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Introduction

 Companion to SciDAC-II project, “Modeling Multiscale-Multiphase-
Multicomponent Subsurface Reactive Flows using Advanced Computing”,
involving several institutions:
 LANL: Peter Lichtner (PI), Chuan Lu, Bobby Philip, David Moulton
 ORNL: Richard Mills
 ANL: Barry Smith
 PNNL: Glenn Hammond, Steve Yabusaki
 U. Illinois: Al Valocchi

 Project goals:
 Develop a next-generation code (PFLOTRAN) for simulation of

multiscale, multiphase, multicomponent flow and reactive transport in
porous media.

 Apply it to field-scale studies of
 Geologic CO2 sequestration,
 Radionuclide migration at Hanford site, Nevada Test Site,
 Others…



Motivating example -- Hanford 300 area

 At the 300 area, U(VI) plumes continue to exceed drinking standards.
 Calculations predicted cleanup by natural attenuation years ago!
 Due to long in-ground residence times, U(VI) is present in complex, microscopic inter-

grain fractures, secondary grain coatings, and micro-porous aggregates. (Zachara et
al., 2005).

 Constant Kd models do not account for slow release of U(VI) from sediment grain
interiors through mineral dissolution and diffusion along tortuous pathways.

 In fact, the Kd approach implies behavior opposite to observations!
 We must accurately incorporate millimeter scale effects over a domain measuring

approximately 2000 x 1200 x 50 meters!



Modeling multiscale processes

 Represent system through multiple interacting continua with a single
primary continuum coupled to sub-grid scale continua.

 Associate sub-grid scale model with node in primary continuum
 1D computational domain
 Multiple sub-grid models can be associated w/ primary continuum nodes
 Degrees of freedom: N x NK x NDCM x Nc



Adaptive mesh refinement (AMR)

 AMR introduces local fine resolution only in regions where needed.
 Significant reduction in memory and computational costs for simulating

complex physical processes exhibiting localized fine scale features.
 AMR provides front tracking capability in the primary grid that can range from

centimeter to tens of meters.
 Sub-grid scale models can be introduced in regions of significant activity and

not at every node within the 3D domain.
 It is not necessary to include the sub-grid model equations in the primary

continuum Jacobian even though these equations are solved in a fully coupled
manner.



Upscaling

 Governing equations depend on averages of highly variable properties (e.g.,
permeability) averaged over a sampling window (REV).

 Upscaling and ARM go hand-in-hand: as the grid is refined/coarsened,
material properties such as permeability must be calculated at the new scale
in a self-consistent manner.

Above: A fine-scale realization (128 x 128) of a random permeability field,

! 

"(x, y) = # $ ln(% ) ,  # uniformly distributed in (0,1),  % = 5

followed by successively upscaled fields (N x N, N =  32, 16, 4, 1)
obtained with Multigrid Homogenization (Moulton et al., 1998)



Upscaling

 Coarse-Scale Anisotropy: permeability must, in general, be considered as a
tensor at larger scales even if it is a scalar (i.e., isotropic) at the finest scale.

  A single multi-dimensional average is inadequate for modeling flow
(MacLachlan and Moulton, 2006)

 Upscaling that captures full-tensor permeability includes multigrid
homogenization, and asymptotic theory for periodic media.

 Theory is limited to periodic two-scale media (well separated scales)
 Upscaling reactions poses a significant challenge as well. In some aspects of

this work volume averaging will suffice, while in others new multiscale
models will be required.

 Uniform flow from left to right
governed by harmonic mean.

 Uniform flow from bottom to top
governed by arithmetic mean.

 Suggests a diagonal permability tensor;
HOWEVER, if stripes not aligned with
coordinate axes, equivalent permeability
must be described by a full tensor.



PFLOTRAN governing equations

Mass Conservation: Flow Equations
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Energy Conservation Equation
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Multicomponent Reactive Transport Equations
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Mineral Mass Transfer Equation
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Integrated Finite-Volume Discretization

Form of governing equation:
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Discretized residual equation:
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(Quasi-) Newton iteration: 
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PFLOTRAN architecture

 PFLOTRAN designed from the ground up for parallel scalability.
 Built on top of PETSc, which provides

 Management of parallel data structures,
 Parallel solvers and preconditioners,
 Efficient parallel construction of Jacobian and residuals,

 AMR capability being built on top of SAMRAI.



Parallelization of the multi-scale model

 Rigorously decouple primary and sub-grid scale equations over a Newton
iteration (time step in linear case)

 Eliminate sub-grid scale boundary concentration from primary continuum
equation (forward “embarrassingly” parallel solve).

 Solve primary equations in parallel using domain decomposition.

 Obtain sub-grid scale concentration
(backward “embarrassingly” parallel solve).



Parallel scalability

So far, PFLOTRAN has exhibited excellent strong scaling on Jaguar:



Application: Hanford 300 Area

 Lab experiments (Zachara et al., 2005) indicate that presence of pore
structures that limit mass transfer is key to U(VI) persistence.

 Accurate characterization of pore scale effects and effective subgrid
parameterizations needed for scientifically defensible decision making.

 Apply PFLOTRAN to a site-wide model of U(VI) migration, including:
 Transport in both vadose zone (where source is located) and saturated

zone (groundwater flow to Columbia River).
 Surface complexation and ion exchange reactions, and kinetic phenomena

caused by intra-grain diffusion and precipitation/dissolution of U(VI) solid
phases to account for observed slow leaching of U(VI) from source zone.

 Robust model for remobilization of U(VI) as river  stage rises and falls,
causing mixing of river water w/ ambient groundwater in vadose zone.

 Must track river stage on daily basis.
 AMR is key to track transient behavior induced by stage fluctuations.



Application: Geologic CO2 sequestration

 Capture CO2 from power production plants, and inject it as supercritical
liquid in abandoned oil wells, saline aquifers, etc.

 Must be able to predict long-term fate:
 Slow leakage defeats the point.
 Fast leakage could kill people!

 Many associated phenomena are very poorly understood.

LeJean Hardin and Jamie
Payne, ORNL Review, v.33.3.



Application: Geologic CO2 sequestration

Density driven fingering is one feature of interest:
 Density increases as supercritical CO2 dissolves into formation brine.
 Buoyancy effects result in fingering.
 Widths may be on the order of meters or smaller.

Left: Density-driven
vortex made the fluid with
higher CO2 concentration
“snap-off” from the
source -- the supercritical
CO2 plume.

Right: Enlarged center
part of this domain at
earlier time, illustrating
two sequential snap-off,
the secondary is much
weaker than the first one.
The detailed mechanisms
behind these behavior are
under investigation.



CO2 sequestration: pH fingering

Figure: pH fingering due to density instabilities, 200 years after injection



Planned CO2 sequestration studies with LCF

 We will study the SACROC unit in the Permian Basin of West Texas.
 CO2 flooding for enhanced oil recovery began in 1972.

 Since then, 68 MT CO2 have been sequestered.
 30 MT are anthropogenic,

derived by separation from Val Verde natural gas field.

 We have a 9-million node logically structured grid for SACROC.
 We will use ~10 degrees of freedom per node to represent the chemical

system.

 One task is to investigate CO2 density-driven fingering:
 Characterize finger widths for typical reservoir properties.
 Characterize critical time for fingering to occur.
 Examine conditions where theoretical stability analysis yields ambiguous

results.
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