of outer iterations and often decreases the

amount of total work.

To determine an appropriate T , we follow the commonly used guideline that bcgstab

be iterated to a convergence threshold of 2−iter, where iter is the number of outer iterations

that have been performed [26]. Using classical convergence bounds for Conjugate Gradi-

ent [77], we determine heuristically an “optimal” number of iterations m that corresponds

to the 2−iter threshold. To avoid hurting convergence by too large an m, we set a maxi-

mum bound maxits for m. T is then the time required by the fastest processor to complete

m bcgstab steps. The algorithm for the load-balanced correction phase proceeds as follows:
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Load-balanced correction phase of the JDcg

1. In the first JDcg iteration, do no load balancing. Each processor performs maxits

bcgstab iterations, calculates the rate at which it performed them, and communicates

its rate to all other processors.

2. In subsequent JDcg iterations, use the rate measured in the previous iteration to rank

the processors from fastest to slowest. In the all-to-all communication of step 8 of the

JDcg, faster processors gather the extreme-most eigenpairs and residuals.

3. Use the fastest rate to determine T , and then iterate on the correction equation for

this time.

In the load balanced correction phase, faster processors gather the extreme-most eigen-

pairs and residuals, and the time T is calculated using the rate of the fastest processor.

This ensures that the extreme eigenpairs get most of the work, and is necessary because

Krylov-like methods naturally find extreme eigenpairs first; time spent on interior eigenpairs

benefits convergence relatively little compared to time spent on exterior ones.

3.3.1 Experimental evaluation

We have run the load balanced code on machines loaded with additional “dummy” jobs

which introduce external sources of static and dynamic load imbalance by doing meaning-

less but CPU intensive calculations. Experiments were run using four Sun Ultra-5 Model

333 machines with 256 MB of RAM, connected via switched fast Ethernet. Two large,

sparse, symmetric test matrices available from MatrixMarket1 were used. The first matrix

is NASASRB, of dimension 54870 with 2677324 non zero elements. In the experiments us-

ing NASASRB, we seek its lowest eigenvalue. Because the lowest eigenvalues of NASASRB

are closely clustered, this is a difficult problem that benefits from using a large number of

1http://math.nist.gov/MatrixMarket
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correction equation iterations (we use maxits = 150). The second matrix is S3DKQ4M2,

of dimension 90449 with 2455670 non zero elements. We use JDcg to find the largest eigen-

value of S3DKQ4M2, which is an easier problem requiring only a small number of correction

phase iterations (we use maxits = 20). For both cases, bcgstab is preconditioned with a

local ILUT(0,20) preconditioner [76]. To aid our experimental evaluation of the load bal-

ancing scheme, we instrumented JDcg with profiling code that time-stamps the beginning

and end of each communication operation. Synchronizing the initial timestamps allows us

to determine precisely where each JDcg process is spending its time, and thus to precisely

quantify the amount of load imbalance: for each communication that occurs, the time bi

wasted by processor i due to load imbalance is the time the processor took to complete the

communication minus the minimum of the times taken by all processors.

Tables 3.1a and 3.1b summarize the performance of JDcg when run against a static set

of dummy jobs. The results for both matrices show that the load balancing scheme performs

quite well, cutting execution times roughly in half, even for the most heavily loaded cases.

We also ran our JDcg codes against dynamic workloads. Each processor was loaded

with an additional dummy job which executes an endless loop that sleeps for a random

amount of time and then performs register based computations for a random amount of

time. The duration of the sleep and computation phases are sampled from exponential

distributions with means λ and µ seconds, respectively. Tables 3.2a and 3.2b summarize

our results for matrices NASASRB and S3DKQ4M2, respectively. Since the behavior of

the dummy jobs varies between experiments, ten trials were run for each set of parameters,

and we report average timing and standard deviations. The load balancing scheme works

well in the presence of a dynamic load imbalance. Performance of the scheme generally

worsens as λ and µ decrease. This is not surprising, because as the average duration of the

computation done by the dummy jobs decreases, the ability to forecast the speed of a node

based on its performance during the previous correction phase is lessened. Note, however,

that because our scheme forces each processor to spend the same amount of time T in the
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correction phase, this lessened ability does not result in poor load balancing, but only worse

overall convergence due to poorer estimation of the optimal value of T .

A

Without load balancing With load balancing
Load Its Mvecs Time % Imbal Its Mvecs Time % Imbal
1111 19 9813 1745 4.3 18 9205 1666 3.8
2111 19 9813 3509 38.5 19 8517 1783 5.6
2211 19 9813 3526 26.4 19 7381 1788 4.4
2221 19 9813 3599 15.5 21 6941 1997 3.6

B

Without load balancing With load balancing
Load Its Mvecs Time % Imbal Its Mvecs Time % Imbal
1111 24 1959 601 4.0 25 1921 564 5.5
2111 24 1959 1096 38.0 25 1720 601 8.3
2211 24 1959 1120 27.4 28 1686 712 10.4
2221 24 1959 1121 15.5 35 1706 892 10.4

Table 3.1: Performance when using JDcg to find the smallest eigenpair of NASASRB (A) and
S3DKQ4M2 (B) on a system subject to various static external loads. The “Load” column indicates
the number of jobs (including JDcg) running on each node. For example, the notation “2211”
indicates that two processors are running an additional job and the two other processors execute
only the JDcg job. “Its” denotes the number of outer iterations, “Mvecs” the total amount of matrix-
vector multiplications, “Time” the total wall-clock time in seconds, and “% Imbal” the percentage
of time wasted due to load imbalance over the lifetime of the the application.

3.4 Load balancing a fully multigrain Jacobi-Davidson solver

3.4.1 Benefits of multigrain parallelism

The hybrid coarse/fine grain parallelism employed by JDcg is a special case of what we

term “multigrain” parallelism. The projection phase is carried out using a data parallel al-

gorithm suitable for fine-grained parallel architectures, while the correction phase is carried

out in a coarse-grained fashion, with each processor working independently to compute its

own correction. It may not be appropriate (or even possible), however, for each processor to

compute a correction: If we wish to use many processors, it becomes inappropriate because

the block size must equal the number of processors, and large block sizes are algorithmi-

cally inefficient, dramatically increasing the number of matrix-vector products that must
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A
Without load balancing With load balancing

λ µ Time % Imbal Its Mvecs Time % Imbal
400 400 3135 (141) 23.6 (3.1) 21.0 (1.3) 8586 (486) 2094 (192) 5.4 (1.0)
300 300 3256 (165) 25.9 (2.3) 21.8 (1.1) 8800 (568) 2161 (160) 5.2 (0.5)
200 200 3094 (107) 25.4 (1.7) 21.5 (1.4) 8873 (531) 2122 (189) 5.5 (0.8)
200 100 2778 (115) 23.5 (1.5) 20.9 (1.1) 9250 (569) 2010 (124) 4.8 (0.4)
100 200 3356 (113) 21.1 (1.4) 22.7 (0.7) 9019 (328) 2539 (191) 6.4 (0.9)
100 100 2977 (185) 21.6 (1.8) 22.6 (0.9) 9448 (486) 2313 ( 86) 5.5 (0.6)

B
Without load balancing With load balancing

λ µ Time % Imbal Its Mvecs Time % Imbal
200 200 1074 (38) 25.2 (3.0) 28.6 (1.3) 1731 ( 37) 732 ( 46) 10.3 (0.9)
100 100 1028 ( 58) 25.6 (3.4) 28.5 (2.8) 1735 ( 58) 733 (100) 9.9 (1.9)
100 50 866 (67) 24.0 (3.8) 27.8 (1.6) 1800 ( 86) 684 ( 42) 10.3 (1.4)
60 60 1018 (47) 25.2 (1.8) 29.3 (1.2) 1775 ( 59) 751 ( 43) 10.1 (1.3)
50 100 1089 (32) 21.0 (1.8) 30.2 (3.0) 1792 (141) 857 (100) 10.3 (1.7)
30 30 974 (45) 23.6 (1.7) 30.4 (4.3) 1861 (196) 776 (132) 10.4 (2.3)

Table 3.2: Performance averages and their standard deviations (in parenthesis) for 10 different runs
on NASASRB (A) and S3DKQ4M2 (B) with come-and-go dummy jobs on each node. Dummy jobs
execute a loop in which they sleep for γ seconds and then perform computations for ξ seconds. γ’s
and ξ’s are sampled from exponential probability distributions with averages λ and µ, respectively. In
cases without load balancing, 19 outer iterations and 9813 matrix-vector multiplications a performed
for NASASRB; for S3DKQ4M2, 24 iterations and 1959 mat-vecs.

be calculated. In other cases, the matrix may simply be too large to fit in memory on a

single compute node. When it is not practical for each processor to compute a correction,

fully multigrain parallelism should be employed, in which a subset of processors—a “solve

group”—rather than a single processor, are used in parallel to solve a correction equation.

The only real difference from JDcg is that a data parallel algorithm is used within each solve

group to solve the correction equation corresponding to the block vector gathered onto it.

The fully multigrain algorithm is implemented in JDmg [58, 59] and is advantageous in sev-

eral ways: First, it allows the number of processors P to exceed the block size k. Second,

it eliminates the requirement that processors be able to hold the entire matrix in primary

storage. Third, it facilitates use of computational resources connected by heterogeneous

networks. For example, if two clusters both utilize Myrinet internally, but the interconnect
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between the clusters uses much slower Fast Ethernet, a block size of 2 could be used with

each cluster forming a solve group. The brief projection phase would be limited by the slow

connection between the two clusters, but during the correction phase each cluster could

take advantage of its fast internal network.

3.4.2 Load imbalance in the full multigrain case

Though the multigrain algorithm has several benefits, it can accentuate or even introduce

load imbalance. For instance, if three identical processors are used to run JDmg with a

block size of two, one solve group will contain two processors and the other only one. Since

the latter group is roughly only half as fast as the former, the load imbalance is now 33%!

Clearly the utility of the multigrain scheme is limited if not used in conjunction with a

load balancing scheme. Fortunately, like the coarse grain version, JDmg fits the flexible-

phase iteration model and can be load balanced in the same manner [57]. The only real

difference is that solve groups, rather than individual processors, are the entities that work

independently during the correction phase. Processor 0 of each solve group is responsible

for coordinating the load balancing: those processors track the speed of the subgroups,

determine the time T to iterate on the correction equations, and inform the other members

of their solve group when they should halt the correction phase.

We used LBlib to load balance JDmg and tested the performance of the scheme using

SciClone, a heterogeneous cluster of workstations at the College of William & Mary. Figure

3.2 details its architecture at the time of the experiments. To enable measurement of load

imbalance in the multi-grain experiments, we timestamp synchronous communication calls

in JDmg, much as we did with JDcg. We do not timestamp communications internal to

the solve groups during the correction phase: there is no need, as load imbalance does

not arise because the machines in a solve group are homogeneous. Table 3.3 summarizes

the performance of the multigrain code, with and without load balancing, on a variety

of solve group configurations. Without load balancing, load imbalance is quite severe in
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Figure 3.2: SciClone: The William and Mary heterogeneous cluster of three homogeneous clusters:
Typhoon, Tornado (also called C), and Hurricane (also called D). We distinguish between A and B,
the subclusters of Typhoon, because their intercommunication passes through the Gigabit switch.
There are three levels of heterogeneity: node architecture, number of nodes, and networks.

many of the configurations. Employing load balancing significantly improves performance,

sometimes doing better than halving execution times. Load imbalance is almost always

held below a tolerable level of 10%.

3.5 A load balanced Additive-Schwarz preconditioner for

FGMRES

So far we have applied our load balancing method only to the coarse/multi-grain Jacobi-

Davidson eigenvalue solver. In this section we demonstrate its applicability in a different

setting. The Generalized Minimal Residual (GMRES) method [72] is one of the most pop-

ular iterative methods for solving unsymmetric linear systems. A variant known as Flexible

GMRES (FGMRES) [75] allows a different preconditioner to be used at each step. In par-

ticular, an iterative method may be used. We have applied our load balancing scheme to

a parallel FGMRES solver that employs a one-level additive Schwarz method (ASM) pre-

conditioner. ASM is an iterative method, the basic idea of which is to break the problem

domain into (possibly overlapping) subdomains and to approximately solve for a correction

vector on that domain while ignoring dependencies upon the other subdomains. The correc-
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Without load balancing With load balancing
Nodes Time Mvecs %imbal Time Mvecs %imbal
AD 3265 13058 36.17 1746 10515 4.47
A16A16D8D8 4022 16910 38.96 1692 11208 5.14
C32D 3282 13058 39.57 1631 10478 5.01
A16A16C16C16 1405 12424 11.02 1546 14698 5.24
C16C16D8D8 4037 16910 41.71 1544 10711 6.22
AC32 1585 12730 9.46 1450 12833 2.05
CD 3495 13996 52.37 1381 9608 7.68
C32C32D8D8 3132 13124 58.32 1284 11202 9.94
(AB)C 1198 12656 11.97 1214 13653 5.98
(AB)D 3500 13996 55.42 1126 8870 8.97
ABC32C32 981 12240 21.00 991 14167 8.99
ABD8D8 3152 13124 61.58 941 8680 11.78
(AB)C32C32D 1870 14534 52.64 724 9481 15.05

Table 3.3: Performance of the multigrain JD running on different node configurations, with and
without load balancing. “Time” is wall-clock time in seconds and “Mvecs” is the number of matrix-
vector products computed. “%imbal” is the percentage of time wasted due to load imbalance. Strings
within the “Nodes” column specify what nodes are used for an experiment: For each subcluster that
is utilized, its letter is given. If a subscript n is appended to that letter, it indicates that only
n processors of the subcluster are utilized; if no subscript is present, all processors are utilized.
For instance, “C” means that all 64 processors of cluster C are used, while C32D indicates that 32
processors from cluster C are used together with all the processors from cluster D. For each subcluster
utilized, its letter is given. When multiple subclusters are assigned to one block vector, they are
grouped together with parentheses. E.g., “(AB)” indicates that subclusters A and B work together
on the same block vector (are in the same solve group), whereas “AB” indicates that subclusters A
and B work on different block vectors (each composing their own solve group).

tions are then added to the current approximation to the solution to obtain the next iterate.

Because the components of each subdomain are not updated until the end of an iteration,

the subdomain solves can be performed independently, and therefore in parallel. Because

the solves can proceed independently and need not be performed to the same accuracy,

ASM fits the flexible phase iteration model.

When one step of ASM is used to precondition an FGMRES iteration, the application

of the preconditioner can be load balanced by restricting all processors to spend the same

amount of time on their subdomain solves. Using this approach is considerably more com-

plicated for ASM than for Jacobi-Davidson, however. For Jacobi-Davidson, we select the
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time T for the correction phase by identifying an optimal number of iterations and then

estimating the time required for the fastest processor to complete that number. If slower

processors complete significantly fewer iterations, this does not prevent convergence. (In-

deed, in the proceeding chapter we demonstrate how we cope with memory pressure on a

node by having it do no iterations.) Such an approach is not possible for ASM precon-

ditioned FGMRES. Convergence may stagnate if each subdomain solve does not reach a

certain level of accuracy. Furthermore, it is difficult to predict how many iterations are

needed to reach a given accuracy: some subdomains are much “harder” than others, and on

the same subdomain the number of required inner iterations may vary considerably from

outer iteration to outer iteration. For these reasons, and to enable better response to dy-

namic load variations, we determine the time T dynamically by building a consensus: The

inner phase ends when all processors have reached a minimum accuracy for their subdo-

main solve. This incurs some communication overhead, but because domain decomposition

methods lose their effectiveness as more subdomains are added, the number of subdomains

should not become great enough to cause problems.

We added functions to LBlib to support determining T by consensus and used the

library to write a load-balanced ASM preconditioner for the PETSc framework [5, 6] de-

veloped at Argonne National Laboratory. The load balancing functionality is completely

encapsulated within the preconditioner and can be used by any application that uses a

PETSc solver that supports an iterative preconditioner.

Table 3.4 summarizes the performance of FGMRES when used with the load bal-

anced ASM preconditioner to solve a two-dimensional convection-diffusion problem with

a Reynolds number of 1000. Differences in the conditioning of the subdomains cause load

imbalance even when no external jobs are present; in this case use of the load balancing

scheme reduces execution time by an average of 18%. In the worst-loaded case, execution

time is reduced by 24%. Such gains are significant, but it is clear that the load balancing

scheme cannot fully correct any substantial load imbalance. This is because increasing the
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accuracy of a subdomain solve yields diminishing returns: once the solve reaches a certain

accuracy, going beyond that does nothing to speed convergence of the outer method. For

domain decomposition methods, it appears that repartitioning is the only way to correct

substantial external load imbalance. Because repartitioning is costly and cannot be done

frequently, our load balancing approach could play the role of reducing load imbalance in

between repartitionings. We also note that our method is useful for smoothing out load im-

balances due to differences in the condition number of the subdomains; partitioning methods

that can ensure that all domains are similarly conditioned are not known.

non-lb lb
Case Its Time Its Time
1111 56 77 45.0 63.6
2111 56 137 41.3 105.7
1211 56 118 44.0 102.7
2211 56 142 43.0 122.6
1112 56 104 40.7 83.9

Domain Min its Max its Avg its
0 2 34 19.7 (7.7)
1 3 29 16.5 (6.2)
2 4 32 12.3 (5.2)
3 3 25 14.6 (4.5)

Table 3.4: Performance of FGMRES when preconditioned with ASM without load balancing (“non-
lb”) and with load balancing (“lb”). Four processors from the Typhoon subcluster (A in figure 3.2)
were used to solve a convection-diffusion problem with Reynolds number 1000, discretized with a
5-point centered-difference scheme. Subdomains are solved to a relative tolerance of 1e-1 without
load balancing and to a higher accuracy on lightly loaded machines when load balancing is used.
Some subdomains are harder to solve than others, leading to natural load imbalance. The right table
shows the minimum, maximum, and average number (std. dev. in parentheses) of iterations required
to solve each subdomain problem to a relative tolerance of 1e-1. The left table depicts performance
for different external load cases; the notation used is as in table 3.1. For example, “2111” means
that the node 0, which has the hardest domain, is loaded with a dummy job. We ran experiments
for the cases which result in the most load imbalance. Because execution time is variable when load
balancing is used, we report average times for the load balanced code.



Chapter 4

Load balancing under memory

pressure

The load balancing scheme we described in the preceding chapter works well when external

load is CPU intensive in nature. In many cases, however, external jobs compete for scarce

memory resources as well. If the memory requirements of the processes on a node far

exceed the available physical memory, a sizeable number of CPU cycles will be wasted as

the system swaps pages to disk. Furthermore, if the page replacement policy of the virtual

memory system is ill-suited to the memory access patterns of the jobs, the majority of CPU

cycles will be wasted as the system thrashes. Such memory pressure on a node can cause a

synchronous parallel job to grind to a standstill under tremendous load imbalance. In this

chapter, we explore how our load balancing scheme can be modified to improve performance

under memory pressure.

4.1 Load-balanced JDcg under memory pressure

To determine the robustness of our load balancing scheme under memory pressure, we

ran some experiments in which we loaded nodes with a dummy program requiring a large

amount of memory. The dummy job continuously performs matrix-vector multiplications

with a matrix of size M MB. Our initial experiments were conducted on machines running

Solaris 7, but we found that the operating system would prevent thrashing by essentially

43
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“starving” either JDcg or the dummy job, scheduling one job consistently in favor of another.

This policy is documented in [56]. Because of this behavior, we instead conducted our

experiments on a system of four 1 GHz Pentium III machines with 128 MB of RAM running

RedHat Linux 6.2, which utilizes a version of the Linux 2.2 kernel. The machines were

interconnected via fast Ethernet.

We found that a dummy job of size M = 80 MB was sufficient to consistently cause

excessive swapping. Furthermore, increasing M did not increase the amount of swapping

observed, so we used that value in our experiments. Table 4.1 displays our results for

NASASRB (S3DKQ4M2 is too large to use on these systems). For load balanced JDcg,

the execution time becomes considerably worse as the external load is increased. This is

largely due to the fact that in these experiments, a node that is running a dummy job is

so much slower than the fastest node(s) that it only completes one bcgstab iteration each

time through the correction phase (and even with it performing only one iteration, the other

nodes still must wait for it). However, when compared with the performance of non-load

balanced JDcg, the numbers are very encouraging. Without load balancing, JDcg fares very

poorly when multiple nodes are burdened with external jobs (2-2-1-1 and 2-2-2-1 cases)—

much worse than when only a single node is burdened (2-1-1-1 case). This is somewhat

surprising: since non-load balanced JDcg is limited by the speed of the slowest processor,

one might expect the difference between its performance under loads of 2-1-1-1 and 2-2-1-1

to be minimal, as it is in the experiments described in section 5.1. This is perhaps due to

extra load imbalance that is introduced because the timing of swapping activity may not

coincide with that of other nodes subject to external loads.

4.2 Avoiding thrashing from within the algorithm

Our experiments demonstrate that the load balancing scheme significantly improves per-

formance under memory pressure. It is clear, however, that even when using the scheme, a

great deal of time is still lost to disk swapping and the resultant load imbalance.
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Without load balancing With load balancing
Load Time % Imbal Its Mvecs Time % Imbal

1-1-1-1 823 5.4 20 10312 843 4.3
2-1-1-1 3288 56.4 21 8464 1566 32.7
2-2-1-1 6677 51.7 20 5225 2067 34.0
2-2-2-1 7500 36.7 25 3535 2719 23.9

Table 4.1: Results for NASASRB with some nodes externally loaded by static, memory intensive
dummy jobs. Externally loaded nodes run a dummy job that performs repeated matrix-vector
multiplications using a matrix of size 80 MB. In the cases without load balancing, 19 outer iterations
and 9959 matrix-vector multiplications are always performed.

In an attempt to improve the performance of load balanced JDcg in the presence of

memory-intensive external loads, we have implemented a heuristic that recedes JDcg during

the correction phase on a node that is thrashing. The idea is to let the competing job

utilize 100% of the CPU and memory resources, hopefully speeding its completion and

hence relinquishment of resources.

Obviously, this strategy will only be effective if the lifetime of the competing job is

less than that of JDcg. Performance prediction models [13, 91] could be used to estimate

these lifetimes, but obtaining useful estimates may be difficult. In the current work, we use

no such predictive models and instead use a natural upper limit on how long JDcg stays

backed off before it resumes: the time T that each node is given to perform the correction

phase. If the lifetime of the competing job is longer than that of JDcg, this means that the

anti-thrashing scheme will “starve” the correction phase on a node that is thrashing. The

load balancing scheme will, however, ensure that JDcg still converges because other nodes

will shoulder the load.

Upon entering the correction phase (excluding the first time, in which no load balancing

is done), the anti-thrashing algorithm checks to see if the thrashing was occurring during

the just completed projection phase. If so, it recedes for Twait seconds. The choice of Twait is

discussed later. After this period, it checks to see if it is appropriate to resume computation

or to continue waiting. If the application decides to resume computation, it checks to see

if the node is thrashing after the completion of each bcgstab iteration. If so, it recedes
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once again for Twait seconds. The following pseudocode describes the basic steps of the

algorithm:

Anti-thrashing modification of the correction phase
Reset the clock Telapsed = 0

L1: If
(

Test for receding
)

then
repeat sleep (Twait)
until

(
Test for resuming

)

endif
while (T > Telapsed + estimated time to complete a bcgstab iteration)

perform one bcgstab iteration
if

(
Test for receding

)
then goto L1

end

The performance of the algorithm depends on its ability to correctly determine the

answers to two tests: (1) should it recede if currently running and (2) should it resume

if currently sleeping. That is, it must be able to accurately identify when the system

is thrashing and to predict whether or not resuming computation will cause thrashing.

While it may be better to answer these tests using performance measurement/prediction

middleware, our experiments have shown that one can obtain useful results using some

simple performance measures that the operating system makes available.

For the first test (test for receding), JDcg checks the memory page swap-out rate swapout

and recedes if it exceeds a given threshold swap threshold. We also considered using such

information as page fault rates and page swap-in rate, but we found the swap-out rate to

be a very reliable indicator. Additionally, it may be desirable to check to see if the CPU

idling time exceeds some tolerable threshold, since if there is some paging but little CPU

idling, there is little benefit to receding. We did try using an idle time threshold, but, again,

we found the swap-out rate alone to be a very reliable indicator so we did not resort to a

more complicated criterion. In a following section we describe how we choose an acceptable

swap-out threshold. The pseudocode below describes the first test:
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Test for receding
Obtain the swap-out rate for the just completed computation phase: swapout
If ( swapout > swap threshold )

then return TRUE

Once JDcg has receded, it must be able to determine whether beginning/resuming

bcgstab iterations (and thus swapping JDcg back into memory) will cause thrashing.

This may be as easy as determining that the amount of free memory on a node is enough

for JDcg to run. Unfortunately, lower priority processes or the buffer cache may utilize

large amounts of memory that they would free if asked by a higher priority job, so the free

memory size reported by the system usually greatly underestimates the amount of memory

that is actually available to JDcg. Therefore, in addition to checking the amount of free

memory, JDcg also checks the idle time of the system: if the memory-intensive external job

has finished and there is no other CPU intensive job running on the system, the idle time

should be very high because JDcg is recessed. (Note that JDcg considers time spent by

the CPU running nice’d jobs as idle time, so low priority jobs that are using lots of CPU

time will not interfere with this strategy.) The following pseudocode describes the test for

resuming:

Test for resuming
If (Telapsed + Twait > T ) then

return TRUE and exit the correction phase
else

Obtain the CPU idling percentage over the waiting period: idle
Obtain the current available free memory: free mem
Obtain the current resident memory for JDcg: JD res mem
Estimate the memory JDcg requires to avoid thrashing: JD req mem
If ( idle > idle sufficient ) OR ( JD req mem − JD res mem < free mem )

then return TRUE
endif

Note that the first line of the above algorithm checks to see if waiting for Twait seconds

will cause JDcg to spend more than the allotted T seconds in the correction phase. If so,

JDcg exits to the correction phase to ensure that this does not happen.
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4.2.1 Choosing the parameters

The sleep time Twait must be short enough to allow JDcg to quickly respond when the

system becomes available, but it should also not be so short that an excessive amount of

CPU time is spent checking the status of the node. We choose the longest Twait that yields

a tolerable ratio Twait/T , which is the upper bound on the amount of time that may be

wasted by a node when the competing memory-intensive job finishes while the JDcg process

is sleeping.

Page swap-out activity comes in bursts, with the frequency depending on the par-

ticular memory access patterns of the programs that are running. This means that the

swap threshold is sensitive to the time interval over which swapout is sampled. Ideally the

computation interval between the two measurements used to calculate swapout should be

longer than the interval between bursts. It is not feasible, however, to adapt JDcg to ensure

that the computation intervals exceed the burst intervals. Alternatively, the burst interval

tb could be estimated and then a program thread could accumulate the swapout rate over

the past tb seconds. In our experiments we found that simply measuring swapout over

the computation interval was adequate. Note that determining an appropriate value of the

swap threshold is not difficult, since even low levels of swap-out activity signify memory

contention: a very small swap threshold is sufficient.

The value of idle sufficient should be large enough to ensure that a non-idle system is

not mistaken as an idle one, but must also be small enough so that jobs with low CPU

utilization are ignored. We have found that a value between 80 and 90% works well.

The swap-out rate, idle percentage, and current amounts of free and JDcg resident

memory can all be calculated from statistics provided by system counters that are accessible

on most Unix-like systems through the /proc pseudo-filesystem.
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4.2.2 Experimental results

As stated previously, we have observed on the Sun platforms that the Solaris scheduler

prevents thrashing by arbitrarily “starving” one of the processes. This increases the overall

throughput on a node but can be very detrimental to parallel jobs. In the case of JDcg,

both the projection and correction phases are starved, impeding progress on all of the nodes

the JDcg is using.

Because of this behavior, we conducted our experiments with the anti-thrashing scheme

using a system of four 1 GHz Pentium III machines interconnected via switched Fast Eth-

ernet and running RedHat Linux 6.2. Our test matrix is NASASRB. JDcg requires about

67 MB of memory when applied to NASASRB, so we chose JD req mem = 66 MB, just

below that value. We observed that, for a measurement interval ≥ tb, average swap-out

rates never dipped below 150 KB/s, so we used this value for swap threshold. Twait was set

to a sizable 20 seconds. The values of swap threshold and Twait are fairly conservative and

may result in JDcg receding fewer times than optimal, but are unlikely to result in JDcg

receding erroneously.

All of our experiments were run on four nodes, with node 0 running a dummy job that

alternates between sleeping and performing matrix-vector computations. We have found

that using a dummy job of size 80 MB is sufficient to consistently cause excessive swapping

when the dummy job and JDcg are running. Furthermore, we found that increasing the

size of the dummy job did not increase the amount of swapping because the memory access

pattern does not change. For these reasons, we have chosen to use a dummy job size of 80

MB in our experiments. The dummy job is described by the following pseudocode:
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Code for dummy job:
Wait 60 seconds to allow JDcg to initialize.
Create a vector v and a random, dense matrix A of size 80 MB.
For i = 1 to lim do

For j = 1 to nmv do
b = Av

End for
Sleep for λ seconds.

End for

The dummy job can be viewed as simulating a series of jobs that do a specified amount

of work and then terminate. Each of the lim passes through the outer loop can be viewed

as the execution of one of these “jobs”. The inner loop executes the nmv matrix-vector

multiplications that each “job” performs. The inter-arrival time between the “jobs” is λ

seconds. Unlike in the experiments described in previous sections, it is necessary to use a

dummy job that does a specified amount of work and then stops, since the idea of the anti-

thrashing scheme is to speed up JDcg by speeding the completion of the memory intensive

jobs that compete with it. Therefore, we chose values of lim and nmv so that the (actual)

dummy job can complete all of its work within the lifetime of JDcg (without the anti-

thrashing scheme). Table 4.2 summarizes our results. Because there is some variability in

the performance obtained using a particular set of parameters, we report averages over five

trials and their standard deviations in parentheses.

Without anti-thrashing With anti-thrashing
λ nmv lim Its Mvecs Time Its Mvecs Time

n/a 46 1 19.4 (0.9) 8681 (714) 1125 (175) 19.6 (0.5) 9625 (287) 913 (27)
n/a 93 1 19.6 (0.5) 8202 (319) 1256 ( 92) 19.2 (0.8) 9317 (516) 928 (39)
30 3 4 19.6 (0.9) 9011 (654) 1004 ( 89) 19.0 (0.0) 8820 (108) 961 (46)
60 7 3 20.4 (0.9) 9088 (649) 1136 ( 98) 19.6 (0.9) 9088 (222) 943 (15)
60 15 2 20.6 (1.3) 9136 (812) 1157 (131) 19.6 (0.5) 9199 (416) 946 (49)

Table 4.2: Performance of the anti-thrashing scheme for NASASRB with a come-and-go memory
intensive dummy job on one node. The tests for receding/resuming in the anti-thrashing algorithm
are performed through system measurements. The dummy job performs lim repetitions of nmv
matrix vector multiplications with an 80MB matrix, sleeping for exactly λ seconds between each
pass.
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Our experiments show that the anti-thrashing scheme yields an appreciable performance

gain, often reducing execution times by 20% compared to load balanced JDcg without

anti-thrashing. To put these numbers in perspective, it should be noted that the original

load balancing scheme often mimics the anti-thrashing scheme, usually completing only one

bcgstab iteration per correction phase on a node that is thrashing because the performance

of the node is so poor. Obviously, the non-load balanced code is simply not viable for such

situations.

The performance of the scheme is dependent on its ability to correctly determine when

to recede and when to resume. Because our scheme cannot make these decisions perfectly,

we obtained an upper bound on the scheme’s performance by running some experiments

in which we allowed our application to “cheat.” Rather than using system statistics to

determine when to recede and resume, we modified the dummy job to create a specific file

when it begins a computation phase and to delete it when it ends. JDcg could then check

for the existence of the file to make its decisions, which would be made perfectly. Our

results are summarized in Table 4.3. Comparing these ideal results to those in Table 4.2,

we can see that the performance is essentially the same.

With anti-thrashing
λ nmv lim Its Mvecs Time

n/a 46 1 20.2 (1.1) 9936 (651) 942 (71)
n/a 93 1 19.4 (0.5) 9233 (313) 920 (39)
30 3 4 19.5 (0.6) 9346 (323) 970 (48)
60 7 3 19.6 (0.9) 9414 (461) 917 (42 )
60 15 2 20.0 (0.7) 9774 (440) 961 (45)

Table 4.3: Performance of the “ideal” anti-thrashing scheme for NASASRB with a come-and-go
memory intensive job on one node. The JDcg knows exactly when the system is thrashing by
communicating directly with the dummy job.

In addition to shortening the execution time of JDcg, the scheme also has the added

benefit of increasing total system throughput. Table 4.4 shows that the reduction in the

execution time of the dummy job can be dramatic.

One might be concerned with how our scheme performs when the competing memory-
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without anti-thrashing with anti-thrashing with ideal testing
λ nmv lim Time Time Time

n/a 46 1 736 (409) 113 (17) 140 (15)
n/a 93 1 1055 (129) 187 (22) 202 (26)
30 3 4 554 ( 66) 223 (73) 171 (40)
60 7 3 808 ( 97) 152 (50) 141 (19)
60 15 2 864 (150) 158 (20) 141 (22)

Table 4.4: Improvements in execution time of the dummy job because of increased processor
throughput due to our anti-thrashing scheme.

intensive application outlives JDcg. In this case, the scheme cannot reduce the runtime of

JDcg, and could conceivably even degrade performance, since a node that is thrashing will

never do any bcgstab iterations. We ran some experiments with a dummy job that outlives

JDcg and verified that, regardless of whether or not the memory-intensive job outlives JDcg,

the scheme does not result in any measurable performance degradation. As noted previously,

when JDcg runs without the anti-thrashing scheme on a node that is thrashing, typically

the node is so slow that it only completes one bcgstab iteration per correction phase.

Reducing this number to zero with the anti-thrashing scheme does not have a noticeable

effect on convergence. The anti-thrashing scheme does, however, significantly improve the

overall system throughput.

4.3 Limitations of the memory-balancing approach

We have presented some favorable experimental results using our “memory balancing”

scheme that demonstrate the practicality of implementing programs that dynamically adapt

to memory pressure. However, we have ultimately found the scheme to possess significant

limitations that we cannot remedy.

One of the biggest technical shortcomings is that the tests for deciding when to recede

or resume are easily fooled. They work in our controlled experiments, but have proven

to be impractical in more realistic situations. The test for receding is fairly reliable, al-

though swap-out activity does not necessarily indicate that our process is experiencing
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memory pressure—a lower-priority process or one that has been long idle may have pages

swapped out while our pages remain untouched, for example. The test for resuming, how-

ever, has serious shortcomings. A recessed JDcg process will resume correction iterations if

either idle > idle sufficient or JD req mem − JD res mem < free mem. Unfortunately,

the value of free mem is usually meaningless: free memory is almost always close to zero

because any memory that would otherwise be free is usually consumed by the buffer cache.

The test for resuming, therefore, generally reduces to checking to see if the CPU idle per-

centage exceeds idle sufficient. This works in our controlled experiments, but in a real-world

situation, there is no guarantee that the CPU will stand idle after a competing job has fin-

ished its memory-intensive work. Thus our inability to determine the actual amount of

memory available to JDcg is a serious obstacle to the practical application of our scheme.

Unfortunately, operating systems provide no information that can be used to reliably esti-

mate this quantity.

Another problem stems from the inability of the scheme to remedy load imbalance during

the projection phase. When load imbalance is due solely to external CPU load, this is of

little concern, as the solver spends little time in this phase. When a system is thrashing

however, the time spent in the projection phase can turn into an eternity. In the worst case

scenario, which we have observed under Solaris 7, the entire parallel job can grind to a halt

as the memory scheduler swaps out the process during the projection phase.

Perhaps the most fundamental shortcoming is that our scheme is applicable only to

a class of algorithms far narrower than that to which the load balancing scheme is itself

applicable. The flexible phase must be extremely flexible: a node must be able to abdicate

all responsibility for performing computations during the phase. This is the case for JDcg,

but neglecting one of the subdomains in our load-balanced additive Schwarz preconditioner

can result in stagnation of convergence: other processors may continue to work, but the

solve cannot progress without the preconditioner completing some work on the subdomain.

For the above reasons and others, we have pursued another, less restrictive approach in
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which applications gracefully degrade their memory requirements and performance in the

face of memory pressure, rather than completely receding their computations. We describe

this approach in the following chapters.



Chapter 5

A dynamic memory adaptation

framework

In our earliest memory adaptation work, we worked with JDcg and exploited its flexibility.

If memory shortage was detected on a node, the node would perform no correction phase

iterations. This would allow a competing, memory-hungry job to utilize 100% of the CPU

and memory resources, hopefully speeding its completion and relinquishment of resources.

Our experiments yielded an appreciable performance gain, often reducing execution times by

20% compared to load balanced JDcg without memory adaptation. The method suffers from

several shortcomings, however, the biggest of which is that it is applicable only to a limited

subset of flexible-phase algorithms. Additionally, the mechanisms we used for identifying

when to recede and resume correction phase iterations are not reliable in general.

In more recent work [61, 62] we have developed a memory adaptation framework which

is widely applicable and highly portable. We describe it in this chapter.

5.1 A portable framework for memory adaptivity

Many scientific algorithms, such as iterative methods for linear and nonlinear systems, dense

matrix methods, and Monte Carlo methods, operate on large data sets in a predictable,

repetitive fashion. To best utilize hierarchical memory, applications often operate in a

block-wise fashion to increase locality of memory access. Algorithms designed to run in-

55
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core are blocked to effectively utilize L1 and L2 caches, while out-of-core algorithms employ

a similar strategy to best utilize DRAM. In the lingo of out-of-core algorithms, blocks are

sometimes referred to as panels to distinguish from disk blocks; we adopt that terminology

here. With data partitioned into P panels, the processing pattern of a blocked algorithm

can be represented schematically as

for i = 1:P
Get panel pi from lower level of the memory hierarchy
Work on pi

Write results back and evict pi to the lower level of the memory hierarchy
end

The above structure suggests a simple mechanism for memory adaptation: control the

resident set size by varying the number of panels cached in core. If the program has enough

memory, it caches its entire data set in core and runs as fast as a standard in-core algorithm.

If main memory is scarce, the number of panels cached is reduced, and an application-

specific cache replacement policy is used. The magnitude of the reduction varies according

to the memory shortage; so performance should degrade gracefully as memory becomes

scarce (provided an appropriate cache-replacement policy is used). Thus if the amount

of physical memory available is only slightly less than the size of the adaptive program’s

data set, its performance should be close to its in-core performance. A non-adaptive in-

core program, on the other hand, may thrash under the same conditions if the replacement

policy of the VM system is inappropriate for its access pattern. This is often the case for

scientific applications, which commonly access large data sets in a cyclic fashion. For such

access patterns, a most recently used (MRU) replacement policy should be used, but the

generic replacement policy used by the operating system is usually an approximation of

least recently used (LRU) replacement

The software required to support the above memory adaptation strategy can be easily

encapsulated into a software library. An existing blocked code can then be easily modified

by the insertion of a few library calls. Essentially, all that needs to be done is to make the

code call a library function that returns a pointer to panel pi before working with it. The
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function call should handle all memory management in a way that is completely transparent

to the application programmer. We have written such a library, which we call MMlib (for

“memory malleability library”).

5.2 Elements of the implementation

To use our adaptation strategy we must be able to grow and shrink the memory space of an

application. Most implementations of malloc()/free() are not appropriate because they

do not provide a mechanism to release memory back to the operating system. A successful

malloc() call can grow a program’s heap. When free() is used to deallocate memory,

however, the heap size may not be decreased, so freed memory is not returned to the

operating system. Our solution is to use memory mapping, which is universally available in

modern operating systems and provides more explicit control over memory usage. Memory

obtained via a memory map can be easily returned to the operating system; additionally,

many operating systems allow programmers to provide hints to the OS via madvise() about

how a mapped region will be used. Using named mappings to files (viz., memory-mapped

I/O) confers other advantages as well. Because I/O is handled transparently, codes can be

simplified: explicit I/O calls are not needed, and an adaptive code can greatly resemble

and in-core one. I/O traffic is optimized because non-dirty pages in mapped regions can

be freed without a write, while pages that are dirty will be written, but not to the swap

device. Writing dirty pages to swap space incurs software overhead and results in poor

data placement on disk, since pages that are part of a contiguous array may be scattered

between several non-contiguous blocks on the swap device.

In our implementation, each panel is written to a disk file. A panel to be cached in

core is mapped via an mmap() call, and the VM system is asked to prefetch that panel via

madvise(). A panel to be evicted is unmapped via an munmap(). A memory adaptation

decision is made each time the program calls our library function to fetch a new panel. Based

on its current estimates of memory availability, it chooses to increase, decrease, or maintain
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the number of panels cached in core. If panels must be evicted, victim panels are selected

using a user-specified, application specific policy. This allows an optimal replacement policy

to be used, in contrast to the general policy employed by a VM system, which may be highly

suboptimal for a given application.

5.3 Algorithms for adapting to memory availability

An adaptive application should quickly decrease its memory usage when shortage is de-

tected, while still caching as many panels as possible. When surplus memory becomes

available the application should quickly map additional panels in order to utilize that mem-

ory. The main challenge involved in implementing our memory adaptation framework is

devising a simple, reliable mechanism for answering two basic questions: (1) Is there a mem-

ory shortage? and (2) If not, is there a memory surplus? Because many systems export

very limited information about memory usage, these questions should be answered using as

little system information as possible to ensure portability. We have found ways to answer

both questions using only the resident set size (RSS) of the program.

Detecting memory shortage is the easier of the two tasks. Memory shortage can be

inferred from a decrease in the program’s RSS that occurs without any unmapping on the

part of the program. The magnitude can be ascertained by comparing the current RSS

to what the program estimates it should be if all panels it is currently trying to cache are

actually resident in memory.

Detecting surplus memory is more challenging. Ideally the system would provide an

estimate of the amount of available memory, and the program would use this to determine

when there is enough room to cache additional panels. The best that most operating systems

provide, however, is the amount of free memory, which typically greatly underestimates the

amount of additional memory actually available. On many systems, the amount of free

memory is usually very close to zero, because any memory that is not needed by running

processes is used by the file cache. The system might still service a large memory request,
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however, by reducing the file cache size. Because the operating system simply does not

provide much information, the most reliable way to determine if a quantity of memory is

actually available is to try to use it and see if it can be maintained in the resident set.

5.3.1 Detecting memory shortage

Consider an application whose memory is managed by our library. We denote by Panels in

the number of panels that are cached in memory. We can calculate what the RSS should be

if all panels that we are attempting to cache are actually resident. We refer to this quantity

as desired RSS and denote it by dRSS:

dRSS = Panels in * Panel size + sRSS,

where sRSS indicates the size of what we term the static memory, that is, memory not

managed by our memory-malleability library. (We will explain how we determine sRSS in

section 5.4.1.) By definition, the program is under (additional) memory pressure when it

cannot maintain RSS equal to this desired RSS. This suggests the following scheme:

if ( RSS < dRSS ) then
diff = (dRSS-RSS) / Panel size
Unmap diff panels
Panels in = Panels in − diff
dRSS = dRSS − diff * Panel size

This “solution” is not sound, however, because when the program unmaps panels in re-

sponse to memory pressure, the victim panels may not correspond to the memory paged

out by the operating system. Using the above scheme can lead to a cascade of unmappings

all the way down to Panels in = 1. Consider an example (illustrated in Figure 5.1) where

the replacement policy is MRU and the program’s data set is broken into five panels, all of

which are currently mapped (Panels in = 5). A memory shortage has caused the system

to evict portions of panels 1 and 2 from memory, but there is enough memory available to

keep four panels mapped (diff = 1). When the program accesses panel 4, the condition

(RSS < dRSS) holds, so Panels in is decreased to 4 by evicting the MRU panel 3. However,

panel 3 was fully resident, so its unmapping causes RSS to reduce even further by exactly
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Panel size. This is the same amount the dRSS is reduced, so when the program tries to

access panel 5, the condition (RSS < dRSS) still holds—despite the availability of memory.

The above process repeats until all panels but one are unmapped.
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Figure 5.1: Detecting and responding to memory shortage with the naive (and incorrect) “solution”.
A program runs with 5 panels; each represented with a box at times A, B, and C. White regions
of a panel are mapped and resident, while shading represents memory that is mapped but not
resident. Black represents a panel that is not mapped. At time A, portions of panels 1 and 2 have
been evicted by the operating system, but there is enough memory to keep four panels mapped.
Panel 4 is accessed, and since (RSS < dRSS) holds, Panels in is decreased by one panel (since
diff = dRSS - RSS = 1) to the new value of 4 by evicting the MRU panel 3. Because panel 3 was
fully resident, unmapping it causes RSS to reduce even further by exactly Panel size. At time B,
we access panel 5. The condition (RSS < dRSS) still holds, so we unmap the MRU panel 4—even
though there is actually enough memory to keep four panels mapped. At time C, we access panel
1. Again, RSS < dRSS, so panel 5 will be unmapped, further reducing RSS by Panel size. This
pattern will continue until all but one panel has been unmapped, despite the availability of enough
memory to cache four panels. Clearly this is undesirable behavior!

The problem responsible for the cascade of unnecessary mappings described above is

that dRSS is not an accurate lower bound (it is too high) on what RSS can be without

indicating a memory shortage. To fix this we introduce the variable lastRSS, which tracks

the value of RSS at the last panel access. When a panel is unmapped due to memory

shortage (i.e., when Panels in is reduced), lastRSS is set to the value of RSS immediately
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after the eviction. This accounts for the fact that RSS may drop below the new dRSS. At

panel accesses that are not accompanied by a decrease in Panels in, if RSS > lastRSS

then we set lastRSS = RSS. Maintaining lastRSS in this fashion, we can conclude that

there is a memory shortage whenever RSS < lastRSS. Figure 5.2 summarizes the test for

memory shortage, and Figure 5.3 illustrates its use. Note that no explicit reference to dRSS

is required: If there is enough memory to keep Panels in panels resident, then lastRSS

will eventually grow to match dRSS once all pages evicted by the operating system during

the last memory shortage have been touched again.

Algorithm: Detect shortage

RSS = Get current RSS
if ( RSS < lastRSS )

diff = (lastRSS-RSS) / Panel size
Unmap diff panels
Panels in = Panels in − diff, dRSS = dRSS − diff * Panel size

endif
lastRSS = Get current RSS

Figure 5.2: The algorithm for detecting and responding to memory shortage.

We note that some operating systems employ a page-fault frequency (PFF) strategy for

preventing thrashing; Windows NT is an example. An OS employing a PFF strategy will

sometimes reclaim pages from a process under no memory pressure. If the page-fault rate

of the process falls below a certain threshold, the OS removes page frames from the process;

if the process then increases its page fault rate, the OS will give frames back. The idea is

to prevent thrashing by ensuring that processes do not consume more memory than they

require. Our algorithm may interpret this sort of probing by the OS as memory shortage

and evict a panel. The page-fault frequency of the program will increase, prompting the

OS to allocate more page frames. Panels in will eventually return to its original level, but

some performance penalty will have been incurred by the unnecessary eviction. We believe

this problem could be eliminated by requiring that (lastRSS − RSS) exceed a threshold

before action is taken, but we have not yet had the opportunity to test our algorithm under
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Figure 5.3: An example of detecting and responding to memory shortage using the algorithm in
Figure 5.2. A program runs with 5 panels; each represented with a box at times A, B, and C, D.
White regions of a panel are mapped and resident, while shading represents memory that is mapped
but not resident. Black represents a panel that is not mapped. At time A, portions of panels 1
and 2 have been evicted by the operating system, but there is enough memory to keep four panels
mapped. We access panel 4. RSS < lastRSS, so we unmap MRU panel 3. At time B, we access
panel 5. RSS < dRSS, but RSS = lastRSS, so we don’t unmap. At time C, we access panel 1. By
touching panel 1, the portion of it that was swapped out by the OS is brought back into memory.
Now RSS = 3.5, and lastRSS < RSS so we set lastRSS = RSS = 3.5. At time D, we access panel 2,
bringing its contents fully into memory and increasing RSS to 4. We set lastRSS = RSS = 4. Note
that now lastRSS matches dRSS.
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a PFF system.

5.3.2 Detecting memory surplus

Because the operating system provides no mechanism for determining memory availability,

we must employ an invasive approach. We periodically probe the system, attempting to

increase memory usage by one panel. If enough memory is available, RSS should grow by

one panel. If memory is not available, then RSS will remain constant, or decrease as the

operating system responds to memory pressure by evicting pages.

The question is when should we probe? We should not probe for more memory if

RSS < dRSS. This condition indicates that parts of mapped panels have been paged out

by the system. If memory is available, RSS will grow as panels are touched and pages are

brought back into memory. When RSS = dRSS, and if there are additional panels to map,

then we may probe, performing the next mapping of a panel without replacement. If the

new dRSS cannot be maintained, RSS will eventually decrease below lastRSS and the Detect

Shortage algorithm will take memory usage back to a safer level.

5.3.2.1 Problems with overly aggressive probing

The simplest policy is to attempt to increase Panels in whenever RSS = dRSS. This policy

is too aggressive, however. It continually pushes Panels in above a safe level, incurring a

significant performance penalty each time this happens. Figure 5.4a depicts experimental

results that illustrate this. In the experiment, there is room to keep 40% of the panels

in memory. Our program is able to temporarily obtain enough memory to hold up to

60% of the panels. Quickly, however, the operating system senses a memory shortage and

begins reclaiming pages from the program, sometimes reducing RSS significantly below 40%

of the panels. The program adapts by decreasing Panels in back to the safe value of

40%. Eventually all mapped pages come back into resident memory, and the cycle repeats.

Continual page reclamation by the OS keeps average memory utilization of the program
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significantly below the desired 40%.

5.3.2.2 Balancing performance penalties with a dynamic probing policy

We can reduce the aggressiveness of our policy by delaying growth of Panels in for a time

after it has been reduced by the Detect Shortage algorithm. Choosing an appropriate delay

is a balancing act between two sources of performance penalties. If a probe is unsuccess-

ful, this induces what we call an “incursion” penalty because it will induce paging and a

subsequent performance decrease. On the other hand, if the program’s memory usage stays

below the amount of memory available, it suffers an “inaction” penalty because some pan-

els will be loaded from secondary storage when they could instead reside in main memory.

We assume a simple model in which the time T to fetch M words from disk depends only

on the bandwidth Bw of the disk. Despite its simplicity, the model is appropriate in our

case because we access large, contiguous blocks of data; seek times are largely hidden by

prefetching. Define maxRSS to be the maximum amount of memory currently available to

our program. If the program stays at RSS, then for each iteration, or cycle through all

panels, (maxRSS - RSS) of data which could have been kept in-core will be brought from

disk, incurring an inaction penalty of (maxRSS - RSS)/Bw seconds. If the program probes

beyond maxRSS, the operating system responds by decreasing RSS. As figure 5.4a shows, in

the worst case Panels in may be reduced all the way down to 1. The incursion penalty

then is roughly (maxRSS/Bw), because all of the evicted panels will have to be brought back

in.

We attempt to choose a delay that balances the two penalties. This suggests that we

consider the quantity

Rpen = maxRSS/(maxRSS - RSS),

which is the ratio of the incursion and inaction penalties. When RSS is zero, the inaction

penalty is as great as the incursion penalty, so we have nothing to lose by probing for more

memory; thus when Rpen = 1 we should probe as soon as possible. When the ratio is greater
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Figure 5.4: Graphs depicting the necessity of a dynamic delay parameter in the algorithm for
detecting memory availability. RSS (solid line) and dRSS (dashed line) versus time are shown for
two versions of a memory-adaptive program that performs dense matrix-vector multiplications with
a 70 MB matrix broken into 10 panels, each consisting of consecutive rows. Circles denote the
completion of a matrix-vector multiplication. The program runs against a 70 MB dummy job on a
1 GHz Pentium III machine with 128 MB of DRAM and an IDE hard disk. The top graph (a) uses
the original adaptation algorithm with no delay. It is too aggressive, continually pushing against
the memory limit. In response, the operating system evicts pages from the program, causing a
significant performance penalty. The bottom graph (b) utilizes a dynamically determined delay to
reduce this penalty: after a memory shortage is detected, attempts to grow memory usage must
wait until the delay has elapsed. Using the dynamic delay, the algorithm settles at what is close to
the optimal value for dRSS (dashed line) and diminishes RSS (solid line) fluctuations.
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than unity, it indicates that the possible incursion penalty outweighs the possible inaction

penalty by that ratio; thus suggests we should wait Rpen times as long as we would in the

Rpen = 1 case before probing. Given a base delay time, then, we can scale it by Rpen to

determine the delay:

delay = (base delay) * maxRSS/(maxRSS - RSS)

We have noted that when RSS is close to 0, we should probe for memory as soon as possible.

Since we never probe unless RSS = dRSS, after Detect Shortage causes an unmapping the

program may have to wait for a full iteration (cycle through the panels) for RSS to grow to

dRSS. Thus the time for an iteration provides a reasonable approximation for the minimum

delay, and thus is a natural value for the base delay. We maintain a queue of timestamps for

the last P panel accesses to determine the base delay. This delay is dynamic in character,

constantly changing to reflect system conditions. For instance, if a competing memory-

intensive job exits, the delay will decrease as the system uses the extra space to hold more

panels in the buffer cache; as a result, a memory-adaptive job will decrease the time it waits

to probe for more memory.

Unfortunately, we do not know maxRSS—if we did, we wouldn’t need the algorithm

for detecting memory surplus—so we must approximate it somehow. We use peakRSS,

which is the most recently observed peak in RSS. To determine it, we introduce the variable

max since last surplus. This variable assumes the value of zero upon initialization. Then

it is updated in the following manner: Whenever a panel is fetched, max since last surplus

is set to max(max since last surplus, RSS). Then, if shortage is detected, peakRSS is as-

signed the current value of max since last surplus. Otherwise, if surplus is detected (i.e.,

if the algorithm decides to probe for more memory) we set max since last surplus to the

current value of RSS. This simple scheme, illustrated in Figure 5.5, effectively identifies the

most recent peak in the RSS versus time curve at negligible expense.

Figure 5.4b demonstrates how the introduction of a dynamic delay parameter dramati-

cally improves performance by greatly diminishing RSS fluctuations while maintaining dRSS
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Figure 5.5: An example of how peakRSS is determined. Shown is a cartoon curve depicting RSS
versus time. Points where max since last surplus is updated are marked with an “m”; points
where peakRSS is updated are marked with a “p”. An astute reader may notice that at the point
marked A, RSS grows to exceed peakRSS, but because shortage is not yet detected, peakRSS is not
updated to match RSS. This is by design; if RSS has grown beyond peakRSS, this means that until
the next shortage, probing will no longer be delayed, and the value of peakRSS is therefore irrelevant.
The reason will become clear in section 5.4.2, where the calculation of Rpen is explained fully.
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at close to the optimal value. The combined algorithm for detecting memory shortage and

surplus is summarized in figure 5.6.

Algorithm: Adapting to memory variability

RSS = Get current RSS
max since last surplus = max(max since last surplus, RSS)

// Check for memory shortage
if ( RSS < lastRSS ) & ( Panels in > 1 )

diff = (lastRSS-RSS) / Panel size
unmap diff panels, Panels in −= diff, dRSS −= diff * Panel size
peakRSS = max since last surplus

// Check for memory surplus
else if ( dRSS == RSS ) & ( Panels in < P )

base delay = Time to access the last P panels
if (Time since last shortage > base delay * Rpen )

Panels in ++
dRSS += Panel size
max since last surplus = RSS

endif
endif

lastRSS = Get current RSS

Figure 5.6: The combined algorithm for detecting and adapting to memory shortage or surplus. It
is executed whenever a panel is requested. It is parameter free and requires no system information be-
yond the resident set size (RSS) of the program, making it highly portable. max since last surplus
is initialized to zero. The initial value of peakRSS is immaterial; it is not needed for calculating Rpen

until after the first shortage is detected, at which point peakRSS will be updated. We have not given
the details of how Rpen is calculated; that will be explained in section 5.4.2.

5.4 Further details of the adaptation algorithms

The preceding section presented the basic ideas behind the algorithms that enable our

memory-malleability approach, but did not discuss some important details. First, we have

not explained how the static memory size sRSS, which is required for calculating dRSS,

can be determined. Second, we have not fully explained how the ratio Rpen—crucial in

determining the frequency of probes for surplus memory—is calculated. In fact, Rpen can
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be computed in some different ways, each appropriate for different situations. We fully

discuss both of these issues in this section.

5.4.1 Estimating the static memory size

In the description of our algorithm for adapting to memory surplus, we have assumed that

the program has an accurate estimate of the size of its static memory, i.e., the memory not

associated with objects managed by our memory-malleability library. This information is

necessary for calculating the desired RSS and determining the portion of the observed RSS

that belongs to the managed objects. Unfortunately, this size may not be easily computed

or even available to the program if a large amount of the static memory is allocated within

linked, third party libraries. Moreover, for some programs the static memory may fluctuate

between different program phases, and even during a pass through the panels. A more

serious problem arises when the static memory is not accessed during a computation phase:

Under memory pressure, most operating systems will consider the static memory as least

recently used and slowly swap it out of DRAM. This can cause a false detection of memory

shortage, and the unmapping of as many panels as the size of the swapped static memory.

Our solution to this problem relies on a system call named mincore() under Unix-

like systems and VirtualQuery() under Windows. The call returns information about

which pages from a certain memory segment of a process are resident in core. Because our

adaptation algorithm has no knowledge of data that it does not manage (i.e., it only knows

about the panels), it uses mincore() to compute the “managed RSS”, mRSS, which is the

amount of data within all the panels that is actually in-core (resident). This is precisely

what is needed—from this we can calculate an accurate estimate of the static memory:

sRSS = RSS − mRSS, with RSS obtained from the system. With sRSS, we can now calculate

dRSS = Panels in * Panel size + sRSS. Furthermore, if we use lastRSS to track mRSS,

instead of RSS, we can use mRSS to determine if a detected “shortage” is real or simply

an artifact of fluctuations in sRSS. (We will likewise use peakRSS to track the most recent
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peak in mRSS, rather than RSS, and so on for any other variables that track a resident set

size value. We wish to isolate our algorithm from fluctuations in sRSS, because it does not

manage the static memory.)

There is a small but non-negligible overhead (see Figure 5.7) associated with checking

the residency of the pages of all mapped panels, so using the above technique every time

a panel is fetched is impractical. Instead, we adopt a more feasible but equally effective

strategy: We measure mRSS (and hence sRSS) at the beginning of each computation phase

involving the panels. As long as no memory shortage is detected, we use the calculated sRSS

during that phase. When shortage is detected, we recompute mRSS and sRSS to ensure that

a detected shortage is actual and not simply due to variation in sRSS. Since shortage is

not a frequent occurrence the overall mincore overhead is tiny, especially compared to the

slow down the code experiences under memory pressure. In practical terms, reading 128

MB from a 40 MB/s disk takes approximately 3.2 seconds, but it takes only 0.028 seconds

to check the residency of a 128 MB region. The overhead of checking the residency of the

pages a few times during a computation phase is not a concern.

5.4.2 Calculating Rpen

5.4.2.1 A low frequency probing approach

To prevent the adaptation algorithm from probing too aggressively for memory, we scale a

base delay (the time for a sweep through the panels) by the ratio Rpen, which approximates

the ratio of the penalty for unsuccessfully probing and the penalty for failing to utilize all

available memory. Ideally we would calculate this ratio as Rpen = maxRSS / (maxRSS - mRSS),

but because we have no way of knowing maxRSS we instead approximate it with peakRSS.

There is a potential problem here, because peakRSS may significantly underestimate the

actual value of maxRSS (and it becomes more likely to do so as we move further in time

from the last peak). For example, say that peakRSS = 5 panels, but a competing job that

was causing memory pressure on the node has recently exited. Our memory adaptive job
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Figure 5.7: Overhead as a function of size of the region upon which mincore() is called; the
overheads are small but non-negligible. The data pictured were collected on a Sun Enterprise 420R
running Solaris 7, and are similar to what is observed on other systems.

begins growing its memory usage, but when it reaches RSS = 5 panels, the denominator

in the ratio Rpen becomes zero and our calculated delay before probing goes to infinity.

This behavior is correct if peakRSS really does equal maxRSS, since then there is nothing

to gain from probing for more memory, as RSS is at its maximum. But because peakRSS

in general is not equal to maxRSS, we must introduce a mechanism to ensure that RSS does

not become forever fixed at the level of the last observed peak. The simplest solution is to

set a maximum Rpen max which the value of Rpen cannot exceed: that is, we calculate

Rpen = min(Rpen max,peakRSS/(peakRSS − RSS)). (5.1)

The value of Rpen max should be high enough to prevent overly aggressive probing, but not

so high as to cause an unreasonable delay in probing when RSS approaches peakRSS. We
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have found that once Rpen max becomes sufficiently large, performance becomes relatively

insensitive to further increases in its value. This is in part due to the ability of the buffer

cache to use available memory to help speed up access to panels that the memory adaptation

algorithm does not keep mapped. We have found Rpen max = 10 to work well in practice.

In Chapter 7 we present some experiments that examine the choice of Rpen max.

5.4.2.2 Probing with higher frequency

Although the strategy using Rpen max we have just described adjusts to memory availability

quite well when external memory load is not highly variable, it has the drawback of being

very slow to adjust to large jumps in memory availability: In general, at least Rpen max

sweeps will be required, which can be a very long time if a large amount of computation

occurs over a sweep. Although we have noted that the buffer cache helps mitigate this

problem, better responsiveness to the appearance of surplus memory is desirable because it

is better for the memory to be managed by our application-specific policy, rather than the

generic OS one. We can achieve better responsiveness by making some changes that reduce

the conservativeness of our scheme. The first (relatively minor) change is based on the obser-

vation that maxRSS (and hence peakRSS) usually overestimates the incursion penalty for an

unsuccessful probe. We have found that unsuccessful probes typically drop memory usage

a sizeable amount, but usually come nowhere near dropping RSS to zero unless it is already

at a very low level. To remedy this problem, we introduce another variable, troughRSS,

that tracks the most recent trough or dip in the RSS (or mRSS, more accurately) versus time

curve. troughRSS is set to zero at program initialization and is then maintained in the fol-

lowing manner: When a panel is fetched, we update troughRSS = min(troughRSS, mRSS).

Whenever memory shortage is detected, troughRSS is set to the current value of mRSS.

Figure 5.8 illustrates how troughRSS is maintained. Using troughRSS, we now calculate

Rpen = min(Rpen max, (peakRSS − troughRSS)/(peakRSS − mRSS))

The introduction of troughRSS to better approximate the incursion penalty enables
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Figure 5.8: An example of how troughRSS is determined. Shown is a cartoon curve (the same as
in Figure 5.5) depicting RSS versus time. Points where troughRSS is updated are marked with a
“t”. Also shown are the points where peakRSS is updated, marked by a “p”.

us to respond slightly faster to memory surplus, but in practice this change matters little

because we still face the problem of the denominator (peakRSS − RSS) going to zero. To

address this problem we employ the following reasoning:

peakRSS is likely a very good approximation to maxRSS immediately after the peak is hit,

but as we move further in time from the peak without detecting shortage, the probability

that peakRSS is significantly wrong increases. We cannot quantify how this probability

increases, but we can say that if RSS becomes close to or exceeds peakRSS and stays there

without causing shortage, then it is likely that peakRSS is no longer a good approximation

for maxRSS. This is because peakRSS is actually the most recent known point at which the

adaptation algorithm probed too high (recall that peakRSS is only updated immediately

after a detected shortage). When RSS can be maintained close to or above peakRSS, then,

this suggests that the amount of available memory has increased, because the last time RSS

hit peakRSS, shortage ensued. Since peakRSS is likely invalid, we replace it by the only other

upper bound for maxRSS that we we have: the value mRSS takes if all panels are mapped
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and resident, which we call MAXRSS. So, our heuristic does the following: Once RSS and

peakRSS become very close, we then reset peakRSS = MAXRSS and recalculate Rpen. (We

take “very close” to mean that the ratio of penalties evaluates to greater than Rpen max.)

When the next shortage is encountered, peakRSS will be reset to max since last surplus.

Note that, using this heuristic, if RSS is high (and hence close to MAXRSS), then probing will

still be quite conservative, but if RSS is small, then probing becomes more aggressive. This

makes intuitive sense.

We face a dilemma in choosing between the method for calculating Rpen we have just

described (which we denote method II, or “high frequency probing”) and the method shown

in equation 5.1 (method I, “low frequency probing”). High frequency probing is indeed

quicker to respond to memory surplus, but because it generally results in more frequent

probing, it will result in somewhat worse performance than low frequency probing when

running under long-lived, static memory pressure (and perhaps under other loads as well).

Because which method is most appropriate depends on the characteristics of a system and

the workload it experiences, we cannot categorically state that one method is superior

to another. We discuss the effects of the choice of methods for calculating Rpen in an

experimental context in Chapter 7.

We depict our complete algorithm for adapting to memory surplus using low frequency

probing in Figure 5.9. All of the details we have discussed in section 5.4 are included. The

complete algorithm using high frequency probing is shown in Figure 5.10.



CHAPTER 5. A DYNAMIC MEMORY ADAPTATION FRAMEWORK 75

Algorithm: Adapting to memory variability with low frequency probing

panel access count++
RSS = Get current RSS
if (panel access count modulo P == 0) then sRSS = gauge static size()
mRSS = RSS − sRSS
dRSS = ( Total size of all mapped panels ) + sRSS
max since last surplus = max(max since last surplus, mRSS)

// Make sure that any “shortage” is not due to variations in sRSS.
if ( mRSS < lastRSS )

sRSS = gauge static size()
mRSS = RSS − sRSS

// Check for memory shortage
if ( mRSS < lastRSS ) & ( Panels in > 1 )

diff = (lastRSS - mRSS) / Panel size
unmap diff panels, Panels in −= diff, dRSS −= diff * Panel size
peakRSS = max since last surplus

// Check for memory surplus
else if ( dRSS == RSS ) & ( Panels in < P )

base delay = Time to access the last P panels
Rpen = min(Rpen max,peakRSS/(peakRSS − mRSS)).
if ( Shortage has never occurred

OR Time since last shortage > base delay * Rpen )
Panels in++
dRSS += Panel size
max since last surplus = mRSS

RSS = Get current RSS
lastRSS = RSS − sRSS

Figure 5.9: The final, complete algorithm for detecting and adapting to memory short-
age or surplus, using low frequency probing. It is executed whenever a panel is requested.
max since last surplus is initialized to zero. The initial value of peakRSS is immaterial because
Rpen is not used until after the first shortage is detected, at which point peakRSS will be updated.
The gauge static size() function uses a system call such as mincore() to calculate the size of the
“managed RSS”, mRSS, and returns sRSS = RSS − mRSS. Because the overhead of gauge static size()
means that it cannot be called whenever mRSS is desired, mRSS is sometimes approximated in the
algorithm by calculating mRSS = RSS − sRSS using an older value of sRSS.



CHAPTER 5. A DYNAMIC MEMORY ADAPTATION FRAMEWORK 76

Algorithm: Adapting to memory variability with high frequency probing

panel access count++
RSS = Get current RSS
if (panel access count modulo P == 0) then sRSS = gauge static size()
mRSS = RSS − sRSS
dRSS = ( Total size of all mapped panels ) + sRSS
max since last surplus = max(max since last surplus, mRSS)
troughRSS = min(troughRSS, mRSS)

// Make sure that any “shortage” is not due to variations in sRSS.
if ( mRSS < lastRSS )

sRSS = gauge static size()
mRSS = RSS − sRSS

// Check for memory shortage
if ( mRSS < lastRSS ) & ( Panels in > 1 )

diff = (lastRSS - mRSS) / Panel size
unmap diff panels, Panels in −= diff, dRSS −= diff * Panel size
peakRSS = max since last surplus
troughRSS = mRSS

// Check for memory surplus
else if ( dRSS == RSS ) & ( Panels in < P )

base delay = Time to access the last P panels
Rpen = (peakRSS − troughRSS)/(peakRSS − mRSS)
if Rpen > Rpen max

peakRSS = MAXRSS
Rpen = min(Rpen max, (peakRSS − troughRSS)/(peakRSS − mRSS)).

if ( Shortage has never occurred
OR Time since last shortage > base delay * Rpen )
Panels in++
dRSS += Panel size
max since last surplus = mRSS

RSS = Get current RSS
lastRSS = RSS − sRSS

Figure 5.10: The final, complete algorithm for detecting and adapting to memory shortage or
surplus, using high frequency probing. It is executed whenever a panel is requested. The algorithm
is essentially identical to that shown in Figure 5.9, except for the following differences: 1) troughRSS
is used in addition to peakRSS to calculate Rpen, and 2) when the ratio used to calculate Rpen exceeds
Rpen max, peakRSS is set to MAXRSS, the value that mRSS would assume if all panels are fully resident.
max since last surplus is initialized to zero.



Chapter 6

Design of MMlib:

A memory-malleability library

Regardless of its other merits, if our memory-adaptation framework is to see use in ap-

plication codes, it must be simple to embed in an actual code. To facilitate use of our

memory-adaptation strategy, we have developed an object-based C-library, MMlib, that

hides bookkeeping and memory-adaptation decisions from the programmer. We present an

overview of the interface design and some of the technical details in this chapter.

6.1 The general framework supported by MMlib

The framework we have described in section 5.1, with repeated, exhaustive passes through

one object broken into P panels, is overly simplistic, but served for elucidating our adapta-

tion strategy. In reality, scientific (and other) applications are much more complex, often

working with many large memory objects at a time, with various access patterns for each

object, sometimes working with only portions of panels, sometimes working persistently

with only a few panels, etc. MMlib is designed around a more general framework that can

accommodate these applications; Figure 6.1 depicts this framework.
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Identify memory objects M1,M2, . . . ,Mk needed during this phase
for i = [ Iteration Space for all Objects ]

for j = [ all Objects needed for iteration i ]
for panelID = [ all panels in accessPattern(Mj , i) ]

panel ptr = mmlib get panel(Mj, panelID)
endfor

endfor
Work on required panels or subpanels
for j= [ all Objects needed for iteration i ]

for panelID = [ all panels in accessPattern(Mj , i) ]
if panel panelID was modified

Write Back(panelID)
if panel panelID not needed persistently

mmlib release panel(Mj, panelID)
endfor

endfor
endfor

Figure 6.1: Extended framework modeling the memory access needs of a wide variety of scientific
applications. Note that although write-backs are represented explicitly, in our implementation writes
are made to named memory-maps, and thus are handled transparently by the virtual memory system
unless the user wishes to force a write-back.

6.2 Data structures

A data set to be managed by MMlib is broken into a number of panels, for which a backing

store is created on disk. Access to panels occur through mmap() system calls executed by

MMlib. Each data set is associated with an MMS (“memory malleability struct”) object,

which contains all bookkeeping information required for memory-management of the data

set, and through which all access to the data set occurs. Because an application may require

multiple MMS objects associated with different data sets, and because global knowledge of

all managed objects is required to make memory-adaptation decisions, MMlib maintains

a global registry (type MMReg) of all MMS objects.
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6.3 Core interface and functionality

Though MMlib is a complicated piece of software consisting of thousands of lines of code,

the core of its interface and functionality can be described by the following few functions:

void mmlib initialize()

Initializes MMlib, creating the registry that will track all of the bookkeeping information.

MMS mmlib new mmstruct(int type, char *filename, int P, void *context)

Creates a new MMS object of a given type (such as MMLIB TYPE MATDENSE for a

dense two-dimensional array or MMLIB TYPE VECTORS for a one-dimensional array).

The filename specifies the name of the backing store, which must already exist. (To allow

maximum flexibility, the MMS constructor does not create the backing store itself. We do

provide functions to aid in its creation.) P is the number of panels into which the data set

associated with the MMS will be broken. The final, optional, argument allows the user to

provide a pointer to a user-defined context containing private data to be made available to

the function implementing the user-specified replacement policy.

void *mmlib get panel(MMS mms, int p)

This function is the basic building block of the library. It returns a pointer to the beginning

of panel p. Additionally, it transparently handles adaptation decisions, updating the prior-

ity queues used to make replacement decisions, checking for memory shortage or surplus,

updating the number of panels cached, and performing requisite cache evictions.

void mmlib release panel(MMS mms, int p)

A pointer returned by mmlib get panel() is guaranteed to remain valid until the panel is re-

leased by mmlib release panel(). This is necessary because some applications require certain

panels to persist throughout the mapping and unmapping of other panels. For example, if an

application must compute the interaction of a panel Xm with panels Xi, i = {1, ...,m − 1},
we must ensure that the call to mmlib get panel() does not unmap panel Xm when it fetches

one of the panels Xi. In this case, the panel Xi must remain “locked” during the compu-

tation to ensure its persistence, and afterwards can be released. Note that the release does
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not evict a panel from the cache; it merely unlocks it so that MMlib can do so if deemed

necessary.

void mmlib set update queue(void (*func) (MMReg, MMS, int))

The MMlib registry contains a global priority queue that orders the panels of all MMS

objects according to the panel-cache eviction policy. When a given amount of space

must be freed, the MMlib eviction function evicts panels according to their ordering in

the queue until enough space has been freed. The priority queue is updated each time

that mmlib get panel() is called, inserting the newly accessed panel in the proper place.

mmlib set update queue() allows the user to specify the function that should be called to

perform this update and maintain any other data structures that may be required to im-

plement the eviction policy, such as queues local to each MMS object. MMlib defaults to

Most Recently Used (MRU) replacement, as this is suited to the cyclic the access patterns

of many scientific applications.

We should note that to provide maximum flexibility, MMlib also provides an interface

for the user to specify the function that performs panel evictions. The preferred method for

specifying an eviction policy is to use mmlib set update queue() when possible, however.

6.4 Optimizations and additional functionality

6.4.1 Memory access at sub-panel granularity

Blocking data objects into a set of panels is central to achieving good performance from

MMlib. Fairly large panel sizes are preferred to keep overheads low. However, some

programs naturally employ a small granularity of memory access (for example, accessing

small vectors instead of a submatrix), and if an application does not already (or cannot)

use a blocked access pattern, then injecting memory adaptivity by the get panel() semantic

may be awkward.

More problematically, when get panel() is called directly by the user, MMlib has no
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way of knowing what portion of the panel will be accessed. It can only assume that all

of the panel will be touched, which means that the calculated desired resident set size

dRSS = Panels in * Panel size will be an overestimate if in fact only a portion of the

panel is used. Consequently, the program cannot probe for more memory even if all of the

pages that are actually in use are resident. This can also cause “shortage” to be detected

when in fact none exists!

For example, consider a program with Panels in = 5 and mRSS = 5 panels. When

the next panel is requested, assume there is no shortage detected, but we do not probe

for memory either. At the end of the adaptation algorithm, we set lastRSS = mRSS = 5.

Because we are not probing for more memory, if the requested panel is not already mapped,

we will have to evict a panel from the cache to make room. Assume that this is the case. We

evict a panel, bringing mRSS down to 4 panels, and then map the new panel. Say that only

25% of the new panel is needed. We touch that portion, and then call mmlib get panel()

to fetch the next panel. There is a problem now: Because we only touched 25% of the new

panel, RSS = 4.25, but lastRSS = 5. The adaptation algorithm will incorrectly conclude

that there is memory shortage. Figure 6.2 depicts an example of this problem in the ISING

application described in Chapter 7.

We solve these problems by introducing some higher-level MMlib functions that serve to

decouple the unit of memory access required by the user from the panel size used internally

by MMlib. The user still specifies the panel size, but does not have to access the data

via mmlib get panel() calls. Instead, they can define a smaller unit of data access via the

function

void *mmlib define unit(MMS mms, int num units, int N, int data type)

This function informs MMlib that the specified MMS object is to be broken into num units

logical units. Each unit will consist of N elements of type data type, where data type

is a defined constant such as MMLIB TYPE INT, MMLIB TYPE DOUBLE, or MM-

LIB TYPE OTHER. The logical units are accessed via the following functions:
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Figure 6.2: Benefits of using smaller memory transfer units: RSS vs. time is shown for two im-
plementations of the ISING code described in Chapter 7. The first (red lower), uses get panel calls
without fully using all of the panels, and thus erroneously detects memory shortage and reduces its
RSS to a minimum. The second implementation uses mmlib get unit() calls to access the data in
sub-panel sized units and avoids this problem.

void *mmlib get unit(MMS mms, int u)

void mmlib release unit(MMS mms, int u)

mmlib get unit() returns a pointer to unit u and places a lock on that unit (note that locks

from multiple gets of the same unit do stack). A pointer to a unit is guaranteed to remain

valid until all locks on the unit are released by calls to mmlib release unit().

Internally, mmlib get unit() calls mmlib get panel() when the panel in which u resides

is not currently mapped (cached), or when the number of accesses to that parent panel

exceeds a given threshold. The threshold criterion ensures that mmlib get panel() is called

periodically to allow memory adaptation decisions to be made even if all panels are mapped.

Without it, once all panels were mapped, memory shortage would never be detected because
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fetching any unit would not require an mmlib get panel() call.

The problems with dRSS and false shortages are solved by maintaining an MMlib reg-

istry variable pages in, which tracks the number of pages we are attempting to cache.

Whenever a unit is fetched via mmlib get unit(), pages in is incremented by the number

of pages in that unit; when a panel is evicted, pages in is decremented by the total number

of pages in all of the units in that panel that were accessed via mmlib get unit(). Maintain-

ing pages in in this manner enables accurate calculation of dRSS = pages in * page size

even though regions of mapped panels may remain untouched, so long as all of each re-

quested unit is touched. With an accurate value of dRSS, the problem of detecting false

shortages can also be eliminated. In the example described above, the algorithm will still

detect RSS < lastRSS. However, it will then calculate mRSS by checking the residency of

all pages in the mapped panels. Only if mRSS < dRSS will it conclude that the detected

“shortage” is real. Figure 6.2 illustrates the effectiveness of this strategy.

6.4.2 Eviction of “most-missing” panels

One of our design goals for MMlib is to preempt the page replacement policy of the virtual

memory system by holding the RSS of an application below the level at which the system

begins to swap out its pages. This is not always possible, however, and under high memory

pressure the virtual memory system can be quite antagonistic, paging out the data that

MMlib strives to keep resident. In this case, it may be beneficial to “concede defeat” and

limit our losses by evicting those panels that have had most of their pages swapped out,

rather than evicting according to the application-specific policy, say MRU. The rationale

is thus: if the system has evicted LRU pages, we will have to load those pages again when

we access the parent panels, regardless of whether we keep those panels mapped or not.

Therefore, it is preferable to evict those panels that have been mostly swapped out. The

information provided by the mincore() calls used to estimate the static memory size (see

section 5.4.1) can be used to implement such a “most-missing” eviction policy. This strategy
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is not at odds with the user-specified replacement policy, as it is not used for routine panel

replacements; it is only used to reduce the panel cache size when shortage is detected (and

antagonism with the VM system policy can occur). In fact, following the user-specified

policy and evicting MRU panels in this situation would make things worse: we would have

to load the LRU pages that have been paged out, as well as the MRU pages that were

resident until we evicted their panels.

We have implemented support for the most-missing eviction strategy in MMlib (a

user-set flag specifies whether or not this policy should be used). Some results indicate

that the strategy can have clear benefits. In the scenario shown in Figure 6.3, the job that

uses strict MRU eviction exhibits very slow performance initially after external memory

pressure begins, because it must load the pages evicted by the operating system as well as

the MRU panels that MMlib has evicted, which usually do not coincide with the panels

from which the system has taken pages. The job that employs the “most-missing” policy

adapts more nimbly to the sudden increase in memory pressure, because it does not make

the mistake of automatically throwing out many panels that have been untouched by the

VM system. Note that after the application adapts to the sudden decrease in available

memory, it automatically reverts from most-missing to MRU replacement when no further

shortage is detected.

Although the most-missing policy does show promise, we do not use it in the experiments

we report in Chapter 7. The chief reason is that we do not wish to further complicate the

behavior of MMlib in our experiments; it is difficult enough to analyze its behavior without

introducing this additional complexity.
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Figure 6.3: Benefits of evicting partially swapped out panels. The chart shows the times for
the first 10 sweeps of two versions of the memory-adaptive ISING code described in Chapter 7.
(Note that sweep 0 is an initialization sweep that runs more quickly than subsequent sweeps, which
perform Monte-Carlo steps.) In each case, the code runs with a 60 MB lattice on a Linux machine
with 128 MB of RAM. After 12 seconds, a dummy job that randomly writes to 60 MB of memory
begins. The memory-adaptive job that evicts panels with the largest number of missing pages,
labeled evict most missing, has lower and less variable times than the job employing strict MRU
replacement, labeled evict mru. For both cases, the number of panels P = 40 and low frequency
probing is used with Rpen max = 10.



Chapter 7

Experimental evaluation of

memory-adaptation

7.1 Application kernels

We have used MMlib to test our memory adaptation technique in three scientific application

kernels which together represent a range of scientific applications. All of these application

kernels exhibit memory access patterns for which MRU replacement is most appropriate,

putting them at odds with the LRU-like policy employed by the operating system. (See also

section 7.7, where we modify the CG code to use an LRU-friendly pattern.) In other respects,

however, the memory access patterns differ between the applications. In this section, we

describe these applications and their memory access characteristics.

7.1.1 Conjugate Gradient (CG)

The first application is a conjugate gradient (CG) linear system solver using the CG routine

provided in SPARSKIT [74]. The computational structure of CG is common among many

iterative methods, and these methods constitute the basic kernel in a wide range of scientific

applications. (This is why CG is one of the SPEC benchmarks.) Each iteration requires

calculation of one sparse matrix-vector product and a few inner products and vector updates.

The bulk of the memory demand comes from the sparse coefficient matrix, which we manage

with MMlib. CG also requires storage for four work vectors plus the solution and right-
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hand side vectors. In principal, these vectors can be managed with MMlib, and in fact

this might be necessary if large and very sparse matrices are used, in which case the vectors

make up a greater portion of the memory requirements. In our experiments, however, we

do not manage these vectors with MMlib (so they are “static” memory) as they occupy

far less memory than the matrices we use. Still, the size of the work vectors is significant,

as they represent around 13.5% of the storage requirements in our CG experiments using a

70 MB matrix.

Our test code, CG, does not construct a matrix, but loads from disk a pre-generated

sparse matrix in diagonal format. Figure 7.1 depicts the algorithm for matrix-vector mul-

tiplication of a sparse matrix in this format; this is the algorithm in which MMlib will be

used to enable memory adaptivity. The matrices used in our experiments are generated from

a three-dimensional, eighth order finite-difference discretization of the Laplacian operator

on the unit cube using a regular grid and Dirichlet boundary conditions. In the memory-

adaptive code, they are partitioned row-wise into panels of consecutive rows. Matrix-vector

multiplications sweep through each panel in typewriter fashion, left to right and top to

bottom. We note that, as far as MMlib is concerned, CG is a read-only application: writes

do not occur to the matrix managed by the library.

7.1.2 Modified Gram-Schmidt (MGS)

The second application is a code that progressively builds a set of orthonormal vectors. It

uses the modified Gram-Schmidt (MGS) procedure to orthogonalize the vectors, a very com-

mon kernel in scientific computing. An example of a very memory demanding application

for MGS comes from materials science, where large eigenvalue problems of dimension on

the order of one million must be solved for about 500–2000 eigenvectors [82]. For such prob-

lems, the storage and orthogonalization of the eigenvectors are the limiting computational

factors. MGS sees very common use in implementations of the GMRES algorithm [72],

which progressively builds a vector basis from which solutions are extracted. At each step,
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Algorithm: Diagonal format sparse matrix-vector multiplication

current = 1
for row = 1 to N do

y[row] = 0
for i = 1 to nonzeros per row do

col = row + offset[i]
if (0 < col < N) then

y[row] = y[row] + A[current] * x[col]
endif
current = current + 1

enddo
enddo

Figure 7.1: Matrix-vector multiplication algorithm for a sparse matrix of dimension N consisting
of a number of diagonals. x is the input vector and y is the output vector. The array A[] consists of
the elements from the first row, followed by the elements from the seconds row, and so on. Note that
all rows consume the same number of entries in A[], so some entries will not be used: for example,
the first row of the matrix does not contain any elements from diagonals below the main diagonal,
so some empty elements will be “stored” in A[]. The offset[] array stores the offset of each of the
diagonals with respect to the main diagonal.

an additional basis vector is generated, which must be orthonormalized against the other

basis vectors. If the vectors are very large (as required to solve PDEs on high resolution

meshes, for instance) or if many vectors must be retained to ensure convergence, then the

memory requirements for the MGS orthogonalization may make up the bulk of the memory

demand. Our test code, MGS, simulates the behavior of a GMRES-type solver (such as

Jacobi-Davidson), though it generates new vectors randomly rather than through a matrix-

vector multiplication, because our goal is to focus solely on the memory demands imposed

by the vectors. At each step, a new vector is generated, orthogonalized against previously

generated vectors, normalized, and then appended to them. The code allows a “restart

size” max basis size to be specified: that is, once the basis has grown to max basis size vec-

tors, it discards all but min basis size vectors from the basis and begins building a new set.

Restarting is commonly employed with GMRES and related solvers because as the basis

grows, memory and computational costs may become prohibitive. A remedy is to restart

the algorithm, retaining the current approximate solution vector and discarding the basis
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vectors. We note that MGS is the only one of our test codes whose memory requirements

vary considerably throughout its lifetime, as the basis grows or is discarded. Figure 7.2

depicts the algorithm executed by the MGS code.

Algorithm: MGS test code

for j=1 to min basis size do
vj = random(N)

enddo

for restart = 0 to num restarts do
for j = min basis size to max basis size do

w = random(N)
for i = 1 to j do // The MGS orthogonalization

h = w · vi

w = w − h · vi

enddo
vj+1 = w/‖w‖2

enddo
enddo

Figure 7.2: The algorithm executed by our MGS test code, which simulates the behavior of a
GMRES-type solver, generating random vectors of dimension N which are added to an orthonormal
basis via modified Gram-Schmidt. After the basis size grows to a set maximum, the basis is dis-
carded and the computation is “restarted”. To ensure that a minimum level of memory pressure is
maintained, one can specify a minimum basis size, below which the size of the basis never drops.

7.1.3 Monte-Carlo Ising model simulation (ISING)

Our third application is a Monte-Carlo simulation of the two-dimensional Ising model [33,

pp. 550–556], which is used to model magnetism in ferromagnetic materials, liquid-gas

transitions, and other similar physical processes. We chose the Ising model for several

reasons: Though remarkably simple, it captures many aspects of phase-transitions, and

after being introduced in 1928 it is still studied by physicists today. Computationally, it is

very similar to a great variety of lattice “spin” models used to study phenomena as diverse

as molecular-scale fluid flow and order-disorder transitions in binary alloys [33, pp. 589–593].

And because laboratory-scale systems consist of at least 1018 spins, people are interested in
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studying very large lattices, which puts memory at a premium.

The ISING code works with a two-dimensional lattice of atoms, each of which has a

spin of either up (1) or down (-1). It uses the Metropolis algorithm [33, pp. 566–568] to

generate a series of configurations that represent thermal equilibrium. The memory accesses

are based on a simple 5-stencil computation common to many other scientific applications.

Figure 7.3 presents a pseudocode summary of the operation of our ISING code. For each

iteration the code sweeps through the lattice and each lattice site is tested to determine

whether its spin should flip. If the flip will cause a negative potential energy change, ∆E,

the flip is automatically accepted. Otherwise, the spin flips with a probability equal to

exp −∆E
kT , where k is the Boltzmann constant and T is the ambient temperature. Note

that this means that the higher the temperature, the more spins are flipped (equivalent

to a “melting” of magnetization or evaporation of liquids). In computational terms, T

determines the frequency of writes to the lattice sites at every iteration. The memory-

adaptive version of the application partitions the lattice row-wise into panels to simplify

the panel access pattern, although other partitionings could also be easily implemented.

To calculate the energy change at panel boundaries, the code needs the last row of the

above neighboring panel and the first row of the below neighboring panel. Note that unlike

CG, which performs no writes to the panels, and MGS, which writes only when a vector is

added to the basis, ISING performs frequent writes when higher values of T are used. Also,

ISING is the only code that requires multiple panels to be active simultaneously, so that

interactions across panel boundaries can be computed.

We should note that the version of the ISING code we use here is written in a manner

that allows us to avoid the problems with sub-panel access size shown in Figure 6.2 of

the preceding chapter. This involves a bit of awkward bookkeeping to ensure that we do

not release panels before using all of them. The code can be written in a much more

natural manner (with very little impact on performance) using the MMlib functions for

fetching sub-panel sized units, but we choose to avoid that in our experiments here to avoid
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complicating our analysis of the performance of MMlib.

Algorithm: Metropolis Ising model sweep

for row = 1 to L do
for col = 1 to L do

up = spin[i-1, j]; down = spin[i+1, j]
left = spin[i, j-1]; right = spin[i, j+1]
∆E = 2 · spin[i, j] · (left + right + up + down)
if random() ≤ w[∆E + 8] then

spin[i, j] = -spin[i, j]
E = E + ∆E
M = M + 2 · spin[i,j]

endif
enddo

enddo

Figure 7.3: The algorithm for executing a Metropolis sweep through the LxL spin lattice of the Ising
model. Sites in the lattice possess either spin up (+1) or down (-1). Periodic boundary conditions
are used to calculate the spins (up, down, left, right) of the four nearest neighbors. The array
w[] is a lookup table of Boltzmann probability ratios; these ratios are dependent on the ambient
temperature in the simulation. The total energy E and the magnetization M are scalar quantities
that track some macroscopic observables of interest; they do not factor into the computations. Note
that for each lattice site, we always generate a random number to determine whether the spin should
flip. This could actually be avoided by automatically accepting a spin flip whenever ∆E < 0, but
by always generating the random number we ensure that the amount of computation is the same
at any temperature. This allows us to ensure that performance differences observed at different
temperatures are solely due to differences in frequency of writes to memory.

7.2 Experimental environments and methodology

The experimental results we present were obtained using two different Unix/Unix-like op-

erating systems, Linux 2.4 and Solaris 9, which both employ global, LRU-like page replace-

ment algorithms. Experiments under Linux were performed using Linux 2.4.22-xfs on a 1.2

GHz AMD Duron system with a 30GB, 5400 rpm IDE hard disk, 128 MB of RAM (some

of which is shared with the video subsystem), and a 128 KB L1 and a 64 KB L2 cache. The

Linux system ran the KDE graphical desktop environment during the experiments. Results

for Solaris were obtained using the typhoon nodes of the SciClone cluster at William &

Mary (see Figure 3.2). The typhoon nodes are Sun Ultra 5 machines with a 333 MHz Ul-
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traSparc IIi processor, with 256 MB of DRAM, 2MB of external cache, and a 9.1 GB, 7200

rpm EIDE internal hard disk. Access to the nodes occurs through a PBS batch system; no

memory is consumed by running a graphical user-interface. We note that, by current stan-

dards, the amount of memory in both our Linux and Solaris machines is small. However,

running some experiments on a Mac OS X 10.1 system with 768 MB of RAM using 500

MB memory-adaptive jobs yielded results qualitatively and quantitatively similar to those

obtained on our smaller Linux and Solaris systems, suggesting that the memory-adaptation

strategy scales well to larger memory sizes. The smaller available memories in the systems

we use here have the benefit of allowing us to perform experiments under high levels of

memory pressure in a reasonable time frame.

We induce memory pressure in our experiments in a variety of ways, but when we wish

to report statistics, we have mostly used our memlock code running on our Linux system (on

which we have the root access privileges required by the code). memlock uses the mlock()

system call to pin pages in-core, allowing us to precisely control the amount of memory

pressure experienced by an application. This level of control is important because when

memory resources are oversubscribed by multiple jobs, the behavior of the virtual memory

system can be highly chaotic and unpredictable. For example, Figure 7.4 shows results

from two runs of the same experiment on a Linux 2.4 system with 128 MB DRAM, in

which a memory-adaptive CG job runs with a 70 MB matrix against a dummy job that

allocates 70 MB and repeatedly accesses random pages. The dummy job starts first. In one

instance the dummy job keeps its entire working set and CG utilizes the remaining memory;

in the other, the system eventually gives CG enough memory to cache its entire working set.

Both runs were conducted under identical settings, but our CG code experiences completely

different levels of memory pressure in the two instances, although in both cases overall CPU

utilization remains high and memory-adaptive CG makes good progress. We have found no

way to predict or control which case CG experiences, and this makes compiling meaningful

performance statistics very difficult.
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Figure 7.4: Two different modes observed under the same experimental settings. Execution times
for each of the first 25 iterations of memory-adaptive CG show two possible modes of behavior: in
the first mode, the external load keeps its entire working set while CG utilizes the remaining memory.
In the second mode, the scenario is reversed. Resource utilization is high in either case.

Using memlock to precisely control the amount of memory available to an application

simplifies our statistical analysis, although even when we use memlock the variance in the

distribution of the times to complete an iteration or sweep through the panels is quite high.

As figure 7.5 illustrates, these distributions tend to have a significant right skew, with some

iterations taking a very long time to complete. Because of this skewness, when we wish

to report confidence intervals for the average time per iteration for a program under given

conditions, we run the program under those conditions for 50 iterations and measure the

time for each iteration; those 50 measurements comprise one sample. We repeat the run

of 50 iterations multiple times to obtain multiple samples, and then calculate the average

iteration time as the arithmetic mean of the arithmetic means of the samples. The sample

size of 50 is more than enough to ensure normality of the distribution of sample means,

allowing us to utilize the Central Limit Theorem and Student’s t-distribution to compute

95% confidence intervals.
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Figure 7.5: Relative frequencies of iteration times for memory-adaptive CG running on a Linux 2.4
machine with 128 MB RAM against a memlock job consuming 70 MB. The distribution displays
significant right-skewness, with iterations occasionally taking a very long time to complete.

7.3 Choosing the MMlib parameters

We have endeavored to keep MMlib as free as possible of parameters that must be tuned.

The only quantities that must be specified are the panel size and the quantity Rpen max

that limits the delay between detection of memory shortage and probing for more memory.

Additionally, one must choose between the two types of probing (low or high frequency)

discussed in section 5.4.2. In this section we discuss the selection of appropriate values

for these parameters and experimentally study the sensitivity of MMlib to the choice of

parameters. Under different workloads than those used in our experiments, the optimal

choice of parameters might differ. However, because our experiments reveal MMlib to

be fairly insensitive to the choice of parameters, we think that following the guidelines we
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present here will result in reasonable (i.e., not far from optimal) performance under a variety

of workloads.

7.3.1 Panel size

The choice of panel size involves a trade-off: If a data set is broken into a large number

of panels, MMlib can more exactly tune the level of memory usage, and can cope with

higher levels of memory pressure. On the other hand, using many panels results in higher

bookkeeping and I/O overheads. Figure 7.6 depicts the performance of memory-adaptive CG

against different levels of memory pressure, using different values of P , the number of panels

into which the 70 MB data set is broken. Figure 7.7 depicts a similar performance curve for

memory-adaptive ISING. Constant memory pressure is applied via our memlock code, which

runs as root and uses the mlock() system call to lock a portion of memory in-core, disabling

paging for that region. The performance curves for CG show that the choice of P = 20 (3.5

MB panels) provides the best performance. With P = 10, the overhead associated with

managing panels is small, but overall performance is worse because of inability to finely

adapt the level of memory usage. Also notice that at the highest level of memory pressure,

the P = 10 case is markedly worse because the panel size is too large to cope with such a

small amount of available memory. For P = 40, performance worsens because of increased

panel-management overheads.

The performance trends for ISING are similar, except that the P = 20 curves and

P = 40 curves are essentially identical except under the highest level of memory pressure,

where the larger panels of the P = 20 case become a bit too large to allow ISING to reduce

its memory usage to the optimal amount. We believe that the extra overhead required

to manage 40, rather than 20 panels, is not noticeable in ISING because the amount of

computation per sweep through the panels is relatively high: under no memory pressure,

ISING requires about 4.2 seconds for a sweep through the panels, compared to about 0.4

seconds for CG. Choosing too large a panel size (see the P = 10 case) still results in a
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performance hit because the coarseness of the panels limits the ability to tune memory

usage to the appropriate level.

The interaction of many factors, including characteristics of the machine, application,

and workload determines what panel size is best for a given situation, and it is impossible

to conclude that a certain panel size will always be best. As a rule of thumb, however, we

suggest using a value around P = 20 (i.e. a panel size that is 5% of the managed data set),

unless a need to adapt to very small levels of available memory necessitates more panels.

In practice we have found P = 20 to offer a good compromise between panel-management

overheads and tunability of memory usage. We note, however, a user need not agonize too

much over the choice of panel size. The goal of MMlib is to allow applications to perform

better under memory pressure than if they simply relied on the virtual memory system, and

as Figures 7.6b and 7.7b illustrate, with any reasonable panel size the performance with

MMlib is far superior.
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Figure 7.6: Effect of panel size on performance of MMlib-enabled CG. Chart (a) depicts perfor-
mance profiles for memory-adaptive CG for some different values of P , the number of panels into
which the data set (the coefficient matrix) is broken. CG runs with a 70 MB matrix against static
memory load provided by memlock on a Linux 2.4 machine with 128 MB of RAM. Chart (b) depicts
the same profiles, but includes the performance profile of in-core CG for comparison. Low frequency
probing with Rpen max = 10 is used.
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Figure 7.7: Effect of panel size on performance of MMlib-enabled ISING. Chart (a) depicts perfor-
mance of memory-adaptive ISING for some different values of P , the number of panels into which the
data set (the spin lattice) is broken. ISING runs with a 70 MB spin lattice against a static memory
load provided by memlock on a Linux 2.4 machine with 128 MB of RAM. Chart (b) depicts the
same profiles, but includes the performance profile of in-core ISING for comparison. The ambient
temperature in the simulation is T = 2. Low frequency probing with Rpen max = 10 is used.

7.3.2 Rpen max

In section 5.4.2 we explained that we must cap the maximum value that Rpen, the ratio

used in determining the probing delay, can assume; otherwise MMlib may fail to ever probe

for more memory after detecting a shortage. Here we discuss the choice of Rpen max and

MMlib’s sensitivity to its value.

Rpen max in essence specifies the largest amount of time that we are willing to wait to

probe for more memory after a shortage has been detected: if the condition RSS = dRSS

is satisfied, we will wait at most Rpen max sweeps through the MMlib-managed data set

before probing. Rpen max should be large enough to prevent significant performance loss

due to probing too aggressively for memory, but should not be so large as to waste surplus

memory by neglecting to try to use it. The challenge is to intelligently pick a value that

balances these requirements.

Fortunately, we have found in practice that under static loads MMlib becomes insen-

sitive to the value of Rpen max once it becomes sufficiently large, which happens at fairly
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low values. Figure 7.8a depicts performance of memory-adaptive CG versus static memory

pressure, with different curves corresponding to different values of Rpen max. Performance is

clearly inferior for values of Rpen max below ten, but once Rpen max = 10, little performance

is gained by increasing its value: the performance curve for Rpen max = 100 is nearly iden-

tical, with its 95% confidence intervals overlapping with those of the Rpen max = 10 curve.

Figure 7.8b depicts curves similar to those in Figure 7.8a, but for memory-adaptive ISING.

ISING is much less sensitive to the value of Rpen max than is CG, perhaps because of the

greater amount of work per panel that it performs. It is clear that a value of Rpen max = 10

is sufficient for both codes; in the experiments we report here, we use a value of 10 unless

otherwise specified.

Although we have discussed selection of an appropriate value for Rpen max, we have

not yet said anything about the choice between the two types of probing (viz., methods

of calculating Rpen) described in section 5.4.2. Our assertion that the value of Rpen max

should be between 5 and 10 is valid in either case; though Figure 7.8 depicts results using

low frequency probing, the curves are nearly identical if high frequency probing is used.

7.3.3 Choice of probing type

The figures we have presented so far depict performance obtained using low frequency

probing (Rpen calculated by method I described in section 5.4.2). Here we present some

results that compare the two types of probing under some different circumstances.

7.3.3.1 Static memory pressure

Under static memory pressure, we have seen that probing too frequently for surplus mem-

ory can incur significant performance penalties. Thus, one would expect high frequency

probing to yield worse performance than low frequency probing under static memory loads.

Figure 7.9 compares performance between both types of probing on a system subjected to

memory pressure from memlock. Figure 7.9a demonstrates that our expectation is justi-
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Figure 7.8: Effects of Rpen max on MMlib performance. The charts depict performance profiles
for a memory-adaptive job running with different values of Rpen max against static memory pressure
from memlock on a Linux 2.4 system with 128 MB of RAM. The job in the top chart (a) is CG; in
the bottom chart (b) the job is ISING. Error bars represent 95% confidence intervals. In all cases,
P = 20 and low frequency probing is used. T = 2 in the Ising model simulation.
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fied for memory-adaptive CG: The performance curves for the different probing types are

qualitatively very similar, but the average time per iteration is consistently higher for high

frequency probing. Somewhat surprisingly, however, when we compare the performance

of the two types of probing in memory adaptive ISING (Figure 7.9b), we can discern no

difference between the two methods. We suspect that the disparity between what we see

for CG and ISING is due to two key differences between the codes: First, ISING does sig-

nificantly more work per panel than CG. Second, CG has a significant amount of “static”

memory that is not managed by MMlib, while ISING does not. More frequent probing

may have a bigger effect on CG because it causes the static memory to be paged out by the

operating system; eviction (and subsequent reloading) of the static memory is less efficient

than that of memory handled by MMlib. Therefore, it seems safer in general to conclude

that under constant, long-lived memory pressure, low frequency probing should be used, as

high frequency probing offers no performance gains and sometimes (we believe most of the

time) results in worse performance. Either method, however, offers far better performance

than that obtained using conventional in-core codes.

7.3.3.2 Highly variable memory pressure

High frequency probing was proposed with highly variable memory loads in mind, and here

we compare the two probing types under such loads. Table 7.1 presents some experimental

results comparing the two in memory-adaptive CG on our Linux 2.4 system. Variable memory

pressure is created using our steplock code, which works like memlock but can increase and

decrease the amount of locked memory in discrete steps. We run CG against a steplock job

that cycles ten times through a sequence in which it locks m1 MB of RAM for t1 seconds,

then locks m2 MB for t2 seconds. We choose the m and t values to create short periods

of intense memory usage, followed by longer periods of less intense usage. This is the

type of load that low frequency probing should have trouble adjusting to: after dropping

its memory usage during intense memory pressure, several iterations may be required to
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Figure 7.9: Comparison of performance using the two methods of calculating Rpen. Memory-
adaptive jobs run on a Linux 2.4 system with 128 MB RAM against static memory pressure from
memlock. Rpen max = 10 and P = 20 in all cases. Chart (a) depicts performance of memory adaptive
CG, while chart (b) depicts performance of ISING running with T = 2. Error bars represent 95%
confidence intervals. Low-frequency probing is clearly superior for CG, but the two types of probing
are indistinguishable for ISING.
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increase its number of cached panels to take full advantage of the memory available during

a period of lesser memory pressure.

Somewhat surprisingly, Table 7.1 shows that low frequency probing delivers equivalent

or better performance than high frequency probing in our experiments. As Figure 7.10

illustrates, high frequency probing does tend to take better advantage of jumps in memory

availability, but it also pushes memory usage too high, prompting much more page reclama-

tion by the operating system and negating any performance benefits gained by the higher

memory utilization. With low frequency probing, CG spends less time fighting with the sys-

tem for memory, and the lower memory utilization makes little performance difference in

practice because the buffer cache speeds up panel “misses” by caching some of those panels

that MMlib does not keep mapped.

While we hesitate to categorically state that high frequency probing should never be

used, it has become clear to us that with the systems and workloads used in our experiments,

low frequency probing is preferable, as it seems to provide performance equal to or better

than that of high frequency probing. In some other situations, the quick response to memory

availability that high frequency probing offers might be beneficial. For example, under older

versions of Solaris (unpatched pre-2.7 versions), the file cache could interfere with running

applications and cause them to thrash; to prevent such problems, file caching might be

disabled on some file systems. If panels reside on a disk without file caching, then quick

adjustment to memory surplus becomes considerably more important. This is an unusual

case, however, and we recommend that low frequency probing be used in most cases.

7.4 Graceful degradation of performance

Our goal is to allow applications to degrade their performance gracefully as memory re-

sources become scarce. Figure 7.11 depicts the performance degradation of each of our

three applications under increasing levels of memory pressure. We show one graph per

application; each showing the performance of three versions of that application under dif-
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Type m1 t1 m2 t2 Avg. its 95% low 95% high stddev
high 70 5 0 5 19.7 17.4 22.0 3.3
low 70 5 0 5 20.2 17.0 23.4 4.4
high 70 5 30 25 59.3 55.7 62.9 5.1
low 70 5 30 25 74.1 72.0 76.2 2.9
high 70 5 50 25 46.0 39.4 52.6 9.4
low 70 5 50 25 60.6 58.1 63.1 3.5

Table 7.1: Comparison of the two types of probing under highly variable memory pressure.
Memory-adaptive CG runs against a steplock job that locks m1 MB of RAM for t1 seconds, and
then locks m2 MB of RAM for t2 seconds, repeating the cycle a total of ten times. CG runs with a 70
MB matrix on a Linux 2.4 system with 128 MB RAM; P = 20 and Rpen max = 10. We report the
average number of iterations that CG is able to complete during the time that steplock runs, as well
as the upper and lower 95% confidence intervals for that average, and the standard deviation. In the
“type” column, “high” denotes high frequency probing, and “low” denotes low frequency probing.
Low frequency probing equals or out-performs high frequency probing in all cases.

ferent levels of constant memory pressure applied via memlock. For each application we test

a conventional in-core version (blue top curve), a memory-adaptive version using MMlib

with low frequency probing (red lower curve), and an ideal version of the memory-adaptive

code that fixes the number of panels cached at an optimal value provided by an oracle. For

all three applications, the memory-adaptive version performs significantly and consistently

better than the in-core implementation. Additionally, the performance of the adaptive code

is very close to the best-case performance, even though the adaptive code has no foreknowl-

edge of memory availability.

7.4.1 Effects of panel write-frequency

One might question whether MMlib becomes ineffectual when applications write to the

panels frequently, as many dirty pages must be flushed to disk before a panel can be un-

mapped. In the case of CG the panels are never updated and thus never need their contents

flushed. MGS does write to panels, but infrequently, doing so only when an orthonormal-

ized vector is added to the basis. ISING, however, updates the panels with each sweep

through them, and it does so frequently if the ambient temperature T of the simulation

is high. To determine if frequent writes to the panels negatively affect performance, we
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Figure 7.10: RSS versus time for the two types of probing in memory adaptive CG under highly
variable memory load. The plot depicts behavior from the (m1, t1, m2, t2) = (70, 5, 30, 25) case from
Table 7.1. Although high frequency probing is able to utilize higher amounts of memory, it also
prompts more page reclamation by the operating system.

tested MMlib-enabled ISING under constant memory pressure for different values of T .

Figure 7.12 displays performance curves generated under static memory pressure on Linux

2.4 for temperatures T = 0, T = 2, and T = 50. At T = 0, the simulation quickly reaches

equilibrium after a few sweeps through the matrix, and afterwards never flips any spins. At

the other extreme, T = 50, the lattice is in a highly disordered state, with an average of

97.0% of the spins flipping during one sweep through the panels. At T = 2, a more modest

16.2% of spins are flipped during a sweep through the panels. The ISING code performs

the same amount of CPU work for each sweep, regardless of the simulation temperature.

However, we see that as memory pressure increases, ISING at T = 0 performs much better

than in the T = 2 or T = 50 cases. This confirms that, not surprisingly, frequent writes
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Figure 7.11: Performance under constant memory pressure. The charts show the average time
per iteration of a memory-adaptive job running against static memory pressure from memlock on
a Linux 2.4 node with 128 MB RAM. Low frequency probing with Rpen = 10 is used in all cases.
The top chart shows the average time per iteration of CG with a 70 MB matrix (P = 20), which
requires a total of 81 MB of RAM including memory for the work vectors. The middle chart shows
the time to generate and orthogonalize via modified Gram-Schmidt the last 10 vectors of a 30 vector
set. Approximately 80 MB are required to store all 30 vectors, which are stored one vector to a
panel (P = 30). The bottom chart shows the time required for an Ising code running at T = 2 to
sweep through a 70 MB lattice (P = 20).
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to the panels do increase execution times, as there is no avoiding flushing dirty pages to

disk when panels are unmapped. Note, however, that even for extremely frequent writes,

graceful performance degradation is observed.

One may notice that despite the much higher frequency of writes in the T = 50 case,

the observed performance is essentially the same as in the T = 2 case. This makes sense

because although only around 16% of the flips are accepted in the T = 2 case, those flips

are distributed widely throughout the spin lattice. Because one page can contain over a

thousand spins, it is likely that with 16% acceptance, almost every page will be updated

and therefore must be flushed to disk. To the memory subsystem, there is essentially no

difference between 16% and 97% acceptance.

The impact of frequent writes on performance explains, at least partially, why in Figure

7.11, MMlib seems to confer less benefit to ISING than to CG or MGS in the sense that lower

speedups over the in-core version are observed. The MMlib-enabled CG and MGS spend very

little time writing to disk, which gives them an advantage over the in-core versions which

must write to the swap device. Memory-adaptive ISING on the other hand, running at

T = 2, must devote considerable time to such writes, so it loses some of its advantage

over the in-core code. (We could make memory-adaptive ISING show better performance

in Figure 7.11 by running at T = 0, but this temperature is of no scientific interest, so we

use T = 2, a temperature that physicists might actually wish to simulate.)

7.5 Quick response to transient memory pressure

Our goal is for MMlib-enabled applications to not only exhibit graceful performance degra-

dation under memory pressure, but to also respond quickly to changes in memory availabil-

ity. Figure 7.13 illustrates the quick response of our memory-adaptive ISING code (using low

frequency probing) to transient memory pressure. Depicted is the resident set size versus

time for ISING running with a 150 MB lattice on a Solaris 9 system with 256 MB of RAM.

After running for 120 seconds, a dummy job that randomly writes to a 100 MB region of
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Figure 7.12: Effects of write frequency on MMlib performance in ISING. ISING runs with a 70
MB spin lattice against static memory pressure applied via memlock on a Linux 2.4 system with
128 MB RAM. P = 20, Rpen max = 10, and low frequency probing is used. Performance curves are
shown for temperatures T = 0, T = 2, and T = 50, which correspond to acceptance probabilities of
0, 16.2, and 97.0 percent. Error bars represent 95% confidence intervals. Performance is markedly
better in the T = 0 case because no time is spent flushing panels to disk.

memory begins and runs for 30 seconds. As soon as the dummy job introduces memory

pressure, MMlib responds by quickly dropping the ISING memory usage to a safe level;

such quick response is crucial to avoid thrashing the system. Soon after the dummy job

exits, MMlib begins to adjust the memory usage back upwards, decreasing the frequency

of probes for memory as more memory is obtained. Although it takes considerable time to

finally reach the full memory usage, RSS does grow significantly soon after memory pressure

disappears. We note that in practical terms the long time to reach full memory usage has

little effect, as the buffer cache of the system caches many of the panels that MMlib does

not—hence the fast iteration times observed before full memory utilization is resumed.
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Figure 7.13: Quick response by MMlib to transient memory pressure. Memory-adaptive ISING
runs at T = 2 with a 150 MB lattice on a Solaris 9 system with 256 MB of RAM. After 12 seconds, a
dummy job that randomly writes to a 100 MB region of RAM begins and runs for 30 seconds. MMlib

quickly drops memory usage when the dummy job begins, and then increases memory usage in a
controlled manner after the job exits. P = 40, Rpen max = 10 with low frequency probing. Circles
denote the beginning of a lattice sweep. (One might notice that the second sweep completes very
quickly: only a simple calculation of the initial energy of the spin system is computed during that
sweep.)

7.6 Adaptive versus adaptive jobs

For our memory adaptation technique to be actually useful, multiple instances of jobs em-

ploying it must be able to coexist on a machine without causing thrashing on, monopolizing,

or otherwise disrupting the system. Our research has shown that memory-adaptive jobs run

harmoniously with each other, reaching a dynamic equilibrium where system memory uti-

lization is high and good CPU throughput is sustained.

Figure 7.14 depicts the resident set size (RSS) over time for various configurations of

two memory-adaptive ISING jobs running simultaneously on a Solaris 9 machine with 256
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MB of RAM. We show results from three configurations, all of which have a total memory

requirement of 300 MB: a 150 MB versus a 150 MB job, a 200 MB versus a 100 MB job,

and a 100 MB versus a 200 MB job. In each case, the second job begins 100 seconds after

the first job has started, in order to allow the first job time to touch all of its panels first.

In all cases, the competing jobs quickly reach a sort of dynamic equilibrium in which the

total memory usage of the two jobs stays in the region of 150–200 MB. As one job probes for

more memory, the other job drops its memory usage by a roughly corresponding amount.

In all cases, CPU utilization is high (80% or better is typical) and most of the available

memory is used: although there are 256 MB available on a node, the parameter settings for

the Solaris 9 operating system are somewhat conservative and limit the total amount of file

cache memory to about 200 MB. Because any named memory mapped regions occupy space

in the file cache, when the total utilization of our two jobs is at 200 MB, they are using all

memory available to them on the system. (Note that our experiments on the Solaris nodes

also indicate that they will only allow about 205 MB of anonymous memory to be utilized

by user-level processes.)

The results in Figure 7.14 were obtained using low frequency probing. We have also run

the adaptive-versus-adaptive experiments using high frequency probing, to see if they cor-

roborate our results from section 7.3.3. Memory pressure arising from competing memory-

adaptive jobs is very different from pressure created by our dummy jobs or by conventional,

in-core codes, and it seems worthwhile to investigate the effects of the more aggressive

probing type in this situation. Figure 7.15 depicts RSS versus time using high frequency

probing for the three test configurations used in Figure 7.14. Comparing the figures for

the two probing types, one can see that the more aggressive probing in the high frequency

case results in much more frequent fluctuations in the RSS of the jobs, as expected. In all

cases, using high frequency probing results in somewhat higher overall memory utilization

on the node. This is most noticeable in the 100 MB versus 200 MB case, where using high

frequency probing results in the second, 200 MB job receiving a fairer share of memory
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compared to the low frequency case. However, the higher memory usage when using high

frequency probing seems to be offset by the increased give-and-take between the competing

jobs: In the 100 versus 200 MB experiments, while the 100 MB job runs, the 200 MB job

averages 131.79 seconds per sweep (standard deviation 10.78 seconds) with low frequency

probing, compared to 134.53 seconds per sweep (standard deviation 10.63 seconds) using

high frequency probing. This is despite the fact that the 200 MB job consistently gets 20–30

MB more memory in the high frequency case. In the 200 versus 100 MB experiments, for

both types of probing the 200 MB job completes 99 iterations before the 100 MB job ends.

Looking at the time that this occurs shows that clearly the high frequency jobs fare worse.

Similarly, in the 150 MB versus 150 MB experiments, the jobs employing low frequency

probing finish roughly 2500 seconds before the high frequency jobs, even though all of the

jobs run for 240 iterations. Clearly, in our adaptive-versus-adaptive experiments, low fre-

quency probing results in better performance, just as in the experiments in section 7.3.3.

High frequency probing does provide much quicker response to memory surplus, but this is

offset by the increased give-and-take between the competing jobs.

7.7 Performance with LRU-friendly access patterns

All three of the applications we have tested employ memory access patterns for which

MRU-replacement is most appropriate, and are therefore at extreme odds with the LRU-

like algorithms employed by the operating systems. The results we have presented so far

show that the MMlib-enabled codes yield superior performance compared to conventional

in-core versions that rely on the virtual memory system to handle memory pressure. The

question remains, however, whether these performance gains are due solely to MMlib

enabling MRU replacement to be used, or are attributable to other characteristics of the

adaptation strategy, such as avoidance of writes to the swap device or pre-fetching of panels.

To answer this question, we have developed a version of the CG code that utilizes an

LRU-friendly access pattern. Normally, CG performs matrix-vector multiplications starting



CHAPTER 7. EXPERIMENTAL EVALUATION OF MEMORY-ADAPTATION 111

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0  5000  10000  15000  20000  25000

R
es

id
en

t s
et

 s
iz

e 
(K

B
)

Time elapsed (seconds)

ISING-MEM: 150 MB versus 150 MB

First job
Second job

(a) 150 MB vs. 150 MB, Rpen type I

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0  2000  4000  6000  8000  10000  12000  14000
R

es
id

en
t s

et
 s

iz
e 

(K
B

)
Time elapsed (seconds)

ISING-MEM: 200 MB versus 100 MB

200 MB
100 MB

(b) 200 MB vs. 100 MB, Rpen type I

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0  2000  4000  6000  8000  10000  12000  14000

R
es

id
en

t s
et

 s
iz

e 
(K

B
)

Time elapsed (seconds)

ISING-MEM: 100 MB versus 200 MB

100 MB
200 MB

(c) 100 MB vs. 200 MB, Rpen type I

Figure 7.14: Profiles of RSS vs. time for two instances of memory adaptive ISING jobs running
simultaneously, using low frequency probing. In each experiment, the second job starts 100 seconds
after the first job. Chart (a) depicts the 150 MB vs. 150 MB case, chart (b) 200MB vs. 100MB, and
chart (c) 100 MB vs. 200 MB. Circles denote the beginning of lattice sweeps: horizontal distance
between consecutive circles along a curve indicate the time required to complete the sweep. In all
cases, the simulated temperature is T = 2, P = 20, and Rpen max = 10.
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Figure 7.15: Profiles of RSS vs. time for two instances of memory adaptive ISING jobs running
simultaneously, using high frequency probing. The charts depict the same experimental cases as
shown in Figure 7.14, but using high frequency probing instead of low frequency probing. Chart
(a) depicts the 150 MB vs. 150 MB case, chart (b) 200MB vs. 100MB, and chart (c) 100 MB vs.
200 MB. Circles denote the beginning of lattice sweeps: horizontal distance between consecutive
circles along a curve indicate the time required to complete the sweep. In all cases, the simulated
temperature is T = 2, P = 20, and Rpen max = 10.
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with the first row of the matrix and proceeding down the rows until the last row is processed.

That is, at each CG iteration, a sweep from the top to the bottom of the matrix (and, for

the memory-adaptive case, from the first to the last panel) is performed. We can make CG

LRU-friendly, however, by employing an alternating access pattern: during one iteration,

sweep through the matrix from top to bottom, and then during the next iteration, sweep

from bottom to top. In our LRU-friendly implementations, CG-LRU, the conventional in-

core code performs the backsweeps row by row, while the MMlib-enabled version sweeps

backwards through its set of panels, but processes the rows of each panel in the usual top to

bottom fashion. In this manner the MMlib version utilizes an LRU-friendly access pattern

while still taking advantage of the pre-fetching that the large units (panels) of data access

enable.

Figure 7.16 compares the in-core and MMlib-enabled versions of CG-LRU with the in-

core CG that uses the conventional, MRU-friendly access pattern. The MMlib-enabled

CG-LRU performs well (as expected) under memory pressure. But somewhat surprisingly,

the in-core CG-LRU performs only marginally better than conventional in-core CG, despite the

improved access pattern used by CG-LRU. Because the activity that occurs during thrashing

can be quite complicated, it is difficult to say why CG-LRU fails to exhibit significant perfor-

mance improvements. Of course, in-core CG-LRU does not avoid VM-system overheads and

write-backs to the swap device, and it cannot take advantage of pre-fetching from backing

store like MMlib-enabled codes can, but it seems unlikely that these factors account en-

tirely for the poor performance we see. It may be that CG-LRU loses significant time due

to the work vectors being paged out: While CG-LRU uses an LRU-friendly pattern to access

the matrix, this modification does not extend to the work vectors. The MMlib-enabled

CG codes can protect the work vectors from page reclamation by controlling the number of

panels cached, while the in-core CG-LRU cannot.

To further isolate the effects of using optimal replacement from the other improvements

that MMlib affords, we conducted experiments with memory-adaptive CG in which we used
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Figure 7.16: Performance of in-core and memory adaptive versions of CG-LRU, which uses an LRU-
friendly access pattern. Jobs run under static memory pressure provided by memlock on a Linux 2.4
system with 128 MB of RAM. The performance profile for in-core, MRU-friendly CG is also depicted
for comparison. P = 20 and low frequency probing is used with Rpen max = 10. Error bars represent
95% confidence intervals.

the normal, MRU-appropriate access pattern, but we instructed MMlib to use LRU re-

placement. This ensures that under any significant memory pressure, all mmlib get panel()

calls will result in a panel miss, so any benefits conferred by MMlib will not be due to

the replacement strategy. Figure 7.17 compares the CG code using the wrong replacement

policy (CG-LRU-WRONG) with the CG correctly employing MRU. The version using LRU re-

placement performs significantly worse, requiring roughly twice the amount of time required

by the MRU version to perform one iteration. However, when compared to the performance

of in-core CG under memory pressure, the CG-LRU-WRONG code still performs iterations in

roughly half the time of in-core CG at lower levels of memory pressure, and at higher levels

performs even better.



CHAPTER 7. EXPERIMENTAL EVALUATION OF MEMORY-ADAPTATION 115

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10  20  30  40  50  60  70  80

A
ve

ra
ge

 ti
m

e 
fo

r 
C

G
 it

er
at

io
n 

(s
ec

)

Size of locked region (MB)

Performance of MMLIB-CG using wrong access pattern

MMLIB-CG-LRU-wrong
MMLIB-CG-MRU-correct

CG-incore

Figure 7.17: Performance of memory-adaptive CG versus memory pressure when using the wrong
panel replacement policy. The appropriate replacement policy is MRU, but LRU is used instead;
any observed performance gains are not due to the ability of MMlib to allow application-specific
replacement. Jobs run under static memory pressure provided by memlock on a Linux 2.4 system
with 128 MB of RAM. P = 20, and low frequency probing is used with Rpen max = 10.

All of the experiments with LRU replacement demonstrate that the value of MMlib

does not lie solely in its ability to allow use of application-specific replacement policies. The

larger granularity of memory access and preemption of the virtual memory system and its

associated overheads and possible antagonism also play a vital role.



Chapter 8

Conclusions and future work

We contend that in order to effectively utilize modern, shared computing environments,

applications should monitor and adapt to changing system conditions. This research has

pursued two distinct but complementary mechanisms to enable some classes of scientific

applications to adapt to variations in CPU and memory availability.

8.1 Flexible-phase load balancing

The first mechanism we studied is a strategy for dynamic load balancing of a class of itera-

tive algorithms that possess what we term a flexible phase, during which the amount of local

work completed can vary without detriment to the end result. The technique can dynami-

cally correct load imbalance from both internal and external sources and requires minimal

overhead. Although limited to a narrow class of algorithms, this class includes some popular

numerical algorithms that form the computational kernels of many scientific applications.

We have experimentally demonstrated the utility of our method in two Krylov-like methods:

a multi-grain formulation of a block Jacobi-Davidson eigensolver and an FGMRES linear

solver employing additive-Schwarz preconditioning. Our method has proven able to cope

with severe load imbalance in the Jacobi-Davidson eigensolver, and it makes practical the

full-multigrain parallel formulation that can hide network latencies but may accentuate load

imbalance. In the additive-Schwarz preconditioned FGMRES solver, performance gains are

significant but more modest due to some intrinsic properties of the numerical method. We

116
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also note that the method can smooth load imbalances due to differences in conditioning of

the subdomains, which cannot be fixed by repartitioning.

Our load balancing strategy is able to rectify large load imbalances in the multi-grain,

block eigensolver we tested, but is more limited in the domain-decomposition linear system

solver. In future work, it may be worthwhile to see if we can achieve better results with a

linear solver by working with a multi-grain block Krylov-type solver, such as block FGM-

RES. Additionally, our strategy may show better performance in a domain-decomposition

context involving coarser subproblems, such as an inexact Newton method employing non-

linear additive Schwarz preconditioning [17, 16]. In such a method, a nonlinear problem

is solved on each subdomain, involving much more computation than the simple, linear

subdomain solves of the additive-Schwarz preconditioner for FGMRES.

8.2 A dynamic memory-adaptation framework

The second idea we have explored is a general framework that allows scientific and other

data-intensive applications to dynamically adapt their memory requirements, facilitating

graceful degradation of performance as memory pressure arises. It does so with minimal

reliance on operating system provided information, and can be embedded in many scientific

kernels with little coding effort using the supporting library, MMlib, we have developed.

The key technical hurdle in realizing our framework is the lack of information about memory

availability provided by operating systems. We have developed a relatively simple algorithm

that judges memory availability effectively using a single metric, the resident set size of

the application. The memory-adaptation framework is especially suited to non-centrally

administered, open systems, and supports the following functionality:

• management of multiple memory objects with multiple active panels at the same time

• memory objects that can be modified or vary in size

• access to memory objects at user-defined granularities
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• automatic estimation of the size of memory not managed within the framework

• user-defined panel replacement policies, which can optionally be coordinated with the

system policy through a “most-missing” alternative.

We have used our MMlib library to embed memory adaptivity into three scientific ap-

plications: a conjugate gradient linear system solver, a modified Gram-Schmidt orthogonal-

ization routine, and a Monte-Carlo Ising model simulation. These applications or kernels,

though simple, are representative of elements of a wide range of scientific and engineer-

ing codes. Experimental evaluation of the applications in Linux and Solaris environments

demonstrates that the memory-adaptation framework yields considerable performance ad-

vantages over reliance on the virtual memory system to handle memory pressure. These

advantages stem not only from enabling the use of application-specific replacement policies,

but from avoidance of virtual memory system overheads and antagonism. Importantly, mul-

tiple jobs employing the memory-adaptation framework can coexist on a system without

thrashing, monopolizing, or otherwise disrupting the system.

We believe that our results have demonstrated the utility of our memory-adaptation

framework, but many topics remain for future work. We have briefly investigated the use

of a “most-missing” replacement policy that is coordinated with the page reclamation of

the operating system. Our results using this policy to evict panels that have been mostly

evicted by the operating system show promise, but there are some questions that must

be answered: We suspect that we should always circumvent the application specific policy

during memory shortage, but we must verify that this is the case or whether it is sometimes

appropriate to strike a balance between the two policies. If a balance should be struck, we

must determine the thresholds that dictate when the MRU policy should be followed for a

page that is targeted by the most-missing policy.

We have designed MMlib to require as little operating system provided information as

possible, in part to facilitate portability. We have tested MMlib extensively under Linux

2.4 and Solaris 9, and to a lesser extent under Linux 2.2 and Solaris 7 and 8. We have also
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tested it cursorily under MacOS X 10.1. It is important to evaluate MMlib under other

operating systems, whose memory-management strategies may differ. For instance, we have

not evaluated MMlib under systems that employ a page-fault frequency (PFF) strategy

for thrashing prevention.

We have demonstrated with MMlib that it is possible to hide memory-adaptation deci-

sions and bookkeeping behind a simple library interface. The current version of the library

is still somewhat rudimentary, however, and work should be done to further refine it. For

example, more functions implementing common panel replacement policies should be added,

and interfaces to facilitate mapping more complex data structures to panels should be pro-

vided. Developing a more “production ready” version of MMlib will make easier what is

perhaps the most important work to be pursued: using MMlib in more types of and more

complex applications. Our eventual goal is to use MMlib to implement memory adaptivity

in a widely used scientific toolkit such as PETSc. By providing features such as a memory-

adaptive sparse matrix class that supports the standard PETSc matrix methods, we can

enable scientists to embed, with minimal effort, memory-adaptivity into their existing appli-

cation codes. Such ease of use is vital if we wish to see adoption of our memory-adaptivity

techniques in real-world applications.



Appendix A

LBlib: A flexible-phase load

balancing library

To facilitate general use of our load balancing strategy, we have written an object-based

C library, LBlib, that hides much of the required bookkeeping from the application pro-

grammer. To simplify data management and provide information hiding, data required

for resource balancing are stored in a variable of the defined type LBS. An application

programmer can access the data within an LBS structure through LBlib functions. Data

encapsulation is ensured by appropriate use of void * pointers in the internal implemen-

tation. A unique LBS structure is explicitly associated with a group of processors, and

implicitly with a particular flexible section that these processors must load balance. Below,

a subset of the basic functionality of the library is described:

LBS lb new lbstruct(MPI Comm communicator)

This is the LBS constructor function, where communicator is the MPI communicator with

which the LBS is to be associated. Note that a node of an MPI job could participate in the

load balancing of nested, but different, flexible sections.

void lb section start(LBS lbs)

double lb section end(LBS lbs, double ops completed)

These functions designate the beginning and end of the flexible section associated with

120



APPENDIX A. LBLIB: A FLEXIBLE-PHASE LOAD BALANCING LIBRARY 121

the lbs structure, which is to be load balanced. lb section start() begins timing the

execution of the section and, if memory balancing is used, it also begins tracking the amount

of page swapping and CPU idling. Once all operations within the flexible section are

completed, lb section end() stops the timing and calculates the rate at which the local

processor performed operations since lb section start(). This rate is returned by the

function for convenience, though it is also stored in the lbs. ops completed is the number

of operations that were completed during the flexible section. It is up to the application

programmer to decide on a suitable way of counting the number of operations. In our

eigensolver application, we use the number of iterations performed by the linear system

solver during the correction phase.

double lb decide(LBS lbs, double ops, int method, [function])

Before entering a section we must determine the time T that all processors will spend in

it. This is accomplished by calling lb decide(), where ops is the number of operations

that we ideally want each processor to complete. lb decide() is the only synchronous

LBlib call that causes all processors in the communicator associated with lbs to gather

the computation rates observed by each processor during the most recent execution of the

flexible section. The rates are then sorted, and are used to determine T using the method

specified by the method argument. In the current version of LBlib, the possible values of

method and the corresponding procedure for determining T are as follows:

• LB USE FASTEST: T is the predicted time for the fastest processor to compute ops

operations.

• LB USE SLOWEST: T is the predicted time for the slowest processor to compute ops

operations.

• LB USER DEFINED: A pointer to a user-defined function for calculating T is passed as a

fourth argument. lb decide() calls this function, passing ops and the array of sorted
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rates to it.

lb decide() returns the time T , but it also stores it in lbs so that the application program-

mer does not need to know it. Note that before the first call to lb decide(), one execution

of the flexible section should have already been timed through calls to lb section start()

and lb section end(). Otherwise, no computation rates are available for lb decide() to

determine the time T .

int lb continue(LBS lbs, double ops completed, double ops needed)

This function allows the programmer to check whether the allotted time T is about to be

exceeded, in which case the program must exit the flexible section. ops completed is the

number of operations completed so far during the current flexible section and ops needed

is the number of operations that will be completed before another call to lb continue()

can be made. lb continue() calculates the execution rate of the local processor during

the current flexible section, and then uses this rate to predict the time required to do

ops needed more operations. If this time falls within the allotted time, then lb continue()

returns 1, indicating that execution of the flexible section should continue. Otherwise it

returns 0, indicating that we should exit the flexible section to avoid load imbalance. In

our eigensolver application, the value of ops needed is one, because we call lb continue()

after each iteration of the linear system solver.

double *lb get rates(LBS lbs)

int *lb get index(LBS lbs)

It is often necessary for the application programmer to know the ordered rates of the

processors, so that the critical tasks can be assigned to the most appropriate processors.

lb get rates() returns a pointer to an array containing the rates of the processors, in as-

cending order. The processor indices corresponding to each of these rates can be retrieved

through a pointer to an array returned by lb get rates().
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The above functions significantly simplify the load balancing of codes that abide by

the general model of section 3.1. Figure A.1 demonstrates the use of LBlib to bal-

ance CPU load in our coarse-grain JDcg eigensolver. Note that, the first time through

the flexible section, the for-loop should execute a constant number of iterations in or-

der to collect the first set of performance data. The semantics of the flexible section

and its associated data dictate certain rules when calling some functions of the LBlib

library. Following the lb decide() semantics, lb continue() must be placed between

an lb section start() and an lb section end(). Also, lb get rates() must be called

only after a call to lb decide() has been made, so that the rates have been exchanged

between processors. Finally, between a call to lb section start(lbs1) and a call to

lb section end(lbs1), we cannot issue another call to lb section start(lbs1). How-

ever, a call to lb section start(lbs2), for a different LBS structure, is permissible.

In order to enforce such rules, an LBS keeps track of two fields: scope and context.

scope keeps track of whether program execution is currently within the flexible section,

while context tracks the availability of data for functions such as lb decide(). In case

of inappropriate scope or context, LBlib functions set an error code in the LBS, which the

programmer can check through void lb chkerr(LBS lbs).
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Algorithm: Load balanced JDcg
lbs = lb new lbstruct(MPI COMM WORLD);
Until convergence do:

// Control phase
Perform projection phase, steps 1–7 of JDcg
Determine optimal number of iterations optits to perform.
lb decide(lbs,optits,LB USE FASTEST);
ordering = lb get index(lbs);
Perform all-to-all: faster processors receive more critical residuals

// Flexible Phase
lb section start(lbs);

for (ops = 0; lb continue(lbs,ops, 1) ; ops++)
Perform one bcgstab step on eq. (3.1)

lb section end(lbs,ops);
end do

Figure A.1: Pseudocode depicting how the LBlib library can be used to load balance the JDcg
solver.
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DYNAMIC ADAPTATION TO CPU AND MEMORY LOAD IN

SCIENTIFIC APPLICATIONS

ABSTRACT

As commodity computers and networking technologies have become faster and more afford-

able, fairly capable machines have become nearly ubiquitous while the effective “distance”

between them has decreased as network connectivity and capacity has multiplied. There

is considerable interest in developing means to readily access such vast amounts of com-

puting power to solve scientific problems, but the complexity of these modern computing

environments pose problems for conventional computer codes designed to run on a static,

homogeneous set of resources. One source of problems is the heterogeneity that is naturally

present in these settings. More problematic is the competition that arises between programs

for shared resources in these semi-autonomous environments. Fluctuations in the availabil-

ity of CPU, memory, and other resources can cripple application performance. Contention

for CPU time between jobs may introduce significant load imbalance in parallel applica-

tions. Contention for limited memory resources may cause even more severe performance

problems, as thrashing may increase execution times by an order of magnitude or more.

Our goal is to develop techniques that enable scientific applications to achieve good

performance in non-dedicated environments by monitoring system conditions and adapting

their behavior accordingly. We focus on two important shared resources, CPU and memory,

and pursue our goal on two distinct but complementary fronts: First, we present some simple

algorithmic modifications that can significantly improve load balance in a class of iterative

methods that form the computational core of many scientific and engineering applications.

Second, we introduce a framework for enabling scientific applications to dynamically adapt

their memory usage according to current availability of main memory. An application-

specific caching policy is used to keep as much of the data set as possible in main memory,



while the remainder of the data are accessed in an out-of-core fashion.

We have developed modular code libraries to facilitate implementation of our techniques,

and have deployed them in a variety of scientific application kernels. Experimental eval-

uation of their performance indicates that our techniques provide some important classes

of scientific applications with robust and low-overhead means for mitigating the effects of

fluctuations in CPU and memory availability.
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