
Dynamic Load Balancing of an Iterative Eigensolver on Networks of
Heterogeneous Clusters �

James R. McCombs Richard Tran Mills
Department of Computer Science

College of William and Mary
Williamsburg, Virginia 23187-8795

fmccombjr, rtm, andreasg@cs.wm.edu

Andreas Stathopoulos

Abstract

Clusters of homogeneous workstations built around fast
networks have become popular means of solving scientific
problems, and users often have access to several such clus-
ters. Harnessing the collective power of these clusters to
solve a single, challenging problem is desirable, but is often
impeded by large inter-cluster network latencies and het-
erogeneity of different clusters. The complexity of these en-
vironments requires commensurate advances in parallel al-
gorithm design.

We support this thesis by utilizing two techniques: 1)
multigrain, a novel algorithmic technique that induces
coarse granularity to parallel iterative methods, provid-
ing tolerance for large communication latencies, and 2) an
application-level load balancing technique applicable to a
specific but important class of iterative methods. We imple-
ment both algorithmic techniques on the popular Jacobi-
Davidson eigenvalue iterative solver. Our experiments on
a cluster environment show that the combination of the two
techniques enables effective use of heterogeneous, possibly
distributed resources, that cannot be achieved by traditional
implementations of the method.

1. Introduction

The power and low-cost of todays workstations and
the introduction of inexpensive high-speed networking me-
dia have made clusters of workstations (COWs) a cost-
effective means of parallel processing for an increasing
number of scientific applications. Massively parallel pro-
cessors (MPPs) are based on the same design philosophy,

�Work supported by the National Science Foundation (ITR/ACS-
0082094 and ITR/AP-0112727), a DOE computational sciences graduate
fellowship, and performed using computational facilities at the College of
William and Mary which were enabled by grants from the National Science
Foundation (EIA-9977030) and Sun Microsystems (SAR EDU00-03-793).

targeting a higher performance albeit at a higher cost. The
emergence of Grids promises to deliver this higher perfor-
mance to a large number of applications by enabling the col-
lective use of various existing computational environments
[11, 15].

Grids present a twofold challenge: First, provide an easy,
secure and integrative way for users to access these environ-
ments, which has been the focus of much research recently
[10, 13, 30]. Second, devise methods that can harness effec-
tively the power of these environments, through new paral-
lel algorithmic designs and adaptation to the runtime system
[1, 3, 4]. This challenge has received little attention in the
literature and it is the focus of our research.

In this paper, we concentrate on iterative methods, which
are of central importance in many scientific and engineering
applications. Specifically, we focus on iterative methods
for the numerical solution of large, sparse, eigenvalue prob-
lems, although much of our discussion applies to a wider
class of iterative methods. Traditionally, iterative meth-
ods have been implemented on MPPs [7, 23] and COWs
in a fine grain way. Every iteration requires a matrix-vector
product, an application of the preconditioner operator, and
several inner products. Inner products require a global re-
duction, an operation that does not scale with the number
of processors. But more importantly, communication over-
heads have not kept up with the rapid growth of bandwidth
in recent networks. In the case of large number of proces-
sors in MPPs or high overhead interconnection networks in
COWs, such costs can limit the scalability of the applica-
tion [18, 27, 29]. In a Grid environment, the significantly
higher overheads can completely incapacitate these meth-
ods. Block iterative methods and preconditioners with high
degree of parallelism, such as domain decomposition, are
often employed to increase granularity and thus scalability
[7]. However, their granularity is still too fine to be useful
on Grids.

Beyond issues that relate to the communication primi-

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

tives of the algorithm and the underlying network, scalabil-
ity and often usability are inhibited by the resource imbal-
ances on heterogeneous and/or distributed shared environ-
ments. Most parallel implementations of iterative methods
assume homogeneous parallel processors. Even when such
implementations scale well within a cluster, there may be
little gain in speedup and possibly a performance degrada-
tion if heterogeneous clusters are linked together, as is often
the case in collections of clusters and Grid environments. A
common approach is to partition the data according to the
relative speeds of the processors, either statically [14, 16]
or during execution with expensive repartitioning packages
[6, 17]. However, this approach is not effective in the pres-
ence of dynamic external load on some of the COWs. On
the other hand, scheduling parallel programs on shared en-
vironments is also intrinsically difficult, because the system
cannot predict the variable requirements of programs [8].

In [28], we showed how a combination of coarse and
fine grain parallelism on a block Jacobi-Davidson eigen-
value solver can provide tolerance for high network laten-
cies. In [20], we modified this code to adapt to external
CPU and memory load, by allowing each node to perform
its local preconditioning to different accuracy. The scope
of both [28] and [20] is limited to a small number of pro-
cessors, but in [19], we extended the approach of [28] to a
large number of processors by utilizing the notion of multi-
grain, where an arbitrary number of processors is split into
subgroups, each performing a different preconditioning op-
eration. The multigrain approach is effective, but when used
by itself in heterogeneous environments, or ones in which
network topology necessitates that the subgroups be of dif-
ferent sizes, it can accentuate or even introduce load imbal-
ance. In this paper we show that the combination of multi-
grain with a simple, though non-traditional, load balancing
technique eliminates these shortcomings and provides an
empowering mechanism for the efficient use of Grid envi-
ronments.

2. Load balancing for a class of iterative meth-
ods

A common algorithmic paradigm for parallel programs
is that of synchronous iteration, in which processors per-
form local work to complete an iteration of a loop, and then
synchronize before proceeding to the next iteration. We
are interested in a very specific but important case of syn-
chronous iteration: one in which the amount of work com-
pleted by each processor during an execution of the loop
may be varied arbitrarily without detriment to the end re-
sult. With smaller amount of work per iteration, the target
can still be reached, though with more iterations. We de-
compose algorithms in this category into two phases: 1) A
control phase, during which synchronous interactions up-

date global knowledge of the current state, allowing each
processor to make better decisions later. 2) A flexible phase,
during which local execution of the loop occurs. It is “flexi-
ble” insofar as each processor can vary the amount of work
that it does during this phase. We designate this type of par-
allelism flexible phase iteration. This flexibility provides
a unique opportunity for load balancing: Since each pro-
cessor need not do the same amount of work as its peers,
perfect load balance can be achieved in the flexible phase
by limiting all processors to the same time T during its ex-
ecution.

Although it is very specific, several important algorithms
used in the sciences and engineering can fit this model. One
class of such algorithms includes stochastic search optimiz-
ers such as genetic algorithms and simulated annealing. An-
other important class of algorithms amenable to a flexible
phase iteration structure are Krylov-like iterative methods
[23], which are widely employed to solve systems of lin-
ear equations, eigenvalue problems, and even non-linear
systems. These methods usually utilize a preconditioner,
which, at each outer (Krylov) iteration, improves the cur-
rent solution of the method by finding an approximate solu-
tion to a correction equation. In parallel implementations, if
this correction is found iteratively, different processors can
apply a different number of iterations on their local portions
of the correction equation [24]. Thus, the preconditioning
step is a flexible phase, and the outer iteration, where the
processors update their corrections, is a control phase.

3. The coarse grain JD method

Many applications involve the solution of the eigen-
value problem, A~xi = ~�i~xi for the extreme (largest or
smallest) eigenvalues, ~�i, and eigenvectors, ~xi, of a large,
sparse, symmetric matrix A. One such method that has at-
tracted attention in recent years is the Jacobi-Davidson (JD)
method [26, 25]. This method constructs an orthonormal
basis of vectors V that span a subspace K from which the
approximate Ritz values, �i, and Ritz vectors xi are com-
puted at each iteration. These approximations and the resid-
ual ri = Axi � �xi are then used to solve the correction
equation:

(I � xix
T
i)(A� �iI)(I � xix

T
i)�i = ri; (1)

for the vector �i, an approximation to the error in xi. The
basis V is then extended with these vectors. Below we show
a block variant of JD that extends V by computing k correc-
tion vectors at each iteration.

During the projection phase (steps 1-7), the block algo-
rithm finds the k smallest Ritz eigenpairs and their residu-
als. During the correction phase, k different equations (1)
are solved approximately for �i, usually by employing an
iterative solver for linear systems such as BCGSTAB [23].

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

Algorithm: Block JD
starting with k trial vectors �i
While not converged do:
1. Orthogonalize �i, i = 1 : k. Add them to V
2. Matrix-vector: Wi = AVi; i = 1 : k
3. H = V TW (local contributions)
4. Global Sum(H) over all processors.
5. Solve Hyi = �iyi; i = 1 : k (all procs)
6. xi = V yi; zi = Wyi; i = 1 : k (local rows)
7. ri = zi � �ixi; i = 1 : k (local rows)
8. Correction equation: Solve eq. (1) for each �i
end while

Block methods improve robustness for difficult eigen-
problems where the sought eigenvalues occur in multiplici-
ties or are clustered together [21]. In general, the total num-
ber of outer JD iterations reduces with larger block sizes,
but the total number of matrix-vector products increases
[12, 22, 28]. However, larger blocks yield better cache
efficiency, and better computation to communication ratio
(coarser granularity) in parallel programs.

The above block JD method is given in a data parallel
(fine grain) form. The rows of each of the vectors xi, ri,
zi, and �i as well as of the matrices A, V , and W are par-
titioned evenly among the processors. Thus, vector updates
are local, while dot products require a global reduction.
Matrix-vector products with A are performed in parallel by
user-provided subroutines. Fine grain implementations can
scale well when synchronization during the reductions is ef-
ficient. However, in many COWs, scalability is impaired by
high overheads, despite the sometimes high network band-
width.

For high latency/overhead environments, coarser gran-
ularity is needed. In [28], we developed a hybrid coarse-
grain JD algorithm, which we call JDcg. It is based on
the assumption that each compute node can store A in its
entirety, which is reasonable when the matrices are sparse,
and especially when they are not stored explicitly but rep-
resented only as a matrix-vector product function. Our
method attempts to improve upon the performance of the
fine grain implementation by eliminating communication
between processors during the correction phase. We do this
by requiring the number of processors to be equal to the
block size and having each processor solve a distinct cor-
rection equation independently of the other processors.

Steps 1-7 of the algorithm are performed as before in a
data parallel manner involving all the processors. However,
just before the start of the correction phase, each proces-
sor gathers all the rows of one of the block vectors via an
all-to-all operation. Each processor then solves its respec-
tive correction equation independently with BCGSTAB. The
coarse-grain version of step 8 is summarized as follows:

8. Coarse grain correction equation
All-to-all: send local pieces of xi; ri to proc i,

receive a piece for xmyid; rmyid from proc i
Apply m steps of (preconditioned) BCGSTAB on

eq. (1) with the gathered xmyid; rmyid

All-to-all: send the i-th piece of �myid to proc i,
receive a piece for �i from proc i

The parallel speedup of JDcg can be improved arbitrar-
ily by increasing the number of BCGSTAB iterations (m).
However, the total number of matrix-vector multiplications
increases if m is chosen too large. Fortunately, large val-
ues for m are often necessary to solve numerically difficult
eigenproblems. In [28], we have demonstrated the effec-
tiveness of JDcg in hiding the communication latencies of
slow networks.

4. JDmg: the multigrain JDcg

The requirement of JDcg that each processor has access
to the entire matrix may be too stringent in environments
with a large number of processors, where memory demand-
ing applications need to scale their problem size with the
number of nodes. Furthermore, even if the memory is avail-
able a large block size (equal to the number of processors)
is expected to significantly increase the total number of
matrix-vector multiplications. This non work conserving
behavior limits the use of JDcg to small clusters of 4-8 pro-
cessors.

Yet, the same principle can be used to introduce coarser
granularity on MPPs. Assume an MPP with 256 proces-
sors, and the JD algorithm with a block size of 4 executing
in fine grain on this MPP. We can envision the MPP split in
four groups, which we call solve groups, of 64 processors
each, and during the JD correction phase each solve group
gathers a distinct residual and solves a distinct correction
equation. The only difference from the JDcg is that the cor-
rection equation is solved by a data parallel linear solver on
64 processors. The benefits stem from the lower communi-
cation latencies associated with a cluster of one fourth the
size of the original. In a similar situation, a fine grain JD
method running on four COWs (possibly heterogeneous to
each other), could assign a different correction equation to
each COW, effectively hiding the latencies of the network.

We use the term multigrain to refer to this extension of
our coarse-grain technique, where the number of proces-
sors P is greater than the block size k. The only mem-
ory requirement posed by multigrain is that each processor
stores k times more rows than fine grain alone. With typical
block sizes of 4-8, this does not limit the memory scalability
of the method. In multigrain, matrix-vector multiplications
occur at two levels of granularity, so A is partitioned both
in fine grain over all processors and in coarse grain over

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

each solve group. Similarly to JDcg, an all-to-all transfers
information between the two levels. In the particular case
where k divides P , or k is small compared to P , the all-to-
all can be made more efficient if the solve groups are chosen
to have P=k processors, as described in [19]. This is typi-
cally the case with MPPs or COWs with large numbers of
homogeneous processors. In clusters of heterogeneous pro-
cessors or simply clusters with different processor numbers,
the solve groups generally are not of size P=k, but are cho-
sen by the user to correspond to the physical boundaries of
the COWs, or to those processor boundaries where inter-
boundary communication is expensive.

5. Load balancing JDcg through
algorithmic modifications

JDcg fits the flexible-phase iteration model: The correc-
tions �i need not be computed to the same accuracy, so
the correction phase is flexible. The highly-synchronous
projection phase is the control phase. Thus, we can load-
balance JDcg by restricting each processor to a fixed time
T in the correction phase. Even though imbalances will
persist during the brief projection phase, this virtually elim-
inates overall load imbalance, because the correction phase
dominates the execution time. Although some vectors �i
may be computed to lower accuracy, this only increases the
number of outer iterations and often decreases the amount
of total work.

To determine an appropriate T , we follow the commonly
used guideline that BCGSTAB be iterated to a convergence
threshold of 2�iter , where iter is the number of outer it-
erations [9]. Using classical convergence bounds for Con-
jugate Gradient [23], we determine heuristically an “opti-
mal” number of iterations m that corresponds to the 2�iter

threshold. To avoid hurting convergence by too large an m,
we set a maximum bound maxits for m. T is then the time
required by the fastest processor to complete m BCGSTAB

steps. The algorithm for the load-balanced correction fol-
lows:

Load-balanced correction phase of JDcg

1. In the first JDcg (outer) iteration, do no load balanc-
ing. Each processor performs maxits BCGSTAB iter-
ations, calculates the rate at which it performed them,
and sends its rate to all other processors.

2. In subsequent JDcg iterations, use the rate measured
in the previous iteration to rank the processors from
fastest to slowest. To ensure numerical progress, faster
processors gather the more extreme eigenpairs and
residuals during the all-to-all of step 8 of JDcg.

3. Use the highest rate to determine T , and then iterate on
the correction equation for this time.

Algorithm: Load balanced JDcg
lbs = lb new lbstruct(MPI COMM WORLD);
Until convergence do:
// Control phase

Perform projection phase, steps 1–7 of JDcg
Determine optimal number of iterations optits
lb decide(lbs,optits,LB USE FASTEST);
ordering = lb get index(lbs);
All-to-all: faster procs receive more critical residuals

// Flexible Phase
lb section start(lbs);

for (ops = 0; lb continue(lbs,ops; 1) ; ops++)
Perform one BCGSTAB step on eq. (1)

lb section end(lbs,ops);
end do

Figure 1. Load balancing JDcg with LBLIB.
lb new lbstruct() is the constructor for
the LBS type. lb decide() exchanges pro-
cessor rates and estimates the time T for
the fastest processor to perform optits it-
erations. lb get index() returns an ar-
ray of processor id’s, sorted from slow-
est to fastest. lb section start() and
lb section end() denote the beginning and
end of the flexible section. lb continue()
returns TRUE if, using the current rate, it pre-
dicts that there is enough of the allotted time
T remaining for the processor to perform an-
other BCGSTAB iteration.

In [20], we obtained good results using this scheme to
balance CPU load in the presence of loads introduced by
external jobs. Additionally, we demonstrated the viability
of a method of avoiding thrashing when the memory re-
quirements of JDcg and any external loads exceed the avail-
able memory: we recede JDcg during the correction phase,
allowing the competing job to use 100% of the CPU and
memory, hopefully speeding its completion and hence re-
linquishing the resources.

To facilitate general use of our CPU and memory load
balancing strategies, we have written an object-based C li-
brary, LBLIB, that hides much of the required bookkeeping
from the application programmer. To simplify data man-
agement and provide information hiding, data required for
resource balancing are stored in a variable of the defined
type LBS, and are accessed through LBLIB functions. Fig-
ure 1 illustrates the use of LBLIB to balance CPU load in
JDcg.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

6. Enabling Grid computations

Multigrain parallelism hides communication latencies,
but, used by itself, it can accentuate or even introduce load
imbalance. For instance, if three identical processors are
used to run JD in fine-grain, there is perfect load balance.
However, if the same three processors are used to run multi-
grain JD with a block size of two, one solve group will con-
tain two processors and the other only one. Since the latter
group is only half as fast as the former, the load imbalance
is now 33.33%! Clearly, the utility of multi-grain is limited
if not used in conjunction with a load balancing scheme.

Fortunately, JDmg also fits the flexible-phase iteration
model and can be load balanced in the same manner as
JDcg. The only difference is that solve groups, rather than
individual processors, are the entities that work indepen-
dently during the correction phase. Processor 0 of each
solve group is responsible for coordinating the load balanc-
ing, calling the LBLIB functions, much as in figure 1. Prior
to the correction phase, each processor 0 uses the execution
rates of the independent solve groups to determine which
block its group should receive, and broadcasts this informa-
tion to the other members. During the correction phase, the
0th processors determine whether to perform another itera-
tion or to halt, and broadcast this information to their group.

Besides dynamic load and memory balancing, multigrain
allows also for an adaptive choice of granularity. Based on
measured network load either during the first iteration or
from performance monitoring libraries [30], the code could
decide on the number of solve groups and which nodes
each group should be assigned. The slowest links should
be assigned between groups or within the same small solve
group. We do not explore this possibility in this paper, but
we use simple group choices dictated by our experimenta-
tion environment.

6.1. Experiments on a Grid-like environment

We conducted a series of experiments with JDmg, using
it in fine-grain and multigrain modes (both with and without
load balancing). The experiments were run on SciClone,
a heterogeneous cluster of workstations at the College of
William and Mary. SciClone is an ideal testbed for Grid
applications because it employs three different processor
configurations, two networking technologies, and is orga-
nized as a cluster of subclusters. Thus it effectively captures
three levels of heterogeneity that are characteristic of Grid-
based computing: node architecture, networks, and number
of nodes at a site. Figure 2 details the architecture of the
portion of SciClone that we use. In all experiments, we use
JDmg with block size k = 4 to compute the lowest eigen-
value of a matrix derived from a 3-D finite element prob-
lem [2]. The matrix is of dimension 268; 515 and contains

Nodes Time Mvecs
A 2912 12564
AB 1784 11944
C32 2597 12564
C 2087 11944
D4 23944 13600
D8 11424 12808
D 6560 13466

Nodes Time Mvecs
AC32 1489 11944
ABC 1714 13104
AD 3378 13178
ABD 1856 12914
C32D 2679 13178
CD 1970 12914
AC32D 1813 12914
ABCD 1732 14266

Table 1. Performance of the fine-grain JD
running on different node configurations.
“Time” is wall-clock time in seconds and
“Mvecs” is the number of matrix-vector prod-
ucts computed. Strings within the “Nodes”
column specify what nodes are used for an
experiment: For each subcluster that is uti-
lized, its letter is given. If a subscript n is
appended to that letter, it indicates that only
n processors of the subcluster are utilized;
if no subscript is present, all processors are
utilized. For instance, “C” means that all 64
processors of cluster C are used, while C32D
indicates that 32 processors from cluster C
are used together with all the processors from
cluster D.

3; 926; 823 non-zero elements. BCGSTAB is preconditioned
with a sparse approximate inverse preconditioner from the
ParaSails library [5].

To enable measurement of load imbalance in the multi-
grain experiments, we timestamp the beginning and end of
synchronous communication calls. Since these calls are
synchronous, the imbalance on a node can be calculated as
the time each communication took to complete minus the
minimum time the same call took to complete on any of the
processors. Summing these imbalances over all communi-
cations and processors, we obtain an aggregate of all wasted
CPU cycles. Dividing by the sum of wall-clock times over
all processors yields the percentage of time wasted due to
load imbalance. Note that we do not timestamp commu-
nications internal to the solve groups during the correc-
tion phase, because we are interested only in the imbalance
across solve groups. Additionally, we do not timestamp
communication calls associated with matrix-vector prod-
ucts because those are performed via ParaSails calls. This
causes a slight underestimate of the overall load imbalance
during the projection phase. The load imbalance estimates
are quite accurate, however, because the formation of the
matrix-vector products in the projection phase comprises a
negligible part of the execution time.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

36−port Fast Ethernet Switch36−port Fast Ethernet Switch

32 SUN Ultra5s... ...

36−port Fast Ethernet Switch

32 SUN Ultra5s... ...

A B C D

Ultra5 333

Ultra420
Ultra60

450
360

MHz Mem Cache
256
512

4GB 4MB
2MB
2MB

...

Typhoon Tornado Hurricane

SUN Ultra60s Ultra 420Rs

12−port Gigabit Ethernet

32 Dual processor 4 Quad processor

SciClone Cluster

12−port Gigabit Ethernet

Figure 2. SciClone: The William and Mary heterogeneous cluster of three homogeneous clusters:
Typhoon, Tornado (also called C), and Hurricane (also called D). We distinguish between A and B,
the subclusters of Typhoon, because their intercommunication passes through the Gigabit switch.
There are three levels of heterogeneity: node architecture, number of nodes, and networks.

We have tested the fine-grain implementation on sev-
eral node combinations from various clusters (Table 1). We
mention a few important observations here. The speedup
from 32 to 64 Ultra5’s (experiments A and AB) is about
1.63, but the speedup on the Ultra60’s (experiments C32 and
C), machines with faster processors and more cache mem-
ory, is only about 1.24. We suspect that the poor speedup on
cluster C may be the result of two MPI processes on each
node contending for the network interface. Similar behavior
is observed on the SMPs of the D cluster.

Further improvement in fine-grain speedup can be ob-
tained by using clusters A and C32, with only one processor
on each Ultra60. For instance, there is a speedup of 1.74 be-
tween experiments C32 and AC32, and 1.95 between A and
AC32. For this small number of relatively homogeneous
nodes the good scalability leaves little room for multigrain
improvements. However, multigrain improves performance
if the size of the solve groups increases. In Table 2, ex-
periments (AB)C and ABC32C32 yield significantly better
timings compared to fine-grain test ABC because multi-
grain is able to hide the latency introduced by the additional
processors.

As discussed earlier, multigrain alone may not result in
performance improvements if the rates at which each sub-
group performs matrix-vector products vary greatly. With
the exception of two experiments (AD and (AB)C32C32D),
when subcluster D is used in conjunction with other sub-
clusters the multigrain code performs much worse than its
fine-grain counterpart. This trend is an example of multi-
grain’s tendency to accentuate load imbalance: the much

smaller number of processors in subcluster D results in a
slower solve group, and thus greater load imbalance.

The experiments using multigrain with load balancing,
however, yield much better results. When combining clus-
ters of disparate power (e.g., (AB)D or CD) the load bal-
anced multigrain method outperforms significantly both the
unbalanced multigrain and fine grain methods. When the
clusters involved are relatively homogeneous (e.g., AC32,
(AB)C or ABC32C32), load balancing still performs compa-
rably to multigrain and always improves performance over
fine grain. Overall, load imbalance is almost always below
a tolerable level of 10%, and the problem is solved twice
as fast as any combination of clusters using traditional fine
grain methods.

7. Conclusions and future work

As computing environments become increasingly com-
plex, consisting of collections of heterogeneous COWs ei-
ther in the same local area network or geographically dis-
persed, it becomes increasingly important to devise new al-
gorithmic techniques that tolerate high network tolerances
and that adapt to the (often dynamically) varying system
load. We have presented two such techniques, multigrain
and an application-level load balancing strategy, that apply
to iterative methods. The key idea for multigrain is that it
transfers the bulk of the convergence work from the outer it-
eration to an inner iteration that processors can execute for
a long time independently, thus tolerating arbitrary large la-
tencies. The key idea for the load balancing technique is to

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

Without load balancing With load balancing
Nodes Time Mvecs %imbal Time Mvecs %imbal
AD 3265 13058 36.17 1746 10515 4.47
A16A16D8D8 4022 16910 38.96 1692 11208 5.14
C32D 3282 13058 39.57 1631 10478 5.01
A16A16C16C16 1405 12424 11.02 1546 14698 5.24
C16C16D8D8 4037 16910 41.71 1544 10711 6.22
AC32 1585 12730 9.46 1450 12833 2.05
CD 3495 13996 52.37 1381 9608 7.68
C32C32D8D8 3132 13124 58.32 1284 11202 9.94
(AB)C 1198 12656 11.97 1214 13653 5.98
(AB)D 3500 13996 55.42 1126 8870 8.97
ABC32C32 981 12240 21.00 991 14167 8.99
ABD8D8 3152 13124 61.58 941 8680 11.78
(AB)C32C32D 1870 14534 52.64 724 9481 15.05

Table 2. Performance of the multigrain JD running on different node configurations, with and without
load balancing. “Nodes”, “Time” and “Mvecs” are as in Table 1. “%imbal” is the percentage of time
wasted due to load imbalance. When multiple subclusters are assigned to one block vector, they are
grouped together with parentheses. E.g., “(AB)” indicates that subclusters A and B work together
on the same block vector (are in the same solve group), whereas “AB” indicates that subclusters A
and B work on different block vectors (each composing their own solve group).

let every processor execute on the inner iteration for a fixed
amount of time, thus achieving ideal load balancing during
the dominant phase of the algorithm. Iterative methods for
the numerical solution of eigenvalue problems are notori-
ously synchronous. Yet, by applying our two techniques
on such a method, we have managed to significantly im-
prove scalability on a collection of heterogeneous clusters
over traditional fine grain implementations.

Future extensions include identifying potential applica-
tions that fit into the flexible iteration model, and dealing
with the situation of heterogeneous clusters of heteroge-
neous workstations. The latter case can be addressed by
applying two levels of our load balancing library; one inter-
cluster and one intra-cluster using a domain decomposition
preconditioner and a flexible version of GMRES.

References

[1] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Informa-
tion and control in gray-box systems. In 18th Symposium on
Operating Systems Principles (SOSP ’18), October 2001.

[2] L. Bergamaschi, G. Pini, and F. Sartoretto. Parallel pre-
conditioning of a sparse eigensolver. Parallel Computing,
27(7):963–76, 2001.

[3] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao.
Application level scheduling on distributed heterogeneous
networks. In Supercomputing 1996, Fall 1996.

[4] F. Chang and V. Karamcheti. Automatic configuration and
run-time adaptation of distributed applications. In 9th IEEE

Inlt. Symp. on High Performance Distributed Computing,
August 2000.

[5] E. Chow. ParaSails: Parallel sparse approximate inverse
(least-squares) preconditioner. Technical report, Center for
Applied Scientific Computing, Lawrence Livermore Na-
tional Laboratory, L-560, Box 808, Livermore, CA 94551,
2001.

[6] K. Devine, B. Hendrickson, E. Boman, M. St.John, and
C. Vaughan. Zoltan: A dynamic load-balancing library for
parallel applications; user’s guide. Technical Report Tech.
Rep. SAND99-1377, Sandia National Laboratories, Albu-
querque, NM, 1999.

[7] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. van der
Vorst. Numerical Linear Algebra for High Performance
Computers. SIAM, Philadelphia, PA, 1998.

[8] D. G. Feitelson and L. Rudolph, editors. 2000 Workshop on
Job Scheduling Strategies for Parallel Processing, volume
1911. LNCS, 2000.

[9] D. R. Fokkema, G. L. G. Sleijpen, and H. A. van der Vorst.
Jacobi-Davidson style QR and QZ algorithms for the partial
reduction of matrix pencils. SIAM J. Sci. Comput., 20(1),
1998.

[10] I. Foster and C. Kesselman. Globus: A metacomputing in-
frastructure toolkit. International Journal of Supercomputer
Applications, 11(2):115–128, 1997.

[11] I. Foster and C. Kesselman, editors. The Grid — Blueprint
for a New Computing Infrastructure. Morgan Kaufmann,
1998.

[12] G. H. Golub and R. Underwood. The block Lanczos method
for computing eigenvalues. In J. R. Rice, editor, Mathemati-
cal Software III, pages 361–377, New York, 1977. Academic
Press.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

[13] A. S. Grimshaw and W. A. W. et al. The Legion vision of a
worldwide virtual computer. Communications of the ACM,
40(1), 1997.

[14] B. Hendrickson and R. Leland. The Chaco useer’s guide,
Version 1.0. Technical Report SAND92-1460, Sandia Na-
tional Laboratories, Albuquerque, NM, 1992.

[15] K. Hwang and Z. Xu. Scalable Parallel Computing.
WCB/McGraw Hill, 1998.

[16] G. Karypis and V. Kumar. METIS: unstructured graph parti-
tioning and sparse matrix ordering system. Technical report,
Department of Computer Science, University of Minnesota,
Minneapolis, 1995.

[17] G. Karypis and V. Kumar. A parallel algorithm for multilevel
graph partitioning and sparse matrix ordering. Journal of
Parallel and Distributed Computing, 48:71–85, 1998.

[18] S. Kuznetsov, G. C. Lo, and Y. Saad. Parallel solution
of general sparse linear systems. Technical Report UMSI
97/98, Minnesota Supercomputer Institute, University of
Minnesota, Minneapolis, MN, 1997.

[19] J. R. McCombs and A. Stathopoulos. Multigrain parallelism
for eigenvalue computations on networks of clusters. In Pro-
ceedings of the Eleventh IEEE International Symposium On
High Performance Distributed Computing, pages 143–149,
July 2002.

[20] R. T. Mills, A. Stathopoulos, and E. Smirni. Algorithmic
modifications to the Jacobi-Davidson parallel eigensolver to
dynamically balance external CPU and memory load. In
2001 International Conference on Supercomputing, pages
454–463. ACM Press, 2001.

[21] B. N. Parlett. The Symmetric Eigenvalue Problem. SIAM,
Philadelphia, PA, 1998.

[22] Y. Saad. On the rate of convergence of the Lanczos and
the block-Lanczos methods. SIAM J. Numer. Anal., 17:687–
706, 1980.

[23] Y. Saad. Iterative methods for sparse linear systems. PWS
Publishing Company, 1996.

[24] Y. Saad and M. Sosonkina. Non-standard parallel solution
strategies for distributed sparse linear systems. In A. U.
P. Zinterhof, M. Vajtersic, editor, Parallel Computation:
Proc. of ACPC’99, Lecture Notes in Computer Science,
Berlin, 1999. Springer-Verlag.

[25] G. L. G. Sleijpen, A. G. L. Booten, D. R. Fokkema, and
H. A. van der Vorst. Jacobi-davidson type methods for gen-
eralized eigenproblems and polynomial eigenproblems. BIT,
36(3):595–633, 1996.

[26] G. L. G. Sleijpen and H. A. van der Vorst. A Jacobi-
Davidson iteration method for linear eigenvalue problems.
SIAM J. Matrix Anal. Appl., 17(2):401–425, 1996.

[27] A. Stathopoulos and C. F. Fischer. Reducing synchroniza-
tion on the parallel Davidson method for the large,sparse,
eigenvalue problem. In Supercomputing ’93, pages 172–
180, Los Alamitos, CA, 1993. IEEE Comput. Soc. Press.

[28] A. Stathopoulos and J. R. McCombs. A parallel, block,
Jacobi-Davidson implementation for solving large eigen-
problems on coarse grain environments. In 1999 Inter-
national Conference on Parallel and Distributed Process-
ing Techniques and Applications, pages 2920–2926. CSREA
Press, 1999.

[29] A. Stathopoulos, S. Öğüt, Y. Saad, J. R. Chelikowsky, and
H. Kim. Parallel methods and tools for predicting material
properties. Computing in Science and Engineering, 2(4):19–
32, 2000.

[30] R. Wolski, N. Spring, and J. Hayes. The network weather
service: A distributed resource performance forecasting ser-
vice for metacomputing. Journal of Future Generation
Computing Systems, 15(5-6):757–768, 1999.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

