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ABSTRACT: We describe our experiences running PFLOTRAN—a code for simulation of coupled
hydro-thermal-chemical processes in variably saturated, non-isothermal, porous media—on the Cray XT
series of computers, including initial experiences running on the petaflop incarnation of Jaguar, the Cray
XT5 at the National Center for Computational Sciences at Oak Ridge National Laboratory. PFLOTRAN
utilizes fully implicit time-stepping and is built on top of the Portable, Extensible Toolkit for Scientific
Computation (PETSc). We discuss some of the hurdles to “at scale” performance with PFLOTRAN and
the progress we have made in overcoming them on the Cray XT4 and XT5 architectures.
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1 Introduction

Over the past several decades, subsurface (ground-
water) flow and transport models have become
vital tools for the U.S. Department of Energy
(DOE) in its environmental stewardship mission.
These models have been employed to evaluate
the impact of alternative energy sources and the
efficacy of proposed remediation strategies for
legacy waste sites. For years, traditional models—
simulating single-phase groundwater flow and
single-component solute transport within a sin-
gle continuum, with basic chemical reactions
such as aqueous complexing, mineral precipita-

tion/dissolution and linear sorption to rock/soil
surfaces and including radioactive decay—have
been employed. Although these simplified ground-
water models are still in wide use, advances in
subsurface science have enabled the development
of more sophisticated models that employ mul-
tiple fluid phases and chemical components cou-
pled through a suite of biological and geochemi-
cal reactions at multiple scales. With this increased
complexity, however, comes the need for more
computational power, typically far beyond that of
the average desktop computer. This is especially
true when applying these sophisticated multiphase
flow and multicomponent reactive transport mod-
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els in three-dimensional problem domains. We con-
tend, in fact, that in-depth understanding of many
subsurface flow and transport problems will re-
quire simulations that demand petascale comput-
ing capabilities. In this paper, we briefly describe
PFLOTRAN—a recently developed and highly-
scalable code for simulations of reactive flows in
geologic media—and discuss some of the chal-
lenges encountered and the progress made in scal-
ing PFLOTRAN simulations towards the petascale
on the Cray XT4 and XT5 architectures.

2 Problem formulation and dis-
cretization

PFLOTRAN solves a coupled system of continuum
scale mass and energy conservation equations in
porous media for a number of phases, including
air, water, and supercritical CO2, and for multiple
chemical components.

The general form of the multiphase partial dif-
ferential equations solved in the flow module of
PFLOTRAN for mass and energy conservation can
be summarized as [1]:

∂

∂t
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φ

∑
α

sαραXα
i

)
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∇ ·
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In these equations, α designates a phase (e.g. H2O,
supercritical CO2), species are designated by the
subscript i (e.g. w = H2O, c = CO2), φ denotes
porosity of the geologic formation, sα denotes the
saturation state of the phase, Xα

i denotes the mole
fraction of species i; ρα, Hα, Uα refer to the molar
density, enthalpy, and internal energy of each fluid
phase, respectively; qα denotes the Darcy flow rate
defined by

qα = −kkα

µα
∇

(
pα −Wαραgz

)
, (2)

where k refers to the water saturated permeabil-
ity, kα denotes the relative permeability, µα de-
notes the fluid viscosity, Wα denotes the formula

weight, and g denotes the acceleration of gravity.
The source/sink terms, Qα

i and Qe, describe injec-
tion and extraction of mass and heat at wells, re-
spectively.

The multicomponent reactive transport equa-
tions solved by PFLOTRAN have the form [1]:

∂
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for the jth primary species, and

∂φm

∂t
= V mIm, (4)

for the mth mineral. The quantities Ψα
j , Ωα

j denote
the total concentration and flux of the jth primary
species in phase α (see [1] for more details). The
mineral precipitation/dissolution reaction rate Im

is determined using a transition state rate law, and
the qunatities νjm designate the stoichiometric reac-
tion coefficients. These equations are coupled to the
flow and energy conservation equations through
the variable p, T , sα, and qα. In turn, chemical reac-
tions may alter the material properties of the porous
medium, such as porosity and permeability, which
leads to coupling between the transport equations
and flow and energy equations, albeit on a much
slower time scale compared to the reverse coupling.

For both flow and transport, the governing par-
tial differential equations all have the general form

∂A

∂t
+ ∇ · F = S, (5)

with accumulation term A, source/sink term S, and
flux term F of the form

F = qρX − φDρ∇X, (6)

PFLOTRAN utilizes a finite volume spatial dis-
cretization combined with backward-Euler (fully
implicit) time stepping. Partitioning the computa-
tional domain into a set of finite volumes Vn and
integrating the partial differential equations over
each volume yields a discretized form of the mass
conservation equations. Denoting the kth time step
with superscript k, the residual equation for the dis-
cretized form of the partial differential equations is

Rn =
(
Ak+1

n −Ak
n

)Vn

∆t
+

∑
n′

Fnn′Ann′ −SnVn, (7)
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The flux Fnn′ across the n−n′ interface connecting
volumes Vn and Vn′ is defined by

Fnn′ = (qρ)nn′Xnn′ − (φDρ)nn′
Xn −Xn′

dn + dn′
, (8)

where the subscript nn′ indicates that the quantity
is evaluated at the interface, and the quantities dn,
dn′ denote the distances from the centers of the con-
trol volumes Vn, Vn′ to the their common interface
with interfacial area Ann′ . In general, Rn is a non-
linear function of the independent field variables.
We use an inexact Newton method to solve the dis-
cretized equations for zero residual.

Within the flow and transport modules the
equations are solved fully implicitly, but because
transport generally requires much smaller time
steps than flow, we couple these modules sequen-
tially. A linear interpolation is used to obtain flow
field variables within the transport solve. To ac-
count for changes in porosity and permeability due
to mineral reactions, the transport solver is used to
calculate an updated porosity over a flow time step
and the revised porosity is passed back to the flow
solver. Future implementations may explore inde-
pendent grid hierarchies for flow and transport, as
well as fully coupled schemes.

3 Architecture and Parallel Im-
plementation

PFLOTRAN is has been written from the ground
up with parallel scalability in mind, and can run on
machines ranging from laptops to the largest mas-
sively parallel computer architectures. Through ju-
dicious use of Fortran 90/95 features, the code em-
ploys a highly modular, object-oriented design that
can hide many of the details of the parallel imple-
mentation from the user, if desired. PFLOTRAN
is built on top of the PETSc framework [2; 3; 4]
and uses numerous features from PETSc including
nonlinear solvers, linear solvers, sparse matrix data
structures (both blocked and non-blocked matri-
ces), vectors, constructs for the parallelism of PDEs
on structured grids, options database (runtime con-
trol of solver options), and binary I/O.

PFLOTRAN’s parallel paradigm is based on do-
main decomposition: each MPI process is assigned
a subdomain of the problem and a parallel solve
is implemented over all processors. Message pass-
ing (3D “halo exchange”) is required at the subdo-

main boundaries with adjacent MPI processes to fill
ghost points in order to compute flux terms (Equa-
tion 8). A number of different preconditioners from
PETSc or other packages (PETSc provides inter-
faces to several) can be employed, but currently
we usually use single-level domain decomposition
preconditioners employed inside of a global in-
exact Newton-Krylov solver. Within the Krylov
solver, gather/scatter operations are needed to han-
dle off-processor vector elements in matrix-vector
multiplies, and numerous MPI Allreduce() opera-
tions are required to compute vector inner products
and norms, making communication highly latency-
bound.

4 Parallel Performance

In this section, we examine performance in a strong
scaling context using a benchmark problem from a
model of a hypothetical uranium plume at the Han-
ford 300 Area in southeastern Washington state,
described in [5]. The computational domain of
the problem measures 1350 × 2500 × 20 meters
(x,y,z) and utilizes complex stratigraphy (Figure 1)
mapped from the Hanford EarthVision database
[6], with material properties provided by [7]. The
stratigraphy must be read from a large HDF5 file
at initialization time. We examine aspects of both
computation and I/O in this section.

In the benchmark runs here, we utilize an in-
exact Newton method with a fixed tolerance for
the inner, linear solve. The linear (Jacobian) solves
employ the BCGS stabilized bi-conjugate gradient
solver (BiCGstab) in PETSc, with a block-Jacobi
preconditioner that applies an incomplete LU-
decomposition solver with zero fill-in (ILU(0)) on
each block. (For linear solves with block-structured
matrices, a block-ILU(0) solve is employed.) Our
choice of preconditioner is a very simple one, but
we have been surprised at how well it has worked
at scale on large machines such as Jaguar. We
have experimented with more sophisticated pre-
conditioners such as the the Hypre/BoomerAMG
and Trilinos/ML algebraic multigrid solvers, but
we have yet to identify a preconditioner that is
as robust and as scalable at high processor counts
as block-Jacobi. Solvers such as BoomerAMG dis-
play excellent convergence behavior, but show un-
acceptable growth in set up time above 1000 cores.
(Determining how to make good use of multi-level
solvers is an area of active research for us.)
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Figure 1: Hanford 300 Area stratigraphy (z scale = 20x, z axis ranges 70–130 meters).
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Figure 2: Strong-scaling performance on the Cray XT4
of the computation phase (no I/O) of PFLOTRAN for a
variably-saturated flow problem with 270 million total
degrees of freedom.
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Figure 3: Growth of BiCGstab iterations for the strong-
scaling case depicted in Figure 2.
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Figure 4: Proportion of time spent in vector dot product
and norm computations for the strong-scaling case de-
picted in Figure 2.
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Figure 5: Combined cost of all vector dot product or norm
calculations for the strong-scaling case depicted in Figure 2.

4.1 Computational Phase

4.1.1 Strong-scaling, flow, 270M DoF

Figure 2 depicts the strong scaling behavior of the
flow solver for a 1350 × 2500 × 80 cell flow-only
version of the problem (270 million total degrees
of freedom) run on the Cray XT4 at ORNL/NCCS.
We ran the problem for 50 time steps. The scal-
ing behavior is good all the way out to 27580 pro-
cessor cores (near the limit of the number of cores
available on the machine with 800 MHz DDR2
memory—we did not wish to introduce load im-
balance by mixing memory speeds), although some
departure from linear scaling is seen. Because we
employ a single-level domain decomposition pre-
conditioner (block-Jacobi), it might be supposed
that the loss of effectiveness of the precondition as
the number of processor cores grows (and hence
the size of each local subdomain shrinks) might be
responsible for a significant portion of the depar-
ture from linear scaling. Figure 3 shows that the
growth in the total number of BiCGstab iterations
is actually very modest, with only approximately
10% more iterations required at 27580 cores than at
1024 cores. The departure from linear scaling ap-
pears to be almost entirely due to the large growth
in the proportion of time spent in the computa-
tion of vector inner products (dot products) and
norms (Figure 4), which is dominated by the cost of

MPI Allreduce() operations. In fact, if we exam-
ine the strong-scaling behavior of the cost of vec-
tor dot products and norms versus the cost of all
other function calls (Figures 5 and 6, we see that the
strong scalability of the dot products and norms is
quite poor, while the scalability of everything else
is essentially linear (and even slightly superlinear
at 16384 cores).

The time spent in MPI Allreduce() calls was
further investigated using CrayPAT, which breaks
the time into two components: MPI Allreduce
and MPI Allreduce (Sync). According to Cray,
MPI Allreduce (Sync) is due to the implicit synchro-
nization operation in the MPI Allreduce() call
and is likely due to load imbalance. However, fur-
ther analysis of the code indicated that only 5%
of the processors incur any significant application
load imbalance. To investigate this further, we de-
veloped a perfectly load balanced dot product ker-
nel that performs approximately the same num-
ber of MPI Allreduce() calls as PFLOTRAN and
takes approximately the same execution time (ac-
complished via redundant local dot products) as
PFLOTRAN. This kernel yielded nearly the same
amount of MPI Allreduce (Sync) time, indicating
that the MPI Allreduce (Sync) experienced by the ap-
plication is not due to application load imbalance
but likely due to system load imbalance (i.e., per-
formance variability among cores).

To improve MPI Allreduce() performance
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Figure 6: Combined cost of all routines that are not vec-
tor dot product or norm calculations for the strong-scaling
case depicted in Figure 2.

on the Cray XT4, we experimented with a number
of MPI communication related environment vari-
ables. Of these settings, MPICH PTL MATCH OFF
had the greatest impact as it eliminates a por-
tal systems call that can add significant overhead
to latency dominated applications such as PFLO-
TRAN (dominated by MPI Allreduce()s of a sin-
gle number in the flow solver). Other options such
as MPICH FAST MEMCPY and MPICH COLL OPT ON
(which we note has become the default behavior in
MPT 3) also had some impact. These optimizations
reduced the MPI Allreduce() time by approxi-
mately 18%.

As the MPI Allreduce() calls performed dur-
ing the BiCGstab solve dominate the overall execu-
tion time at large core counts on the XT systems,
we implemented an alternative, “improved” ver-
sion of algorithm [8] in a new KSP solver (“IBCGS”)
in PETSc. The standard BiCGstab method requires
four MPI Allreduce() calls per iteration (includ-
ing the vector norm computation to check conver-
gence). The restructured algorithm used in IBCGS
requires only two MPI Allreduce() calls, at the
expense of a considerably more complicated al-
gorithm, more local computation (additional vec-
tor operations), and computation of a transpose
matrix-vector product at the beginning of the solve.
By lagging the calculation of the residual norm, it
is possible to further reduce communication and

wrap everything into one MPI Allreduce itera-
tion, at the cost of doing one additional iteration.
Despite the additional computation involved, the
restructured solver is generally faster than the stan-
dard BiCGstab solver on the XT4/5 when using
more than a few hundred processor cores. The ta-
ble below displays the breakdown (as reported by
CrayPAT) of time spent in MPI SYNC, MPI, and
User time when using the traditional (“BCGS”) and
restructured (“IBCGS”) algorithms for a 30 time
step run (including initialization time but no disk
output) of the benchmark problem on 16384 cores
of the XT4 version of Jaguar. The amount of time
spent in User computations is larger in the IBCGS
case, but the time spent in MPI SYNC and MPI is
far lower.

Group Traditional Restructured
MPI SYNC 196 120
MPI 150 79
User 177 200

4.1.2 Strong-scaling, transport, 2B DoF

We have recently made some preliminary bench-
mark runs on the petaflop incarnation of Jaguar,
the Cray XT5 at ORNL/NCCS, with a coupled flow
and transport problem from the Hanford 300 Area.
The problem consists of 850 × 1000 × 160 cells
and includes 15 chemical components, resulting 136
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million total degrees of freedom in the flow solve
and 2.04 billion total degrees of freedom in the
transport solve. This problem size is at the limit
of what we can do with 32-bit array indexing. (Al-
though PFLOTRAN and PETSc can support 64-bit
indices, some work will be required to get our code
working with some of the libraries we link with.)
The problem was run for 25 time steps of both flow
and transport. In many simulations, we would use
a longer time step for flow than for transport, but in
this case there is a time varying boundary condition
(the stage of the adjacent Columbia River) that lim-
its the size of the flow time step (to a maximum of
one hour), and higher resolution for the transport
step is not needed.

Figure 7 depicts the preliminary scaling behav-
ior we have observed on up to 65536 processor
cores on Jaguar. Figures 8 and 9 break the per-
formance down into time spent in the flow and
transport solves, respectively. It is not surprising
that the scalability of the flow problem is poor: at
only 136 million degrees of freedom, this is a very
small problem to be running on so many proces-
sor cores. We employ the large number of pro-
cessor cores for the benefit of the much larger (15
times) and computationally more expensive trans-
port problem. We note that the coupled flow and
reactive transport problems that we might typically
run with PFLOTRAN will generally involve trans-
port problems considerably larger than their flow
counterparts, perhaps going as high as 20 chemi-
cal components. If kinetic rate laws are used for
sorption, then the size of the transport problem be-
comes even higher because a kinetic sorption equa-
tion (without flux terms) must be added for each
kinetic reaction. It is possible that at some point it
may make sense to solve the flow problem redun-
dantly on disjoint groups of MPI processes, much
as parallel multi-level solvers do for coarse-grid
problems. This may not be necessary, however, as
the cost of the transport solves may be dominant,
and in many cases it is possible to run the flow
solves with a much larger time step size than the
transport solve.

We have not yet had the opportunity to con-
duct further experiments to understand and im-
prove the performance of this benchmark problem.
We believe that running it with the restructured
BiCGstab solver in PETSc will be beneficial, but we
first need to add support in PETSc for the trans-
pose matrix-vector product for blocked sparse ma-

trices with large block size. The data we collected
during the run indicate that there are some signif-
icant sources of load imbalance that do not derive
from the partitioning of work among the proces-
sors. (We believe that the partitioning is good, as
this problem employs a regular grid and the ra-
tio of maximum to minimum times spent in some
key routines is not high even at 65536 cores; for ex-
ample, it is 1.2 inside the Jacobian evaluation rou-
tines.) More detailed evaluation (running experi-
ments with MPI Barrier() calls inserted before
collective communications, for example) is needed
to identify the sources of load imbalance.

4.2 I/O Phase

PFLOTRAN originally employed serialized I/O
through MPI process 0. Because PFLOTRAN
spends relatively little time in I/O, this actually
proved workable up to about 8000 processor cores.
To scale beyond this, we added parallel I/O in the
form of 1) routines employing parallel HDF5 for
reading input files and writing out simulation out-
put files, and 2) employing direct MPI-IO calls in
a PETSc Viewer backend (for checkpointing). This
greatly increased the scalability of the code, but ini-
tialization costs still became unacceptable at when
using more than about 16000 cores (roughly half the
size of the Jaguar XT4 system). Here we detail how
we have mitigated this problem.

The Cray XT architecture uses the Lustre file
system (lfs) [9] to facilitate high bandwidth I/O for
applications. Lustre is an object based parallel file
system that has 3 main components namely Object
Storage Servers (OSS’s), Meta Data Servers (MDS)
and File system clients. Each OSS can serve multi-
ple Object Storage Targets (OST’s) which act as I/O
servers, the MDS manage the names and directo-
ries for the file system and the file system clients are
the Cray XT compute nodes. The Cray XT5 system
has 672 OST’s, 1 MDS and 37,544 file system clients
or compute nodes. Files are broken into chunks
and stored as objects on the OST’s in a round robin
fashion. The size of the object stored on a single
OST is defined as File Stripe Size and the number
of OST’s along which the file is striped is defined as
File Stripe Count. The default value for stripe size
is 1MiB and stripe count is 4 OST’s. We have used
the default lfs settings for our runs but these pa-
rameters can be modified by the user with the help
of lfs commands. Depending upon the file access
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Figure 7: Combined strong-scaling performance of flow
and transport solves for a coupled flow and reactive trans-
port simulation on an 850 × 1000 × 160 cell grid with 15
chemical components.
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Figure 8: Strong-scaling performance of the flow solve
component (136 million degrees of freedom) of the strong-
scaling study depicted in figure 7.
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Figure 9: Strong-scaling performance of the transport
solve component (2.04 billion degrees of freedom) of the
strong-scaling study depicted in figure 7.
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pattern, the lfs settings will have an impact on I/O
performance.

From the scaling studies performed on Cray
XT, it was observed that the initialization phase
of PFLOTRAN does not scale well with increase
in processor count. The first curve in Figure 10
shows the timing of the initialization phase at dif-
ferent processor counts on Cray XT5. The initial-
ization phase almost entirely consists of HDF5 rou-
tines which read from a single large HDF5 input
file. All processes participate in a parallel read oper-
ation which involves a contiguous region of HDF5
datasets and there are two different read patterns
i.e., every process reads the dataset entirely and ev-
ery process reads a chunk of the dataset starting
from its own offset within the dataset. For this kind
of read pattern the lfs settings (stripe size and stripe
count) will have little impact on performance be-
cause most of the processors will be accessing a sin-
gle OST at any given point of time during execu-
tion.

To investigate the reasons for the poor perfor-
mance of the initialization phase at scale, we used
CrayPAT to profile PFLOTRAN on up to 27572
cores of the Cray XT4. Figure 11 shows the percent-
age contribution of different routines to overall ex-
ecution time. The profiling was done for the 270M
DoF test problem with 30 time-steps and with no
output. From the figure, it is evident that the MPI
routines MPI File open(), MPI File close()
and MPI File read at() contribute significantly
at higher processor count. It must be noted here
that for the entire file system there is only 1 Meta
data server (MDS) and every time a process needs
to open/close a file it needs to poll the MDS. As
the number of clients increases the file open/close
become a much costlier operation and this setup
would become a bottleneck for I/O performance.
This has been identified as a problem for system
scalability by others [10; 11].

To avoid this performance penalty at higher pro-
cessor counts we have modified the read mecha-
nism within PFLOTRAN. Instead of having every
process participate in the read operations we imple-
mented a mechanism where only a subset of pro-
cesses execute the HDF5 routines and are involved
in the read operations. The code example below de-
scribes the creation of new sub-communicators that
are used in the improved I/O method.

group_size = HDF5_GROUP_SIZE (e.g., 1024)
call MPI_Comm_rank(MPI_COMM_WORLD,

global_rank,ierr)
MPI_comm iogroup, readers
global_comm = MPI_COMM_WORLD

color = global_rank / group_size
key = global_rank
call MPI_Comm_split(global_comm,color,key,

iogroup,ierr)

reader_key = global_rank
if (mod(global_rank,group_size) == 0) then

reader_color = 1
else

reader_color = 0
endif

call MPI_Comm_split(global_comm,
reader_color,
reader_key,readers,
ierr)

if (reader_color==1) then
call h5pset_fapl_mpio_f(prop_id,readers,

MPI_INFO_NULL,
hdf5_err)

call h5dread_f(...,HDF_NATIVE_INTEGER,
integer_array,length)

endif
call MPI_Bcast(integer_array,length,

MPI_INTEGER,0,iogroup,ierr)

Temporary buffers will have to be allocated
at the reader processes to hold the data for their
group. The reader processes collect the offset val-
ues and chunk sizes from the processes in their
group by using MPI Gather(). After the desig-
nated processes have completed reading the data
from the file they would distribute the data us-
ing MPI Bcast() or MPI Scatterv() depending
upon the offset values and chunk sizes to the rest of
the processes in their respective groups. By careful
selection of reader processes, we ensure that there is
no network congestion at this point. Even though
we did not face out-of-memory problems with our
runs, we can avoid this situation in the future, if
it arises, by using a smaller group size or by using
multiple MPI Bcast()/MPI Scatterv().

With these modifications, we were able to re-
duce the time spent in initialization phase from
1700 to 40 seconds at 98304 cores of Cray XT5. The
second curve in Figure 10 shows the timing of the
initialization phase with the improved I/O method.
For the runs up to 16384, we have used a group size
of 1024 and for runs above 16384 it is 8192.
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Figure 11: Breakdown of contributions of different rou-
tines to overall execution time of the 270 million degrees
of freedom flow problem run on the Cray XT5 for 30 time
steps, with no disk output.

5 Conclusions and Future Work

PFLOTRAN has only been under active develop-
ment for a few years, but has already become a
modular, object-oriented, extensible, and scalable
code. We have demonstrated that it is currently
able to make effective use of a significant portion
of a petascale machine. It does not do so with any-
where near the efficiency that we would like, but it
is possible to use the code to solve leadership-class
computing problems right now.

Further development of PFLOTRAN continues
at a rapid pace. One focus is on developing better
solvers/preconditioners to further improve scala-
bility. We are exploring several types of multi-level
approaches, which we believe are ultimately nec-
essary to achieve good weak scalability. These ap-
proaches will probably be combined with physics
based ones [12] that will allow multi-level meth-
ods to be employed on linear systems to which
they are well-suited. Though we did not discuss
it in this paper, we are also making progress on
adding structured adaptive mesh refinement ca-
pabilities to the code, which will greatly decrease
the memory and computational requirements for
simulations that must resolve certain fine-scale fea-
tures. We are also adding support for unstruc-

tured meshes, which will allow static refinement of
the grid around complex geologic features, around
wells, etc. Support for multiple-continuum (sub-
grid) models will also be added to the code, which
will dramatically increase the work associated with
each grid cell and, incidentally, result in more ef-
ficient use of leadership-class machines, as much
of the subgrid work can proceed in embarrassingly
parallel fashion.
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