
Vectorized Parallel Sparse Matrix-Vector Multiplication in PETSc
Using AVX-512

Hong Zhang
Mathematics and Computer Science Division

Argonne National Laboratory
Lemont, IL, USA

hongzhang@anl.gov

Richard T. Mills
Mathematics and Computer Science Division

Argonne National Laboratory
Lemont, IL, USA
rtmills@anl.gov

Karl Rupp
Institute for Microelectronics

TU Wien
Wien, Austria

me@karlrupp.net

Barry F. Smith
Mathematics and Computer Science Division

Argonne National Laboratory
Lemont, IL, USA

bsmith@mcs.anl.gov

ABSTRACT
Emerging many-core CPU architectures with high degrees of single-
instruction, multiple data (SIMD) parallelism promise to enable
increasingly ambitious simulations based on partial differential
equations (PDEs) via extreme-scale computing. However, such ar-
chitectures present several challenges to their efficient use. Here,
we explore the efficient implementation of sparse matrix-vector
(SpMV)multiplications—a critical kernel for the workhorse iterative
linear solvers used in most PDE-based simulations—on recent CPU
architectures from Intel as well as the second-generation Knights
Landing Intel Xeon Phi, which features many CPU cores, wide
SIMD lanes, and on-package high-bandwidth memory. Traditional
SpMV algorithms use compressed sparse row storage format, which
is a hindrance to exploiting wide SIMD lanes. We study alternative
matrix formats and present an efficient optimized SpMV kernel,
based on a sliced ELLPACK representation, which we have im-
plemented in the PETSc library. In addition, we demonstrate the
benefit of using this representation to accelerate preconditioned
iterative solvers in realistic PDE-based simulations in parallel.

KEYWORDS
parallel SpMV, PETSc, vectorization, many-core, Xeon Phi

ACM Reference Format:
Hong Zhang, Richard T. Mills, Karl Rupp, and Barry F. Smith. 2018. Vec-
torized Parallel Sparse Matrix-Vector Multiplication in PETSc Using AVX-
512 . In ICPP 2018: 47th International Conference on Parallel Processing, Au-
gust 13–16, 2018, Eugene, OR, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3225058.3225100

1 INTRODUCTION
The numerical solution of partial differential equations (PDEs) often
requires the solution of large sparse linear systems. The standard

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
ICPP 2018, August 13–16, 2018, Eugene, OR, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6510-9/18/08. . . $15.00
https://doi.org/10.1145/3225058.3225100

algorithms to solve these systems are preconditioned Krylov sub-
space solvers, where the computational cost is often dominated by
sparse matrix-vector (SpMV) multiplications in the application of
the linear operator and within the preconditioner [6]. The perfor-
mance of these operations can be strongly affected by the sparse
matrix storage format, the optimal choice of which depends on the
underlying hardware and the matrix structure.

Many research efforts in high-performance computing (HPC)
aim to design a single format or framework to deliver good perfor-
mance for all applications, focusing on performance engineering
for a benchmark using a collection of matrices arising from highly
diverse fields. However, a single format is unlikely to suffice for the
performance and algorithmic needs of versatile scientific comput-
ing libraries such as the Portable Extensible Toolkit for Scientific
computation (PETSc) [1]. PETSc is used for diverse scientific com-
puting tasks but is most often employed in applications based on
partial differential equations (PDEs), where matrices typically re-
sult from spatial discretization using finite-element, finite-volume,
or finite-difference methods that often have characteristic diago-
nal or off-diagonal sparse structure. Therefore, in order to exploit
the special characteristics of these matrices, a variety of matrix
formats such as AIJ (compressed sparse row – CSR), BAIJ (block
CSR – BCSR), SBAIJ (symmetric BCSR), AIJPERM, AIJCUSPARSE,
and AIJVIENNACL have been developed in PETSc in the past two
decades. Although CSR is the most widely used among PETSc ap-
plications because of its generality and its suitability for standard
CPUs, the others either take advantage of the block or symmetric
structure (BAIJ and SBAIJ) or are designed for specific platforms
such as vector computers (AIJPERM) and graphics processing units
(GPUs) (AIJCUSPARSE, AIJVIENNACL).

Sparse linear algebra libraries often support operations similar
to level 1 and level 2 BLAS. Because of the low arithmetic intensity
of these sparse kernels, tuning or optimizing their performance on
many-core architectures [24], such as GPUs, is generally focused on
achieving optimal memory bandwidth, rather than the complicated
register- and cache-centric optimizations required for compute-
intensive dense kernels. The Intel Xeon Phi architecture, especially

https://doi.org/10.1145/3225058.3225100
https://doi.org/10.1145/3225058.3225100

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Hong Zhang, Richard T. Mills, Karl Rupp, and Barry F. Smith

the current generation (Knights Landing, or KNL), offers high mem-
ory bandwidth and a large amount of on-chip parallelism, present-
ing a good opportunity to improve the performance for large-scale
memory-bound applications. Thousands of KNL nodes are used
in production on current large-scale supercomputers (Theta at Ar-
gonne National Laboratory and Cori at NERSC).

Intel Xeon Phi processors feature substantially more cores than
standard Xeon processors, configurable on-chip interconnect, wide
vector units, and on-package MCDRAM (a high-bandwidth mem-
ory) [2]. The Xeon Phi uses the same programming models as its
multicore x86 predecessors, making application migration and port-
ing straightforward. However, achieving high performance usually
requiresmaking efficient use of wide vector units. Generating vector
code can be accomplished with autovectorization by the compiler
for simple loops, but more complex loop structures may require
manual efforts such as refactoring the code and using Intel intrinsic
functions. In this work we discuss the performance optimization
of the parallel SpMV kernel for PETSc native matrix formats and
introduce the design and implementation of a sliced ELLPACK for-
mat and an efficient SpMV kernel based on it. We investigate the
impact of these sparse matrix formats and key hardware features
using representative applications that are solved with sophisticated
linear solvers and preconditioners.

2 BACKGROUND
PETSc features a hierarchy of linear, nonlinear, and timestepping ob-
jects that can be combined in a composable manner, which enabling
users to build their applications at a different levels of abstraction
(Figure 1). Near the bottom of the hierarchy are parallel data struc-
tures based on MPI. In this section, we first introduce the existing
matrix formats in PETSc and the most important linear algebra
kernel based on them. We then briefly discuss the related work for
a more SIMD-friendly format named ELLPACK. We also describe
the specifications of the KNL architecture and some observations
from benchmark tests.

Level of
abstraction

SNES
(Nonlinear solvers)

TS
(Time stepping solvers)

PC
(Preconditioners)

KSP
(Krylov subspace solvers)

Matrices
(CSR,BCSR) Vectors Index sets

MPI

Figure 1: Hierarchical structure of the PETSc library.

2.1 Parallel sparse matrices in PETSc
In PETSc a parallel sparse matrix is generally distributed across dif-
ferent processors by row, with each process storing the correspond-
ing portion as two matrices, one containing the square “diagonal
block” and the other containing everything else (combined virtually

into an “off-diagonal block”). Figure 2 shows a sketch of the matrix
storage layout. This partitioning strategy enables elegant reuse of
the kernels written for the sequential versions so as to improve
developer productivity and software maintainability.

Figure 2: Storage layout for a PETSc sparse matrix.

2.2 Sparse matrix-vector multiplication
Sparse matrix-vector multiplications are the dominant components
of both PETSc Krylov space iterative solvers and many precon-
ditioners used together with the solvers, such as multigrid and
polynomial preconditioners.

In parallel, each process owns a consecutive row block of the
matrix and a portion of the input vector that corresponds to these
rows. The parallel SpMV kernel reuses the sequential SpMV kernel
for the diagonal block and overlaps the communication of nonlocal
vector entries with computation. In particular, it takes the following
steps:

(1) Send nonblocking request for the nonlocal data of the vector
on other processors;

(2) Multiply the diagonal block with the local portion of the
vector using the sequential SpMV kernel;

(3) Wait for the data transfer to complete;
(4) Multiply the off-diagonal block using the sequential SpMV

kernel.
The off-diagonal matrix block is typically sparse and contains
only a few nonzero rows and columns. In this case, not a full
CSR-representation of the off-diagonal block is used, but only the
nonzero rows are stored (“compressed CSR”). Consequently, the
SpMV kernel for the diagonal part of the local matrix usually domi-
nates the execution time.

2.3 CSR format
A CSR representation comprises three arrays: a dense array storing
nonzero matrix elements rowwise (val), an array indicating the
position of the first nonzero at each row (rowptr), and an array of
column indices (colidx), as illustrated in Figure 3.

CSR-based SpMV suffers from the following drawbacks:
(1) Loop remainder Vectorized implementation of the CSR

SpMV kernel will have to deal with a remainder whenever
the number of nonzeros in a row is not a multiple of the
SIMD vector length (8 for AVX512 in double precision). A
performance penalty will be incurred regardless of whether
the remainder loop is vectorized or not. The penalty becomes
more severe when each row has just a few nonzeros. In
general, efficient execution of the CSR SpMV requires that
the number of nonzeros per row be divisible by the vector

Vectorized Parallel Sparse Matrix-Vector Multiplication in PETSc Using AVX-512 ICPP 2018, August 13–16, 2018, Eugene, OR, USA

Figure 3: Representation for the compressed sparse row for-
mat.

length or large enough to mitigate the penalty due to the
remainder.

(2) Data locality The CSR SpMV kernel allows for consecutive
data access to the matrix and the output vector: the inner
loop iterates over elements in each row, which are stored
consecutively in memory; the outer loop runs over the ma-
trix row by row, writing to the output vector contiguously.
However, the accessing pattern for the input vector in the
inner loop depends on the column indices of the nonzero en-
tries in the matrix [21]. If the nonzeros in a row are sparsely
distributed, the vectorized load operation will produce non-
consecutive accesses to the input vector. This situation can
occur even with common matrices with fairly regular spar-
sity structure, such as banded matrices resulting from finite
difference or finite element discretization.

2.4 CSR with permutation
An algorithm that performs SpMV in CSR format without data
rearrangement was presented in [7]. It was implemented in PETSc
as a variant of the CSR format. The key idea is to keep data in place
and access it indirectly by using an extra permutation vector. The
SpMV kernel based on CSR with permutation is vectorized across
the row index just as in ELLPACK, resulting in irregular access
to the value array and the column index array. But when there
are many rows with the same number of nonzeros and nonunit
stride access is fast (which was the case for Cray X1-series vector
machines), the vectorization can still be effective.

2.5 ELLPACK formats
The ELLPACK format and its variants (such as ELLPACK-R [23],
pJDS) were originally developed for early vector processor ma-
chines and have a history of successful use on GPUs [3–5, 13, 17, 25,
26]. The basic idea of ELLPACK is to shift the nonzero entries of a
sparse matrix to the left and store them column by column in a𝑚×𝐿
dense array, where 𝐿 is the maximum number of zeros in any row.
Padded zeros are used in rows with fewer than 𝐿 nonzeros. The long
column length of the dense array allows for exploitation of efficient
vectorization on architectures with wide SIMD (single instruction,
multiple data) or SIMT (single instruction, multiple threads) such
as GPUs. ELLPACK-R [23] adds an additional array that stores the
length of every row in order to avoid conditional branches and
reduce unneeded computation when computing SpMV on GPUs.
Bell and Garland [3] proposed a hybrid storage format that uses

ELLPACK for most of the matrix and coordinate format for any re-
maining nonzero elements. This approach can reduce the overhead
in pure ELLPACK when the number of nonzeros per row is uneven.
Sliced ELLPACK, proposed by Monakov et al. [17], partitions the
matrix into slices of𝐶 adjacent rows where𝐶 is a tunable parameter
that allows a trade-off between the storage penalty and vectoriza-
tion efficiency. Each slice is essentially a submatrix in ELLPACK
format, and the maximum number of zeros 𝐿 for each slice can
be different, making the matrix substantially more compact than
ELLPACK while allowing for memory access coalescing between
concurrent threads on GPU. If the slice height 𝐶 is chosen as 1,
the sliced ELLPACK format becomes identical to the CSR format,
which has optimal storage efficiency. Padded jagged diagonal stor-
age (pJDS) was proposed in [13]; it involves a row reordering to
further increase the storage efficiency for sliced ELLPACK when 𝐶
is larger than one. However, the row reordering can be detrimental
to the accessing pattern of the input vector. Kreutzer et al. [14]
proposed the SELL-C-𝜎 format, which limits the reordering scope
to 𝜎 rows instead of the global matrix. The parameters 𝐶 and 𝜎 de-
fine a unified framework for the implementation and performance
analysis of all ELLPACK-based formats.

Liu et al. [15] proposed the ELLPACK sparse block format that
partitions the matrix by rows and columns into large sparse blocks,
thus achieving much better performance than does CSR on the Intel
Xeon Phi.

2.6 KNL architecture
The KNL processor has up to 72 cores with multiple versions avail-
able containing either 64 or 68 cores. On the 64-core variant (KNL
7230), the chip has 64 cores, which are organized into 32 tiles with
each tile consisting of two cores sharing a 1 MB L2 cache. Integrated
on package are 16 GB of multichannel DRAM (MCDRAM), while
DRAM is off-package and connected by six DDR4 channels. The
frequency typically boosts by 0.2 GHz in turbo mode and drops by
0.2 GHz if there is a high proportion of AVX instructions.

MCDRAM can be configured into three modes: flat, cache, and
hybrid mode. In flat mode, MCDRAM is exposed by the operating
system (OS) as an additional NUMAnode. In cachemode,MCDRAM
serves as a large, direct-mapped last-level (L3) cache. This is the
default mode on Cori and Theta, since it requires no modifications
to the application code. The hybrid mode allows part of MCDRAM
to be used as cache and the rest to be explicitly controlled by the
user.

One of the most notable features of KNL is the introduction of
the AVX-512 instruction set. Compared with its predecessor AVX2,
it not only promotes the vector length from 256 bits to 512 bits, but
also adds new capabilities such as more efficient math functions,
support for new scalar data types, and more efficient scatter-gather.
AVX, AVX2, and AVX-512 can be mixed without performance penal-
ties. On KNL, AVX and AVX2 instructions operate on the lower 128
or 256 bits of the 512-bit ZMM registers.

Figure 4 shows the STREAM benchmark result for one 68-core,
7250 KNL node on NERSC’s CORI supercomputer. It plots sus-
tainable memory bandwidth versus the number of MPI processes.
MCDRAM memory bandwidth in flat mode scales to almost 500

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Hong Zhang, Richard T. Mills, Karl Rupp, and Barry F. Smith

GB/s, which is comparable to practical memory bandwidth deliv-
ered by recent GPUs. However, high process counts and proper
vectorization are needed to achieve high bandwidth: 58 processes
are needed to saturate in flat mode, and 40 processes are needed
in cache mode. We note that in flat mode, use of vectorization re-
sults in dramatically higher achieved memory bandwidth versus
unvectorized code, but in cache mode disabling vectorization only
slightly lowers the achieved bandwidth.

8 16 24 32 40 48 56 64

Number of MPI processes

0

100

200

300

400

500

600

700

A
c
h
ie

v
e
d
 B

a
n
d
w

id
th

 (
G

B
/s

) Flat:AVX512

Flat:novec

Cache:AVX512

Cache:novec

Figure 4: Stream tests on KNL.

3 GENERAL OPTIMIZATION
CONSIDERATIONS ON KNL

In the following we summarize code optimization strategies that are
particularly effective for KNL. The performance on conventional
multicore CPUs typically benefits from these optimizations as well.

3.1 Data alignment
Creating data on aligned boundaries can improve SIMD perfor-
mance on KNL. If the data in a vectorized loop is not aligned to the
cache line size, the compiler has to generate extra code to handle
the calculation for the portion of data not beginning at the cache
line boundary, resulting in a performance penalty. For example, in
Figure 5, given a cache line size of 64 bytes, an array aligned on
16-byte boundary requires special handling at the beginning of the
loop, which is called peel code. Aligning the data to 64 bytes can
avoid the execution of peel code.

In PETSc, dynamic allocations on the heap are always aligned
by some number of bytes set at configuration time, which can be
changed with the configuration option –with-mem-align=<n>. By
default, 16 bytes is used in PETSc. With this default alignment
setup, a build of PETSc with AVX-512 instructions enabled (e.g., by
passing -xMIC -AVX512 to the Intel compiler) results in example
applications to hang randomly on KNL because of the incorrect
alignment. The use of 64-byte alignment fixes the problem and
provides better performance because it matches the cache line size.

3.2 Blocking
Blocking is a common optimization technique that exploits inherent
data reuse by ensuring that the data remains in cache or registers

0 1 2 3 4 5

6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21

22 23 24 25 26 27

Peeled
loop

Vectorized
body loop

Remainder
loop

512 bits64-Byte boundary

Figure 5: Vectorizing a loop for double precision floating-
point computations.

across multiple uses. When applied to SpMV, it normally involves
loop splitting and data rearrangement.

Since the number of registers is relatively small, the goal of
register-level blocking is to identify small dense blocks in the ma-
trix so that portion of data in the input vector can be reused and
indexing overhead can be reduced. For matrices with natural blocks,
for example, PDE problems with multiple degrees of freedom, trans-
forming SpMV into multiplications of small dense blocks and small
vector segments is convenient and easy to transform. Otherwise,
matrix reorganization or zero padding may become necessary to
form small blocks. This will make the code difficult to write and the
savings highly dependent on the block size selected. PETSc provides
the BAIJ matrix type, which is based on the blocked CSR format
[9, 11], for problems with natural blocks; but it does not perform
register blocking for general matrices. Saule et al. reported that
the use of register blocking for CSR-based kernels has no perfor-
mance improvement on the first-generation “Knights Corner” Xeon
Phi [22]. Thus, in this paper we do not pursue register blocking for
the general CSR format.

On KNL, blocking seems to be more difficult because of the
large size of the vector registers. Matrices with small natural blocks
would need zero padding or masked vector operations, yielding
loss in SIMD efficiency.

Cache-level blocking can be a more attractive option because
it does not require a block structure to deliver good performance.
Row or column partitioning has been often used on both sparse
and dense matrices that do not fit into cache.

3.3 Loop remainder vectorization
Significant vectorized loop execution time is often spent in remain-
der loops. Although the remainder loop can be vectorized by using
masked operations on KNL, significant overhead is involved in set-
ting up the mask and executing a separate code path. This can result
in low SIMD efficiency; and the vectorized remainder loops can be
even slower than the scalar executions, because of the overhead of
masked operations and hardware or software padding. Normally
the compiler can determine if the remainder should be vectorized
based on an estimate of the potential gain. When trip count infor-
mation for a loop is unavailable, however, it will be difficult for the
compiler to make the optimal decision. Moreover, it is not feasible
for library developers or users to specify the range of trip counts
with #pragma because the number may vary significantly across
applications.

Vectorized Parallel Sparse Matrix-Vector Multiplication in PETSc Using AVX-512 ICPP 2018, August 13–16, 2018, Eugene, OR, USA

Whether the loop remainder is executed depends on the vector
length, workloads at runtime, and the unroll factor of the loop. For
example, given a vector length of 8, when looping over an array of
eight-byte data types, any loop with fewer than 8 iterations will be
executed in remainder loops.

3.4 Using MCDRAM
MCDRAM can be used in two ways under the flat mode of KNL.
One way is to use numactl, a command line tool that controls
NUMA scheduling or memory placement policy. The other way is
to explicitly call functions from memkind, a heap manager library
built on top of jemalloc, which provides partitioning of the heap
into different “kinds” of memory (normal-bandwidth DRAM vs.
high-bandwidth MCDRAM in this case). An advantage of memkind
is that the user is free from the burden of tracking which pool
of memory an allocation has come from and which deallocator
must be used. This greatly simplifies memory management when
there is need to use multiple types of memory at the same time
(e.g., save checkpoints on DRAM while perform computation using
MCDRAM). We have implemented routines to use memkind as an
allocator in PETSc, but for the flat mode experiments presented
here, we used the numactl approach.

4 OPTIMIZATIONS FOR CSR FORMAT
The most effective optimization techniques for a CSR-based SpMV
kernel targeting earlier CPUs without wide vector registers are
register blocking [12] and cache blocking [18]. As pointed out by
Liu et al. in [15], however, register blocking is not appropriate
for CPUs with wide SIMD and large register files such as KNC
because (i) it is difficult to produce large dense blocks that fit into
the registers by reordering sparse matrices and (ii) excessive zero
padding has to be used and may result in low SIMD efficiency.

Algorithm 1 Sparse matrix-vector product in CSR (row-
ptr,colidx,val)

1: for 𝑟𝑜𝑤𝑖𝑑 ← 𝑟𝑜𝑤𝑠𝑡𝑎𝑟𝑡, 𝑟𝑜𝑤𝑒𝑛𝑑 do
2: 𝑖𝑑𝑥 ← 𝑟𝑜𝑤𝑝𝑡𝑟 [𝑟𝑜𝑤𝑖𝑑]
3: 𝑦 [𝑟𝑜𝑤𝑖𝑑] ← 0
4: while 𝑖𝑑𝑥 < ⌊𝑟𝑜𝑤𝑝𝑡𝑟 [𝑟𝑜𝑤𝑖𝑑 + 1]/8⌋ ∗ 8 do
5: 𝑣𝑒𝑐_𝑣𝑎𝑙𝑠 ← load(&𝑣𝑎𝑙 [𝑖𝑑𝑥])
6: 𝑣𝑒𝑐_𝑖𝑑𝑥 ← load(&𝑐𝑜𝑙𝑖𝑑𝑥 [𝑖𝑑𝑥])
7: 𝑣𝑒𝑐_𝑥 ← gather(𝑣𝑒𝑐_𝑖𝑑𝑥, 𝑥)
8: 𝑣𝑒𝑐_𝑦 ← fmadd(𝑣𝑒𝑐_𝑣𝑎𝑙𝑠, 𝑣𝑒𝑐_𝑥, 𝑣𝑒𝑐_𝑦)
9: 𝑖𝑑𝑥 ← 𝑖𝑑𝑥 + 8

10: end while
11: while 𝑖𝑑𝑥 < 𝑟𝑜𝑤𝑝𝑡𝑟 [𝑟𝑜𝑤𝑖𝑑] + 1 do ⊲ remainder loop
12: 𝑦 [𝑟𝑜𝑤𝑖𝑑] ← 𝑦 [𝑟𝑜𝑤𝑖𝑑] + 𝑣𝑎𝑙 [𝑖𝑑𝑥] ∗ 𝑥 [𝑐𝑜𝑙𝑖𝑑𝑥 [𝑖𝑑𝑥]]
13: end while
14: 𝑦 [𝑟𝑜𝑤𝑖𝑑] ← 𝑦 [𝑟𝑜𝑤𝑖𝑑] + reduce_𝑎𝑑𝑑 (𝑣𝑒𝑐_𝑦)
15: end for

We optimized the SpMV kernel for CSR by vectorizing the inner
loop that computes the inner product of one row of the matrix and
the input vector 𝑥 , as shown in Alg. 1. Assuming the floating-point
numbers are represented in 64-bit double precision, 8 matrix ele-
ments are loaded from the 𝑣𝑎𝑙 directly into a 512-bit (ZMM) register

since they are stored continuously in memory. The corresponding
8 vector elements need to be gathered from 𝑥 into another ZMM
register based on the column indices loaded from 𝑐𝑜𝑙𝑖𝑑𝑥 . A fused
multiply-add instruction is applied to multiply the contents of the
two vector registers and add the results to 𝑣𝑒𝑐_𝑦. If the row length
is not a multiple of 8, a remainder loop will be left. We vectorize
the loop in a similar way only if the length is larger than 2. Because
the length is smaller than 8, masked gather and fmadd are used
instead.

5 IMPLEMENTATION AND OPTIMIZATION
OF SLICED ELLPACK FORMAT

The format we developed in PETSc is based on the sliced ELLPACK,
which is similar to the ESB format [15]. As depicted in Figure 6,
it can be represented by an array val storing the nonzero values
and padded zeros, an array colidx storing the column indices, an
array rlen storing the number of nonzeros in each row, and an
array storing the beginning position (index in val) of each slice.
The rows are padded with zero values so that the lengths of the
rows in each slice are equal.

Figure 6: Sliced ELLPACK format.

5.1 Slicing
Slicing is the most important modification to the original ELLPACK
format. It not only reduces zero-padding significant but also pro-
motes data locality in accessing the input vector. The lower the
slice height, the less zero padding would be required. On GPUs it is
preferable to choose the slice height to be multiple of the number
of threads per warp or wavefront. In order to effectively utilize
vector registers in CPUs, the slice height should be a multiple of
the vector length, which is equal to the cache line length of SIMD
registers. Therefore, we use a fixed slice height of 8 on KNL for
double precision.

5.2 Extra array rlen
The array rlen stores the actual length of each row. The GPU
implementation of SpMV based on ELLPACK-R use it as the bound
for the inner loop essentially the same way as the kernel based on
sliced ELLPACK. We do not need to use this array explicitly in the
SpMV implementation to reduce useless computations as GPU, but
it is particularly useful for other functions in PETSc for purposes
such as identifying padded zeros, matrix setup, preallocation, and
matrix assembly. Also, it is needed by other existing matrix formats
in PETSc.

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Hong Zhang, Richard T. Mills, Karl Rupp, and Barry F. Smith

5.3 No bit array
A bit array was used by Liu et al. in the ESB format to provide masks
for the vectorization in SpMV so that padded zeros are completely
avoided. We prefer not to use the bit array based on the following
considerations:

• Most PETSc applications do not have extremely irregular
matrices, and slicing can efficiently reduce the number of
padded zeros;
• Bit array takes more storage space (about the 1/64 of space
needed by the value array) and introduces extra memory
footprint in SpMV;
• Not using the padded zeros results in unaligned data access
to the matrix value array val.
• Masked instructions requires hardware (AVX2) and compiler
support. Because we do not rely on masking, also older CPUs
with support for AVX can be targeted.

We have implemented two versions with and without the bit array
respectively. Not using the bit array leads to about 10% speedup
over using the bit array.

5.4 No sorting
While sorting rows by the number of nonzero elements can signifi-
cantly reduce the padded zeros for irregular matrices (this is the
approach used in AIJPERM), we do not think it is ideal to perform
sorting in the low-level linear algebra kernels. Instead, the ordering
of variables can be better adjusted at a higher level of a PDE solver
library, in particular in the grid partitioning stage. As a result, a
single reordering of the grid allows for all subsequent simulations
using the grid to use the better ordering.

Another potential disadvantage of sorting in low-level linear
algebra kernels is the loss of data locality in the input vector after
sorting. There are heuristic techniques that limit sorting into a small
portion of the matrix to protect locality to some extent. However,
the difficulty of finding an optimal range for sorting originates from
the fact that these kernels are agnostic to the domain information
represented by the input vector.

5.5 SpMV based on sliced ELLPACK
Algorithm2 shows the serial SpMV kernel based on the sliced ELL-
PACK format. The matrix-vector multiplication is performed slice-
wise. At each iteration of the outer loop, one slice of the matrix
is used to update eight contiguous elements in the output vector.
The values and column indices of the elements in a slice are loaded
from memory column by column, which is exactly the same order
as they are stored physically. The column indices also determine
the positions of the sparse data in 𝑥 that are to be multiplied with
the matrix values. We use gather instructions to collect the data
and fused multiply-add instructions to accumulate the product for
8 contiguous rows. The product is stored into 𝑦 after the slice is
processed.

Algorithm 2 Sparse matrix-vector product for the sliced ELLPACK
format

1: for 𝑠𝑙𝑖𝑐𝑒𝑖𝑑 ← 𝑠𝑙𝑖𝑐𝑒𝑠𝑡𝑎𝑟𝑡, 𝑠𝑙𝑖𝑐𝑒𝑒𝑛𝑑 do
2: setzero(𝑣𝑒𝑐_𝑦)
3: 𝑖𝑑𝑥 ← 𝑠𝑙𝑖𝑐𝑒𝑝𝑡𝑟 [𝑠𝑙𝑖𝑐𝑒𝑖𝑑]
4: while 𝑖𝑑𝑥 < 𝑠𝑙𝑖𝑐𝑒𝑝𝑡𝑟 [𝑠𝑙𝑖𝑐𝑒𝑖𝑑 + 1] do
5: 𝑣𝑒𝑐_𝑣𝑎𝑙𝑠 ← load(&𝑣𝑎𝑙 [𝑖𝑑𝑥])
6: 𝑣𝑒𝑐_𝑖𝑑𝑥 ← load(&𝑐𝑜𝑙𝑖𝑑𝑥 [𝑖𝑑𝑥])
7: 𝑣𝑒𝑐_𝑥 ← gather(𝑣𝑒𝑐_𝑖𝑑𝑥, 𝑥)
8: 𝑣𝑒𝑐_𝑦 ← fmadd(𝑣𝑒𝑐_𝑣𝑎𝑙𝑠, 𝑣𝑒𝑐_𝑥, 𝑣𝑒𝑐_𝑦)
9: 𝑖𝑑𝑥 ← 𝑖𝑑𝑥 + 8

10: end while
11: store(𝑣𝑒𝑐_𝑦,&𝑦 [𝑠𝑙𝑖𝑐𝑒𝑖𝑑 ∗ 8])
12: end for

With proper padding, we can execute almost all the vector in-
structions without masks. If the last slice has fewer than eight rows,
we pad additional rows of zeros to ensure that the number of ele-
ments in each slice is multiple of 8, and masked store operations
are needed when the last slice is vectorized. The padding not only
results in aligned access to each slice when the matrix is aligned
but also eliminates the need to process a remainder. We also note
that the column indices of the padded elements are copied from
those of local nonzero elements to avoid triggering interprocess
communication.

In our implementation we have manually unrolled the outer loop
and performed a prefetch operation before the inner loop starts.
However, these classic optimization techniques do not affect the
performance significantly.

We have implemented the kernel for the AVX, AVX2, and AVX-
512 instruction sets, respectively. The AVX- and AVX2-instructions
include all the vector operations needed in Alg. 2, but the vector
length is half of the AVX-512 vector length. Therefore, the total
number of instructions executed is doubled with AVX2. AVX sup-
ports the same vector length as AVX2, but it does not have fmadd
and gather instructions. We use separate multiply and add instead
of fmadd. The gather operation is replaced with load and insert
operations. We use two SSE2 load instructions to load two 64-bit
floating point values into a packed vector and then insert two
packed 128-bit vectors to form a 256-bit AVX vector.

6 PERFORMANCE EVALUATION
Since SpMV is known to be memory bandwidth bound on most
modern computer architectures [9], it is reasonable to look into the
memory bandwidth usage when comparing the performance for
different SpMV kernels. The estimated memory bandwidth is the
minimummemory traffic required just to transfer the matrix values
and vector values. We assume that a floating-point data element
takes 8 bytes and an integer value in the index array takes 4 bytes.
For a sparse matrix with𝑚 rows, 𝑛 columns and 𝑛𝑛𝑧 nonzeros, the
SpMV kernel based on CSR needs to move at least 12𝑛𝑛𝑧 + 24𝑚 + 8𝑛
bytes data from memory. The first term accounts for the memory
traffic for accessing matrix values and column indices. Accessing
the vectors 𝑥 and 𝑦 takes 8𝑚 and 8𝑛 bytes, respectively, excluding
any redundant memory accesses; and the array that contains the
starting index of each row takes 8𝑚 bytes. Both the diagonal and

Vectorized Parallel Sparse Matrix-Vector Multiplication in PETSc Using AVX-512 ICPP 2018, August 13–16, 2018, Eugene, OR, USA

off-diagonal part have this array. In contrast, the sliced ELLPACK-
based SpMV kernel takes 12𝑛𝑛𝑧 + 10𝑚 + 8𝑛 bytes since the matrix
can be traversed slicewise and storing the starting positions of all
slices takes𝑚/8 integer values. Extra memory overhead contributed
by padded zeros are not counted in order to eliminate artifacts due
to implementation that may boost the performance.

7 RESULTS
We evaluate the performance of the new kernels for a classical
reaction-diffusion system that simulates the interaction of two
chemical species on a 2D rectangular grid using the Gray-Scott
model [20].

𝑑u
𝑑𝑡

= 𝐷1∇2u − uv2 + 𝛾 (1 − u)

𝑑v
𝑑𝑡

= 𝐷2∇2v + uv2 − (𝛾 + ^)v
(1)

The PDEs are discretized with central finite differences by using a
5-point stencil. The parameter settings follows page 21 of the book
by Hundsdorfer and Verwer [10], except that periodic boundary
conditions are used instead of homogeneous Neumann conditions
for simplicity. We use the Crank-Nicolson scheme with a fixed step
size of 1 for time integration. In the experiments 20 time steps are
taken on a single compute node, while 5 time steps are used for
large-scale experiments on multiple nodes.

At each time step, a nonlinear system is solved with Newton’s
method. Because of the nonlinear reaction term that couples u and
v, the Jacobian matrix needs to be updated at each Newton iteration.
The Jacobian evaluation and its multiplication with input vectors
dominate the simulation, accounting for about half of the total
running time.

The 5-point stencil Laplacian operator results in a banded sparse
matrix in the diagonal block. The off-diagonal block contains just
a few nonzeros due to the boundary condition. Since each grid
point has two degrees of freedom, the matrix consists of small 2× 2
blocks. Each row has 10 elements. When represented in the sliced
ELLPACK format, there are very few padded zeros.

The linear system is solved with the GMRES Krylov subspace
method. Since the problem is diffusion dominated, we use a multi-
grid preconditioner to accelerate convergence and avoid the typical
increase in the number of iterations as the grid is refined.

The source code for our implementation and the test problem1 is
distributed in PETSc [1] version 3.9 and later. The log files that are
used to generate the figures in this paper are also publicly available
2. PETSc was built with Intel MKL (version 2018 update 1) BLAS
and LAPACK. The MKL SpMV kernel used for comparison is run
with the PETSc option -mat_aijmkl_no_spmv2, which disables
the inspector-executor optimization. The experiments on KNL are
performed on Argonne’s Theta supercomputer [19], which consists
of 4,392 64-core 7230 KNL nodes. All the experiments are carried
out in quadrant cluster mode, in which the tiles on the chip are
divided into four quadrants and memory addresses associated with
a quadrant are mapped only to local tag directories in that quadrant.

1In the source, see src/ts/examples/tutorials/advection-diffusion/ex5adj.c.
2https://bitbucket.org/caidao22/petsclogs. The log files contain configuration options,
command line options used to run the tests and profiling details.

7.1 Out-of-box baseline performance
We run the simulations with three different grid resolutions using
flat mode and cache mode. By default, the matrix type in PETSc
is AIJ, which is the compressed sparse row format. As shown in
Figure 7, the performance is insensitive to the grid size for this
example while the memory usage does not exceed the limit of MC-
DRAM capacity. This can be attributed to the sparsity pattern of
the matrices. Note that the coarsening process of the multigrid
preconditioner results in matrices of different dimension, and for
each level matrix-vector products need to be performed. Chang-
ing the resolution or the number of levels leads to variations in
the number of rows for these sparse matrices, but the number of
nonzeros per row, which is determined by the spatial discretization
scheme, remains constant. Therefore, it is reasonable to choose a
single resolution for the performance comparisons.

When using 16 or 32 processes, there is almost no difference
in flop rates between using the MCDRAM or DRAM. The gap
becomes noticeable only when all the cores have been filled. The
reason is that the memory bandwidth saturates more quickly with
DRAM than with MCDRAM as the number of processes increases,
and the wide vectorization capability of KNL makes SpMV more
bandwidth-hungry. In addition, cache mode yields slightly lower
performance than does flat mode, which is consistent with the
STREAM benchmark results (Figure 4).

5
10

20 flat mode, MCDRAM

1024×1024 grid 2048×2048 grid 4096×4096 grid

5
10

20

P
er

fo
rm

an
ce

[G
f
l
o
p
/
s

]

flat mode, DRAM

16 32 64

Number of processes

5
10

20 cache mode

Figure 7: Baseline out of box SpMV performance using CSR
for various grid sizes.

7.2 Single-node performance
To evaluate single-node performance, we pick a grid size of 2048 ×
2048, which ensures all the data can fit into the MCDRAM dur-
ing the simulation. We use three levels of V-cycle multigrid. The
smoothers and coarse-level solvers are set to use the Jacobi pre-
conditioner so that the algorithm relies heavily on matrix-vector
multiplications. The corresponding PETSc options are listed below:

−pc_ type mg
−pc_mg_ l eve l s 3
−mg_ l eve l s _pc_ type j a c o b i
−mg_coarse_pc_type j a c o b i

https://bitbucket.org/caidao22/petsclogs

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Hong Zhang, Richard T. Mills, Karl Rupp, and Barry F. Smith

Figure 8 shows the SpMV performance of different matrix types
for a varying number of MPI ranks used. The AVX-512 version
clearly outperforms all other kernels and is on average twofold
faster than the baseline CSR. The AVX and AVX2 versions of the
sliced ELLPACK storage have a speedup of 1.8 and 1.7 over the
baseline CSR, respectively. The Intel MKL library performs slightly
worse than the baseline CSR kernel, which is automatically opti-
mized by the compiler. This performance indicates that PETSc’s
default implementation is competitive with the implementation in
MKL. CSR with permutation (AIJPERM in PETSc) does not yield
any improvement over the CSR baseline. But the performance of
CSR-based kernel increases by 54% after being manually optimized
by using AVX-512 intrinsics. This indicates that the compiler’s abil-
ity to automatically vectorize SpMV with the AVX-512 instructions
is far from satisfactory.

An interesting observation is that using AVX2 instructions for
CSR leads to a regression in performance compared with the AVX
version on KNL, while the AVX and AVX2 implementations for
SELL are roughly comparable with each other. The AVX2 imple-
mentations use gather and fused multiply-add (FMA) instructions
that do not exist in AVX. The reason for the performance regression
is unclear, but we speculate that the use of separate multiply and
add instructions in the AVX version may be beneficial because the
multiplication in the 𝑖th iteration can be executed independently
of the addition in iteration 𝑖 − 1, whereas in the AVX2 version the
FMA in iteration 𝑖 cannot begin before the FMA in iteration 𝑖 − 1.

All the formats investigated demonstrate good strong scalability
up to 64 cores; see Figure 8. Therefore, when running large-scale
applications on multiple KNL nodes, one should use all the physical
cores and pin one MPI process to one core for best performance.

4 8 16 32 64

Number of processes

1

2

5

10

20

30

40
50

P
er

fo
rm

an
ce

[G
f
l
o
p
/
s
]

SpMV Performance (2048×2048 grid,about 8 million DOF)

SELL using AVX512

SELL using AVX2

SELL using AVX

CSR using AVX512

CSR using AVX2

CSR using AVX

CSRPerm

CSR baseline

MKL CSR

Figure 8: Comparison of various matrix formats on a single
KNL node. Each MPI process is affined to one physical core
of the processor.

Figure 9 shows a roofline analysis [8, 16], generated by using
the Empirical Roofline Tool from LBNL, for the best performance
(with the full 64 MPI ranks) achieved by each matrix type. The
arithmetic intensity of the SpMV kernel is around 0.132 according
to the analysis in Sec. 6. We can see that the AVX-512 version of the
sliced ELLPACK SpMV kernel has pushed the baseline performance

close to the MCDRAM roofline, which marks the ideal GFLOPs/sec
when the MCDRAM bandwidth is saturated.

 10

 100

 1000

 0.01 0.1 1 10

G
F

L
O

P
s
 /
 s

e
c

FLOPs / Byte

Roofline on Theta

1018.4 GFLOPs/sec (Maximum)

L1
 -

45
93

.3
 G

B/s

L2
 -

18
23

.0
 G

B/s

M
C
D
R
AM

 -
41

9.
7

G
B/s

SELL using AVX512
SELL using AVX2
SELL using AVX
CSR using AVX512
CSR using AVX2
CSR using AVX
CSRPerm
CSR baseline
MKL CSR

Figure 9: Roofline analysis of the SpMV kernel on KNL.

7.3 Multinode performance
For large-scale tests, we focus on the comparison between the
fastest sliced ELLPACK implementation and the CSR baseline (PETSc
default). The grid size is increased to 16, 384×16, 384, which is close
to the largest case that does not require 64-bit integers for indexing.
Also, the number of levels of the multigrid preconditioner is set to
be 6 so that the problem size is small enough at the coarse level. As
can be seen from Figure 10, sliced ELLPACK gives an approximately
twofold speedup over CSR for the SpMV kernel when running in
cache mode and flat mode. The savings in SpMV translate directly
into significant drops in the total wall time because the portion for
other parts of the code remain almost the same for the two matrix
formats. We note that the changes in the matrix representation
result in implementation differences for certain matrix operations
such as setting the nonzero entries and assembling the matrix. The
corresponding routines for these operations in PETSc are executed
every time the Jacobian matrix is updated.

When the KNL nodes are configured to flat mode and the tests
use only DRAM, there is just marginal improvement in the SpMV
performance using sliced ELLPACK instead of CSR. This indicates
together with the roofline plot in Figure 9 that efficient vectorization
itself does not translate into good SpMV performance without the
support of high-bandwidth memory.

7.4 Performance on other Xeon processors
Vectorization and multicore parallelism are also a feature of re-
cent generations of the standard Intel Xeon architectures such as
Haswell, Broadwell, and Skylake. We compare the performance
of our optimized kernels on KNL with three recent Xeon proces-
sors, the specifications of which are listed in Table 1. All runs are
performed by using all the available physical cores with one MPI
process pinned to one core.

The results in Figure 11 show only marginal improvement for
sliced ELLPACK over CSR on standard Xeon platforms, but signifi-
cant gains on KNL. These results are partially due to the dramat-
ically improved memory bandwidth of KNL, which is about 4-6
times larger than do the other Xeon processors. Intel MKL is about

Vectorized Parallel Sparse Matrix-Vector Multiplication in PETSc Using AVX-512 ICPP 2018, August 13–16, 2018, Eugene, OR, USA

64 128 256 512
Number of KNL Nodes

0

500

1000

1500

2000

2500

W
al

l
ti

m
e

[s
e
c

]

CSR baseline (non-hatched bars) vs SELL (hatched bars)

flat mode using DRAM only

cache mode

flat mode

MatMult kernel

Figure 10: SpMV performance on the supercomputer Theta.

Table 1: Overview of Intel processors used for evaluating
SpMV performance.

of
Cores

Processor Base
Frequency (Turbo) L3 Cache Max DDR4

Bandwidth
HBM

Bandwidth

KNL 7230 64 1.3(1.5) GHz 115.2 GB/s >400 GB/s
Broadwell E5-2699v4 22 2.2(3.6) GHz 55 MB 76.8 GB/s
Haswell E5-2699v3 18 2.3(2.6) GHz 45 MB 68 GB/s
Skylake 8180m 28 2.5(3.6) GHz 38.5 MB 119.2 GB/s

10 to 20 percent slower on standard Xeons as well as on KNL when
compared with the default CSR implementation. Moreover, Figure
11 shows how the performance of each format is impacted by the
evolving Intel architectures. Specifically, sliced ELLPACK performs
the best on KNL and its performance increases as wider SIMD in-
structions are used (compare AVX-512 with AVX). But this trend is
not evident for CSR. The AVX-512 version of CSR works better on
KNL than on any other platform; however, the best performance of
AVX/AVX2 versions of CSR is found on Skylake.

We can see that Skylake gets about twice the performance of
Broadwell and Haswell. Skylake supports six memory channels per
socket, compared with four per socket for Haswell and Broadwell,
yielding significantly higher memory bandwidth. This higher band-
width largely explains the improved performance on Skylake—the
core frequencies of the three Xeon processors are close to each
other, and the Skylake processor actually has less L3 cache than
the other two processors have. We argue that vectorization be-
comes important on KNL because the SpMV kernel moves from
a memory-bound to compute-bound regime as the memory band-
width increases. Although the Skylake processor features fairly
high memory bandwidth itself, the individual cores are much more
powerful than KNL cores, and the balance between core perfor-
mance and memory bandwidth is such that the SpMV stays in a
compute-bound regime.

8 CONCLUSION
In this paper, we share our experience performing analysis and
optimization of PETSc’s parallel SpMV kernel through vectorization.
By manually rewriting the code with AVX-512 intrinsics, we have

Haswell Broadwell Skylake KNL
0

10

20

30

40

50

60

P
er

fo
rm

an
ce

[G
f
l
o
p
/
s
]

MKL

CSR using novec

SELL using novec

CSR using AVX

SELL using AVX

CSR using AVX2

SELL using AVX2

CSR using AVX512

SELL using AVX512

Figure 11: SpMV performance on different Xeon processors.

achieved a good speedup on KNL in comparison with the existing
CSR format.

However, CSR is not the optimal choice for matrices whose
number of nonzeros per row is either small or not a multiple of
the length of the CPU vector register, which are common in the
PDE regime. To address this situation, we have developed a new
PETSc matrix type based on the sliced ELLPACK format, and we
investigated the potential for preconditioned iterative solvers to
benefit from the accelerated kernels based on the new format. The
potential has been demonstrated with a representative reaction-
diffusion PDE using much of the solver hierarchy in PETSc. We
have also compared the sliced ELLPACK format with several CSR
variants including the PETSc default version, a permutation based
version, and a version provided by Intel’s MKL library. For this
particular test, the sliced ELLPACK-based SpMV implementation
delivers a twofold speedup over the CSR baseline on KNL, and the
hand-optimized CSR kernel performs 54% better than the compiler-
optimized CSR kernel. Furthermore, we show there is no noticeable
performance penalty in other core operations needed by a practical
PDE solver. Similar optimizations for Xeon CPUs did not result in a
significant performance gain, indicating that explicit vectorization
is not yet a necessity for obtaining peak performance for SpMV on
those architectures.

In future work we will investigate further optimization oppor-
tunities for the sliced ELLPACK format for other kernels such as
(possibly incomplete) LU decomposition and triangular solves for
sliced ELLPACK in order to make it usable with more precondi-
tioner choices. It may be particularly challenging to balance the
higher generality of the CSR format with the SpMV-centric nature
of the sliced ELLPACK format in a complicated solver setup.

Our results also indicate that modern compilers are still not
able to generate optimal assembly code for simple computational
kernels like SpMV, and extracting good performance for vector
processors still requires significant effort and fine restructuring of
the code. The optimized implementation of sparse matrix kernels
may have to be modified with the CPU instruction sets evolving
and the hardware features being continuously strengthened, but we
believe the essential optimization strategies such as densifying the
sparse matrices and improving the loop remainder vectorization
efficiency will remain relevant in the many-core era.

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Hong Zhang, Richard T. Mills, Karl Rupp, and Barry F. Smith

ACKNOWLEDGMENTS
We thank Vamsi Sripathi of Intel Corporation for several useful dis-
cussions about Intel AVX, AVX2, and AVX-512 intrinsics functions,
and details of Xeon and Xeon Phi processor microarchitecture. This
material is based upon work supported by the U.S. Department of
Energy, Office of Science, Advanced Scientific Computing Research
under Contract DE-AC02-06CH11357 and the Exascale Computing
Project (Contract No. 17-SC-20-SC). This material is also based upon
work supported by the VSC Research Center funded by the Aus-
trian Federal Ministry of Science, Research and Economy (bmwfw).
This research used resources (the Intel Xeon Phi 7250 “Knights
Landing” nodes of the Cori Cray XC40 system) of the National
Energy Research Scientific Computing Center (NERSC), a DOE
Office of Science User Facility supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231, and resources of the Argonne Leadership Computing
Facility, a DOE Office of Science User Facility supported under
Contract DE-AC02-06CH11357.

REFERENCES
[1] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune,

Kris Buschelman, Lisandro Dalcin, Victor Eijkhout, William D. Gropp, Dinesh
Kaushik, Matthew G. Knepley, Dave A. May, Lois Curfman McInnes, Karl Rupp,
Patrick Sanan, Barry F. Smith, Stefano Zampini, Hong Zhang, and Hong Zhang.
2017. PETSc Users Manual. Technical Report ANL-95/11 - Revision 3.8. Argonne
National Laboratory. http://www.mcs.anl.gov/petsc

[2] Taylor Barnes, Brandon Cook, Jack Deslippe, Douglas Doerfler, Brian Friesen,
Yun He, Thorsten Kurth, Tuomas Koskela, Mathieu Lobet, Tareq Malas, Leonid
Oliker, Andrey Ovsyannikov, Abhinav Sarje, Jean Luc Vay, Henri Vincenti,
Samuel Williams, Pierre Carrier, Nathan Wichmann, Marcus Wagner, Paul
Kent, Christopher Kerr, and John Dennis. 2017. Evaluating and optimizing
the NERSC workload on Knights Landing. In Proceedings of PMBS 2016: 7th In-
ternational Workshop on Performance Modeling, Benchmarking and Simulation
of High Performance Computing Systems - Held in conjunction with SC 2016: The
International Conference for High Performance Computing, Networking, St. 43–53.
https://doi.org/10.1109/PMBS.2016.010

[3] Nathan Bell and Michael Garland. 2009. Implementing sparse matrix-vector mul-
tiplication on throughput-oriented processors. In Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis - SC ’09. Bell2009,
1. https://doi.org/10.1145/1654059.1654078

[4] Wei Cao, Yao Lu, Zongzhe Li, Yongxian Wang, and Zhenghua Wang. 2010. Im-
plementing Sparse Matrix-Vector multiplication using CUDA based on a hybrid
sparse matrix format. In ICCASM 2010 - 2010 International Conference on Computer
Application and System Modeling, Proceedings, Vol. 11. IEEE, V11–161–V11–165.
https://doi.org/10.1109/ICCASM.2010.5623237

[5] Jee W. Choi, Amik Singh, and Richard W. Vuduc. 2010. Model-driven autotuning
of sparse matrix-vector multiply on GPUs. ACM SIGPLAN Notices 45, 5 (may
2010), 115. https://doi.org/10.1145/1837853.1693471

[6] Edmond Chow. 2001. Parallel Implementation and Practical Use of Sparse Approx-
imate Inverse Preconditioners with a Priori Sparsity Patterns. The International
Journal of High Performance Computing Applications 15, 1 (feb 2001), 56–74.
https://doi.org/10.1177/109434200101500106

[7] Eduardo F. D’Azevedo, Mark R. Fahe, and Richard T. Mills. 2005. Vectorized sparse
matrix multiply for compressed row storage format. [ICCS’05] Computational
Science–ICCS 2005 3514/2005 (2005), 99–106. https://doi.org/10.1007/11428831_13

[8] Douglas Doerfler, Jack Deslippe, Samuel Williams, Leonid Oliker, Brandon Cook,
Thorsten Kurth, Mathieu Lobet, Tareq Malas, Jean Luc Vay, and Henri Vincenti.
2016. Applying the roofline performance model to the Intel Xeon Phi Knights
Landing processor. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 9945
LNCS. 339–353. https://doi.org/10.1007/978-3-319-46079-6_24

[9] Georgios Goumas, Kornilios Kourtis, Nikos Anastopoulos, Vasileios Karakasis,
and Nectarios Koziris. 2009. Performance evaluation of the sparse matrix-vector
multiplication on modern architectures. Journal of Supercomputing 50, 1 (2009),
36–77. https://doi.org/10.1007/s11227-008-0251-8

[10] Willem Hundsdorfer and Jan G. Verwer. 2003. Numerical Solution of Time-
Dependent Advection-Diffusion-Reaction Equations. Number 33 in Springer series
in computational mathematics. Springer.

[11] Eun-Jin Im and Katherine Yelick. 1999. Optimizing Sparse Matrix Vector Multipli-
cation on SMPs. In In Ninth SIAM Conference on Parallel Processing for Scientific

Computing.
[12] Eun-Jin Im, Katherine Yelick, and Richard Vuduc. 2004. Sparsity: Optimization

Framework for Sparse Matrix Kernels. International Journal of High Perfor-
mance Computing Applications 18, 1 (2004), 135–158. https://doi.org/10.1177/
1094342004041296

[13] Moritz Kreutzer, Georg Hager, Gerhard Wellein, Holger Fehske, Achim Baser-
mann, and Alan R. Bishop. 2012. Sparse matrix-vector multiplication on GPGPU
clusters: A new storage format and a scalable implementation. In Proceedings of
the 2012 IEEE 26th International Parallel and Distributed Processing Symposium
Workshops, IPDPSW 2012. 1696–1702. https://doi.org/10.1109/IPDPSW.2012.211

[14] Moritz Kreutzer, Georg Hager, Gerhard Wellein, Holger Fehske, and Alan R.
Bishop. 2014. A Unified Sparse Matrix Data Format for Efficient General Sparse
Matrix-Vector Multiplication onModern Processors withWide SIMD Units. SIAM
Journal on Scientific Computing 36, 5 (2014), C401–C423. https://doi.org/10.1137/
130930352 arXiv:1307.6209

[15] Xing Liu, Mikhail Smelyanskiy, Edmond Chow, and Pradeep Dubey. 2013. Effi-
cient sparse matrix-vector multiplication on x86-based many-core processors.
Proceedings of the 27th international ACM conference on International conference
on supercomputing - ICS ’13 (2013), 273. https://doi.org/10.1145/2464996.2465013

[16] Yu Jung Lo, Samuel Williams, Brian Van Straalen, Terry J. Ligocki, Matthew J.
Cordery, Nicholas J. Wright, Mary W. Hall, and Leonid Oliker. 2015. Roofline
model toolkit: A practical tool for architectural and program analysis. In Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), Vol. 8966. 129–148. https://doi.org/10.1007/
978-3-319-17248-4_7

[17] Alexander Monakov, Anton Lokhmotov, and Arutyun Avetisyan. 2010. Auto-
matically tuning sparse matrix-vector multiplication for GPU architectures. In
Lecture Notes in Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics), Vol. 5952 LNCS. 111–125.
https://doi.org/10.1007/978-3-642-11515-8_10

[18] Rajesh Nishtala, Richard W. Vuduc, James W. Demmel, and Katherine A. Yelick.
2007. When cache blocking of sparse matrix vector multiply works and why.
Applicable Algebra in Engineering, Communications and Computing 18, 3 (2007),
297–311. https://doi.org/10.1007/s00200-007-0038-9

[19] Scott Parker, Vitali Morozov, Sudheer Chunduri, Kevin Harms, Chris Knight,
and Kalyan Kumaran. 2017. Early Evaluation of the Cray XC40 Xeon Phi System
‘Theta’ at Argonne. Technical Report. Argonne National Laboratory.

[20] John E. Pearson. 1993. Complex Patterns in a Simple System. Science 261, 5118
(1993), 189–192.

[21] Ali Pinar and Michael T. Heath. 1999. Improving performance of sparse matrix-
vector multiplication. In Proceedings of the 1999 ACM/IEEE conference on Super-
computing (CDROM) - Supercomputing ’99. ACM Press, New York, New York,
USA, 30–es. https://doi.org/10.1145/331532.331562

[22] Erik Saule, Kamer Kaya, and Umit V. Catalyurek. 2013. Performance evaluation
of sparse matrix multiplication kernels on Intel Xeon Phi. In Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), Vol. 8384 LNCS. 559–570. https://doi.org/10.
1007/978-3-642-55224-3_52 arXiv:arXiv:1302.1078v1

[23] Francisco Vázquez, José-Jesús Fernández, and Ester M. Garzón. 2011. A new
approach for sparse matrix vector product on NVIDIA GPUs. Concurrency
Computation Practice and Experience 23, 8 (2011), 815–826. https://doi.org/10.
1002/cpe.1658 arXiv:arXiv:1302.5679v1

[24] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick,
and James Demmel. 2009. Optimization of sparse matrix-vector multiplication
on emerging multicore platforms. Parallel Comput. 35, 3 (2009), 178–194. https:
//doi.org/10.1016/j.parco.2008.12.006

[25] Jianfei Zhang and Lei Zhang. 2013. Efficient CUDA polynomial preconditioned
conjugate gradient solver for finite element computation of elasticity problems.
Mathematical Problems in Engineering 2013 (2013). https://doi.org/10.1155/2013/
398438

[26] Cong Zheng, Shuo Gu, Tong Xiang Gu, Bing Yang, and Xing Ping Liu. 2014. BiELL:
A bisection ELLPACK-based storage format for optimizing SpMV on GPUs. J.
Parallel and Distrib. Comput. 74, 7 (jul 2014), 2639–2647. https://doi.org/10.1016/
j.jpdc.2014.03.002

http://www.mcs.anl.gov/petsc
https://doi.org/10.1109/PMBS.2016.010
https://doi.org/10.1145/1654059.1654078
https://doi.org/10.1109/ICCASM.2010.5623237
https://doi.org/10.1145/1837853.1693471
https://doi.org/10.1177/109434200101500106
https://doi.org/10.1007/11428831_13
https://doi.org/10.1007/978-3-319-46079-6_24
https://doi.org/10.1007/s11227-008-0251-8
https://doi.org/10.1177/1094342004041296
https://doi.org/10.1177/1094342004041296
https://doi.org/10.1109/IPDPSW.2012.211
https://doi.org/10.1137/130930352
https://doi.org/10.1137/130930352
https://arxiv.org/abs/1307.6209
https://doi.org/10.1145/2464996.2465013
https://doi.org/10.1007/978-3-319-17248-4_7
https://doi.org/10.1007/978-3-319-17248-4_7
https://doi.org/10.1007/978-3-642-11515-8_10
https://doi.org/10.1007/s00200-007-0038-9
https://doi.org/10.1145/331532.331562
https://doi.org/10.1007/978-3-642-55224-3_52
https://doi.org/10.1007/978-3-642-55224-3_52
https://arxiv.org/abs/arXiv:1302.1078v1
https://doi.org/10.1002/cpe.1658
https://doi.org/10.1002/cpe.1658
https://arxiv.org/abs/arXiv:1302.5679v1
https://doi.org/10.1016/j.parco.2008.12.006
https://doi.org/10.1016/j.parco.2008.12.006
https://doi.org/10.1155/2013/398438
https://doi.org/10.1155/2013/398438
https://doi.org/10.1016/j.jpdc.2014.03.002
https://doi.org/10.1016/j.jpdc.2014.03.002

	Abstract
	1 Introduction
	2 Background
	2.1 Parallel sparse matrices in PETSc
	2.2 Sparse matrix-vector multiplication
	2.3 CSR format
	2.4 CSR with permutation
	2.5 ELLPACK formats
	2.6 KNL architecture

	3 General optimization considerations on KNL
	3.1 Data alignment
	3.2 Blocking
	3.3 Loop remainder vectorization
	3.4 Using MCDRAM

	4 Optimizations for CSR format
	5 Implementation and optimization of sliced ELLPACK format
	5.1 Slicing
	5.2 Extra array rlen
	5.3 No bit array
	5.4 No sorting
	5.5 SpMV based on sliced ELLPACK

	6 Performance evaluation
	7 Results
	7.1 Out-of-box baseline performance
	7.2 Single-node performance
	7.3 Multinode performance
	7.4 Performance on other Xeon processors

	8 Conclusion
	References

