
Progress Towards Optimizing the PETSc Numerical
Toolkit on the Cray X-1

Richard Tran Mills1, Ed D’Azevedo2, Mark Fahey1

1National Center for Computational Sciences
2Computer Science and Mathematics Division

Oak Ridge National Laboratory

Cray User Group Technical Meeting
May 19, 2005

This research supported by the Laboratory Directed Research and Development Program of Oak Ridge National
Laboratory (ORNL). This work was performed using resources at the National Center for Computational
Sciences at ORNL, which is supported by the U.S. Department of Energy under Contract Number DE-AC05-
00OR22725.

Deterministic solution of PDEs

Many scientific codes simulate systems by solving PDEs.
Typically:

Discretize system: Consider finite number of points
Obtain linear systems

Bulk of time spent solving large, sparse linear systems.
Can solve with direct methods (Gaussian-elimination)

Guaranteed to find solution
But hard to scale to large systems, many processors

Iterative methods are an increasingly popular alternative
Can scale to large problem sizes
Easy to parallelize
Require less time to find solution

bAx =

Unfortunately…

Modern iterative solver packages designed for scalar architectures!
Out-of-box performance is terrible!

We describe ongoing work to provide vectorized PETSc kernels.

PETSc:
Object-oriented framework for scalable solution of PDEs
Several iterative (linear & nonlinear) solvers & preconditioners
Seamless interface w/ other packages (e.g. SuperLU, Hypre)
Shields user from complicated data structures, communication

Initial work has focused on sparse matrix-vector multiply,
a vital component of Krylov-subspace methods.

Outline

Review sparse matrix storage formats, mat-vec algorithms

Describe CSRPERM algorithm
With vectorization of CSR data in place
With rearrangement using ELLPACK storage

Construction of CSRPERM matrix class into PETSc
Seamless integration to fully take advantage of PETSc

Initial performance results on the X1

Compressed Sparse Row (CSR)

CSR is most widely-used format for general sparse matrices
Stores matrix in three arrays:

val: nonzero elements in row-by-row fashion
col_ind: column index of each element of val
row_ptr: points to beginning of each row in val

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

550000
0444300
353433031
02402221
0140011

A

val 11 14; 21 22 24; 31 33 34 35; 43 44; 55
col_ind 1 4; 1 2 4; 1 3 4 5; 3 4; 5

row_ptr 1 3 6 10 12 13

Mat-vec proceeds directly through val, operating row-by-row.
Poor performance on vector machines b/c of short row vectors

1st order star-type FD stencil: 5 elements per row in 2D, 7 elements in 3D

ELLPACK/ITPACK Format (ELL)

If all rows have similar # nonzeros, can use ELLPACK format
Uses two N x NZMAX arrays constructed by:

Shifting all nonzeros left
Columns of shifted “matrix” stored consecutively in val
Corresponding col_ind array stores column indices

val(:,1) 11 14 0 0
val(:,2) 21 22 24 0
val(:,3) 31 33 34 35
val(:,4) 43 44 0 0
val(:,5) 55 0 0 0

col_ind(:,1) 1 4 1 1
col_ind(:,2) 1 2 4 2
col_ind(:,3) 1 3 4 5
col_ind(:,4) 3 4 4 4
col_ind(:,5) 5 5 5 5

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

550000
0444300
353433031
02402221
0140011

A

Mat-vecs proceed along columns of val
Long vectors + regular access yields good compiler vectorization

Jagged Diagonal Format (JAD)

Jagged Diagonal (JAD) storage eliminates zero padding of ELL.
To construct:

Permute matrix, ordering rows by decreasing number of nonzeros
First JAD: leftmost nonzeros of row 1, row2, etc. of PA
Second JAD: next nonzeros from row 1, row2, etc.

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

550000
0444300
0140011
02402221
353433031

PA

jdiag 31 21 11 43 5; 33 22 14 44; 34 24; 35
col_ind 1 1 1 3 5; 3 2 4 4; 4 4; 5

jd_ptr 1 6 10 12

perm 3 2 1 4 5

Mat-vecs proceed along jagged diagonals; yields long vector lengths
Significant memory traffic to repeatedly read/write result vector y

CSR with permutation (CSRPERM)

Like JAD, sort (permute) rows based on # nonzeros
Construct groups of rows w/ same # nonzeros

Mat-vec computed one group at a time:
Performs mat-vec for a group in same manner as ELLPACK
No zero padding b/c of sorting

Reduced memory bandwidth requirements compared to JAD

Can leave CSR data in place (CSRP):
Only need O(N) extra storage for permutation
Irregular memory access to val array

Or, can copy groups into ELLPACK format (CSRPELL):
Better memory access pattern
But storage requirements doubled

Conceptual comparison between JAD and CSRP

JAGGED DIAGONAL

ROWS ROWS

NONZEROS NONZEROS

CSR WITH PERMUTATION

Creating a CSRPERM matrix class for PETSc

PETSc is written in C, but uses an object-oriented design:
Has its own function tables, dispatch mechanism
Employs data encapsulation, polymorphism, inheritance

All PETSc objects are derived from an abstract base type
Mat is the base matrix type
MATAIJ is the standard CSR-format instantiation

We seamlessly integrate support for out CSRP algorithm into PETSc,
creating a CSRPERM matrix type derived from AIJ.
We inherit most methods from AIJ;
only a few select methods must be overridden.

Matrix creation method

In PETSc, a Mat object A is built into a particular type by
MatSetType(Mat mat, MatType Type)
If Type is MATSEQCSRPERM, then PETSc calls our internal routine:

1 PetscErrorCode MatCreate_SeqCSRPERM(Mat A)
2 {
3 PetscObjectChangeTypeName((PetscObject)A,MATSEQCSRPERM);
4 MatSetType(A,MATSEQAIJ);
5 MatConvert_SeqAIJ_SeqCSRPERM(A,MATSEQCSRPERM,MAT_REUSE_MATRIX,&A);
6 return(0);
7 }

Line 4 builds an empty MATSEQAIJ matrix.
Line 5 converts that to object to our MATSEQCSRPERM type.

MatConvert Routine

1 PetscErrorCode MatConvert_SeqAIJ_SeqCSRPERM(Mat A,MatType type,
2 MatReuse reuse,Mat *newmat)
3 {
4 Mat B = *newmat;
5 Mat_SeqCSRPERM *csrperm;
6 ...
7 ierr = PetscNew(Mat_SeqCSRPERM,&csrperm);CHKERRQ(ierr);
8 B->spptr = (void *) csrperm;
9 ...

10 /* Set function pointers for methods that we inherit from AIJ but
11 * override. */
12 B->ops->duplicate = MatDuplicate_SeqCSRPERM;
13 B->ops->assemblyend = MatAssemblyEnd_SeqCSRPERM;
14 B->ops->destroy = MatDestroy_SeqCSRPERM;
15 B->ops->mult = MatMult_SeqCSRPERM;
16 B->ops->multadd = MatMultAdd_SeqCSRPERM;
17
18 ierr = PetscObjectChangeTypeName((PetscObject)B,MATSEQCSRPERM);CHKERRQ(ierr);
19 *newmat = B;
20 PetscFunctionReturn(0);
21 }

Lines 7-8 allocate CSRPERM data structure, stash it in spptr.
Lines 12-16 set pointers for AIJ methods we override.

Assembly of the CSRP matrix

In PETSc, assemblyend finalizes construction of matrix data structure
Creating CSRPERM proceeds from AIJ data structure,
so use AIJ assemblyend and then proceed from there

PetscErrorCode MatAssemblyEnd_SeqCSRPERM(Mat A, MatAssemblyType mode)
{
PetscErrorCode ierr;
Mat_SeqCSRPERM *csrperm = (Mat_SeqCSRPERM*) A->spptr;
Mat_SeqAIJ *a = (Mat_SeqAIJ*)A->data;

...
a->inode.use = PETSC_FALSE;
(*csrperm->AssemblyEnd_SeqAIJ)(A, mode);

/* Now calculate the permutation and grouping information. */
ierr = SeqCSRPERM_create_perm(A);
PetscFunctionReturn(0);

}

Parallel (MPI) CSRPERM class

What I’ve shown so far is for the sequential CSRPERM instantiation.

Implementing the parallel MATMPICSRPERM class is trivial!
MPIAIJ is simply a collection of SeqAIJs storing local matrix portions
Similarly, MPICSRPERM a collection of SeqCSRPERMs:

MPICSRPERM inherits from MPIAIJ;
changes the type for local mats from SeqAIJ to SeqCSRPERM.

So why bother writing all this glue code?

Use CSRP kernels without modification to existing codes
Register CSRPERM class with PETSc
Use PETSc’s options database to select appropriate routines:
“-mat_type csrperm”
Use options database to set CSRPERM options
(e.g., copy groups to ELLPACK format or not)

Get CSRPERM accepted into the official PETSc source
Now a supported matrix class
Available in petsc-dev now; should be in next public release

Performance: Sparse mat-vec

Name N Nonzeros Description
Astro 5706 60793 Nuclear astrophysics problem
bcsstk18 11948 80519 Stiffness matrix from Harwell-Boeing library
7pt 110592 760320 7-pt stencil in 48 x 48 x 48 grid
7pt_blk 256000 7014400 4x4 blocks 7-pt stencil in 40 x 40 x 40 grid

astro bcsstk18

Performance: Sparse mat-vec

Name N Nonzeros Description
Astro 5706 60793 Nuclear astrophysics problem
bcsstk18 11948 80519 Stiffness matrix from Harwell-Boeing library
7pt 110592 760320 7-pt stencil in 48 x 48 x 48 grid
7pt_blk 256000 7014400 4x4 blocks 7-pt stencil in 40 x 40 x 40 grid

 SSP MSP
Problem CSR CSRP CSRPELL CSR CSRP CSRJAE

astro 26 163 311 14 214 655
bcsstk18 28 315 340 15 535 785

7pt 12 259 295 8 528 800
7pt_blk 66 331 345 63 918 1085

Performance of sparse mat-vec in MFlops/s

Performance: PETSc example codes

Run two PETSc examples on 1 MSP:

ksp_ex2: Solves 2D Laplace problem w/ 5-pt FD stencil, 300x300 grid

snes_ex14: 3D fuel ignition via Newton-Krylov, 7pt FD, 32x32x32 grid

 total MatMult PCApply
plain, GMRES+ILU(0) 451.3 218.9 227.6
vec, GMRES+ILU(0) 235.8 1.6 229.5
vec, GMRES+Jacobi 36.9 14.6 1.1
plain, GMRES+Jacobi 1423 1400.0 1.1

 total MatMult PCApply
plain, GMRES+ILU(0) 26.1 10.5 11.3
vec, GMRES+ILU(0) 15.5 0.1 11.0
vec, GMRES+Jacobi 5.3 0.7 0.1
plain, GMRES+Jacobi 36.5 32.6 0.1

Performance: PFLOTRAN

PFLOTRAN: Parallel, fully implicit, multiphase groundwater flow and
transport code; coauthored w/ Peter Lichtner at LANL
Run 3D flow + heat transport problem from NTS on 512 SSP’s
95 x 65 x 50 grid, 3 degrees of freedom per node

 total MatMult PCApply
plain, GMRES+ILU(0) on subdomains 26.9 4.7 6.2
vec, GMRES+ILU(0) on subdomains 22.2 1.8 6.2
vec*, GMRES+Jacobi 33.7 10.3 0.3
plain, GMRES+Jacobi 54.0 30.5 0.3

Performance: M3D

M3D: 3D resistive MHD code from PPPL.
Run on 16 MSPs w/ on a tearing-mode case.

 total MatMult PCApply
plain, GMRES+ILU(3) on subdomains 42.0 7.8 17.1
vec, GMRES+ILU(3) on subdomains 37.3 0.9 17.1
vec, GMRES+Jacobi 41.8 6.6 0.6
plain, GMRES+Jacobi 94.3 57.3 0.6

Can’t improve time w/ Jacobi,
but note that 21-22 minutes spent in GMRES orthogonalization!
PPPL currently uses GMRES basis size of 1000!
Might be a win if we use TFQMR, Bi-CGSTAB… or simply a more
reasonable GMRES basis size!

Summary and Future Directions

Presented the CSRP mat-vec algorithm
Promotes long vector lengths
Can work well w/ CSR data left in-place
Implemented CSRPERM matrix type in PETSc

Preconditioning still presents a big hurdle:
Could try to speed up triangular solves for ILU

Multicoloring can work, but degrades preconditioner quality
Block-recursive formulation yielding series of mat-vecs
Take first few terms of Neumann expansion of factorization

Don’t use incomplete factorizations?
Sparse approximate inverses
Polynomial preconditioners

	Deterministic solution of PDEs
	Unfortunately…
	Outline
	Compressed Sparse Row (CSR)
	ELLPACK/ITPACK Format (ELL)
	Jagged Diagonal Format (JAD)
	CSR with permutation (CSRPERM)
	Conceptual comparison between JAD and CSRP
	Creating a CSRPERM matrix class for PETSc
	Matrix creation method
	MatConvert Routine
	Assembly of the CSRP matrix
	Parallel (MPI) CSRPERM class
	So why bother writing all this glue code?
	Performance: Sparse mat-vec
	Performance: Sparse mat-vec
	Performance: PETSc example codes
	Performance: PFLOTRAN
	Performance: M3D
	Summary and Future Directions

