
Parallel Multivariate Spatio-Temporal Clustering of
Large Ecological Datasets on Hybrid

Supercomputers

Sarat Sreepathi∗, Jitendra Kumar†, Richard T. Mills‡, Forrest M. Hoffman§, Vamsi Sripathi¶, William W. Hargrove‖

∗Computer Science and Mathematics Division, Oak Ridge National Laboratory,
Oak Ridge, TN, USA Email: sarat@ornl.gov

†Environmental Sciences Division, Oak Ridge National Laboratory,
Oak Ridge, TN, USA Email: jkumar@climatemodeling.org

‡Mathematics and Computer Science Division, Argonne National Laboratory,
Lemont, IL, USA Email: rtmills@anl.gov

§Computational Science and Engineering Division, Oak Ridge National Laboratory,
Oak Ridge, TN, USA Email: forrest@climatemodeling.org

¶Intel Corporation, Hillsboro, OR, USA Email: vamsi.sripathi@intel.com
‖Eastern Forest Environmental Threat Assessment Center, USDA Forest Service,

Asheville, NC USA Email: hnw@geobabble.org

Abstract—A proliferation of data from vast networks of remote
sensing platforms (satellites, unmanned aircraft systems (UAS),
airborne etc.), observational facilities (meteorological, eddy co-
variance etc.), state-of-the-art sensors, and simulation models
offer unprecedented opportunities for scientific discovery. Unsu-
pervised classification is a widely applied data mining approach
to derive insights from such data. However, classification of very
large data sets is a complex computational problem that requires
efficient numerical algorithms and implementations on high per-
formance computing (HPC) platforms. Additionally, increasing
power, space, cooling and efficiency requirements has led to the
deployment of hybrid supercomputing platforms with complex
architectures and memory hierarchies like the Titan system at
Oak Ridge National Laboratory. The advent of such accelerated
computing architectures offers new challenges and opportunities
for big data analytics in general and specifically, large scale
cluster analysis in our case. Although there is an existing body
of work on parallel cluster analysis, those approaches do not
fully meet the needs imposed by the nature and size of our large
data sets. Moreover, they had scaling limitations and were mostly
limited to traditional distributed memory computing platforms.
We present a parallel Multivariate Spatio-Temporal Clustering
(MSTC) technique based on k-means cluster analysis that can
target hybrid supercomputers like Titan. We developed a hybrid
MPI, CUDA and OpenACC implementation that can utilize both
CPU and GPU resources on computational nodes. We describe
performance results on Titan that demonstrate the scalability
and efficacy of our approach in processing large ecological data
sets.

I. INTRODUCTION

Earth science data captures numerous nonlinear and com-
plex interactions among high dimensional set of variables rep-
resenting wide range of ecosystems processes. Classification
is one of the most widely used statistical methods in ecology
for development of ecoregions [1], classification of climate
zones [2], mapping of vegetation using remote sensing [3],
characterization of vegetation structure [4], and species distri-
bution modeling [5]. Quantitative methods for classification,
including multi-variate cluster analysis [6] and random forests
[7], are increasingly used to statistically explore and exploit
multi-variate relationships in such rich data sets.

Earth science data has seen a rapid increase in both com-
plexity and volume over the recent decade. These growing
volumes of data range from field and laboratory based studies
to environmental sensor network to ground, air and space
based remote sensing platforms. These data sets offer new
opportunities for scientific discovery. However, the volume
and complexity of the data has also rendered traditional
means of integration and analysis ineffective, necessitating the
application of new analysis methods and the development of
highly scalable software tools for synthesis, comparison, and
visualization [8].

This manuscript has been authored by UT-Battelle, LLC under Contract No.
DE-AC05-00OR22725 with the U.S. Department of Energy. The United States
Government retains and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a non-exclusive, paid-
up, irrevocable, world-wide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United States Government
purposes. The Department of Energy will provide public access to these results
of federally sponsored research in accordance with the DOE Public Access
Plan(http://energy.gov/downloads/doe-public-access-plan).

Large and complex Earth science data often cannot be
synthesized and analyzed using traditional methods or on
individual workstations. Data mining, machine learning, and
high performance visualization approaches are increasingly
filling this void and can often be deployed only on parallel
clusters or supercomputers. However, supercomputer archi-
tectures designed for compute-intensive simulations, usually
containing large numbers of cores with high speed intercon-
nects between nodes, are not typically optimal for large scale
analytics. Instead, such applications demand large and fast
on-node memory, high bandwidth input/output (I/O), and fast
access to large local disk volumes. Most domain scientists
are ill-equipped to develop analytics codes for these architec-
tures, while system vendors have largely focused on compute-
intensive applications, and must acquire representative analyt-
ics benchmarks and scientific expertise to design systems for
geospatial big data analytics.

A. Related Work

A number of studies in past have developed parallel cluster
analysis implementations targeting range of data sets and
computing platforms. [9] designed an implementation for clus-
tering algorithms for Beowulf-style parallel cluster built from
surplus computer. [10] designed implementation of cluster
analysis for mid-range distributed memory cluster using a
master-slave paradigm. A number of other works by [11]–
[14] have developed approaches for efficient implementations
of parallel cluster algorithms to analyze large data sets,
however most of them have focused on traditional CPU
based distributed memory supercomputers. New generations of
supercomputers, like Titan at Oak Ridge National Laboratory
and its planned successor, Summit are based on GPU-based
hybrid architectures. There exist several studies [15]–[17] that
have looked into accelerating k-means on the GPUs. However,
the dimensionality and size of our target datasets are relatively
larger in comparison and warrant specialized preprocessing
and normalization. Moreover, we are striving for a faster
time to solution by utilizing all the available computational
resources, CPUs and GPUs on a node in tandem. Hence, the
focus of this study was to improve and adapt our k-means
clustering algorithm on hybrid architectures for large earth sci-
ence data to provide a scalable parallel cluster analysis tool for
next generation supercomputing architectures in general and
U.S Department of Energy’s leadership class supercomputers
in particular.

II. DATA SETS AND EXPERIMENT SETUP

A. Data sets

Tools and methods developed in this study were applied and
tested for two earth science applications (Table I).

1) Vegetation structure of Great Smoky Mountains National
Park (GSMNP): Understanding of vegetation structure of forest
ecosystem is key for forest health management and maintain-
ing suitable habitats for bird and animal species. Airborne
multiple return Light Detection and Ranging (LiDAR) data

TABLE I
DESCRIPTION OF DATA SETS USED IN THE CURRENT STUDY

Description Dimensions Size
GSMNP LiDAR 3,186,679 × 74 900 MB

CMIP3 Climate States 123,471,198 × 17 7.9 GB

for GSMNP [18] provides high resolution view of the three-
dimensional structure of the forest ecosystem. Raw LiDAR
point clouds were processed to develop vertical canopy struc-
ture of the vegetation at 30 m × 30 m spatial resolution hor-
izontal grid and 1 m resolution [4]. A 1 m vertical resolution
was used to identify vegetation height from the ground surface
to a maximum height of 75 m. The number of LiDAR points
in each vertical 1 m bin (at each 30 m × 30 m cell in the
horizontal grid) was identified to construct a vertical density
profile for each map cell. Classification of LiDAR derived
vegetation structure is desired to understand the spatial pattern
and distribution of vegetation structure across the GSMNP.

2) Global Climate Regimes (GCR): Classification of climate
regimes has long been used to understand the global patterns
of climate, vegetation and terrestrial ecology. We want to
understand and analyze the climate regimes in contemporary
period and how they may change and shift in future un-
der various predicted climate change scenarios. We selected
a range of bioclimatic, edaphic and topographic variables
globally at 2 arcsecond (∼ 4 km) resolution to define the
climate regimes. Bioclimatic data for the contemporary period
were derived from BioClim data sets by [19]. To represent
future climate, two climate models from the Intergovernmental
Panel on Climate Change Third Assessment Report (CMIP3) –
Parallel Climate Model (PCM) developed by National Center
for Atmospheric Research and HadCM3 model developed
by Hadley Center, were used. Model data for two different
emissions scenarios, B1 (lower emissions) and A1FI (high
emissions) were used and bioclimatic variables were derived
(Table II) for two select future periods (2050, 2100) [20], [21].

B. Preprocessing

Large ecological data sets often suffer from data noise,
errors and missing values. All the data sets used in the study
were carefully checked, corrected and gap filled. Heterogeneity
among high dimensional data sets is typical of ecological and
earth science data sets. GSMNP data set was derived from
LiDAR point clouds and was homogeneous across all the
dimensions. However, the 17 dimensions of the GCR data each
represent a different physical quantity with different scales and
units. We standardized the data set along each dimension to
have a mean of zero and standard deviation of one, allowing
every dimension to be equally and fairly represented in the
clustering algorithm.

III. METHODOLOGY

In this section, we describe our baseline k-means algorithm
for clustering and an algorithmic scheme using triangle in-
equality for reducing the number of distance calculations.

TABLE II
VARIABLES USED FOR DELINEATION OF GLOBAL CLIMATE REGIMES.

Variable Description Units
Bioclimatic Variables
Precipitation during the hottest quarter mm
Precipitation during the coldest quarter mm
Precipitation during the driest quarter mm
Precipitation during the wettest quarter mm
Ratio of precipitation to potential evapotranspiration –
Temperature during the coldest quarter ◦C
Temperature during the hottest quarter ◦C
Day/night diurnal temperature difference ◦C
Sum of monthly Tavg where Tavg ≥ 5◦C ◦C
Integer number of consecutive months where Tavg ≥ 5◦C –
Edaphic Variables
Available water holding capacity of soil mm
Bulk density of soil g/cm3

Carbon content of soil g/cm2

Nitrogen content of soil g/cm2

Topographic Variables
Compound topographic index (relative wetness) –
Solar interception (kW/m2)
Elevation m

A. Baseline k-means algorithm

The k-means is iterative algorithm to group a data set (X1,
X2, . . . , Xn) with n records into desired k clusters. k-means
algorithm groups the data into desired number of groups while
equalizing the multi-dimensional variance across clusters. The
algorithm starts with a set of initial “seed” centroids (C1,
C2, . . . , Ck), and calculated the Euclidean distance of each
data record (Xi, 1 ≤ i ≤ n) to every “seed” centroid
(Cj , 1 ≤ j ≤ k), Data record is classified to the cluster
containing the closest existing centroid. After all data records
are classified, a new centroid is calculated as the mean vector
of all dimensions of each data record classified to that cluster.
As this cluster assignment and re-calculation of centroid is
iteratively repeated, the centroids move through the data space
to identify stable, and optimal values such no more than a
small proportion (we use < 0.05%) of data records change
their cluster assignments between iterations.

B. Accelerated k-means using triangle inequality

We also implemented a triangle inequality [22], [23] based
acceleration scheme that reduces the number of Euclidean
distance calculations. Triangular inequality states: for any three
points x, y, and z, d(x, z) ≤ d(x, y) + d(y, z). The algorithm
eliminates unnecessary point-to-centroid distance calculations
and comparisons based on the previous cluster assignment and
the new inter-centroid distances.

If the distance (d(Clast, Cnew)) between the last centroid
(Clast) and new candidate centroid (Cnew) and greater than
or equal to the distance (d(Xi, Clast)) between a data point
(Xi) and the last centroid (Clast), then calculation of distance
(d(Xi, Cnew)) between the data point (Xi) and the new
candidate centroid (Cnew) can be avoided. Triangle inequality
states that d(Clast, Cnew) ≤ d(Xi, Clast + d(Xi, Cnew).
If d(Clast, Cnew) ≥ 2d(Xi, Clast, we can conclude without
calculating d(Xi, Cnew), that d(Xi, Cnew) ≥ d(Xi, Clast).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

BrOps FlOps FpSIMD IntOps IntSIMD MemOps MemSIMD Misc Moves

P
e
rc

e
n
t

Instruction Category

Instruction mix of baseline clustering application

Master
Worker

Fig. 1. The instruction mix for the baseline application while running on
16 processors using the GSMNP data set. The red bar corresponds to the
master process that primarily handles communication, explaining the lack of
any floating point operations. The green bar represents worker processes that
exclusively handle the computation, as reflected in floating point operations.

Thus, for the data point, Xi, the new centroid candidate
(Cnew) can be eliminated without computing the distance
d(Xi, Cnew).

The Euclidean distance computations can be further reduced
by sorting the inter-centroid distance (d(Clast, Cnew)). The
new candidate centroids (Cnew are evaluated as per sorted
distance order, and once the critical distance (2d(Xi, Clast)
is surpassed all subsequent candidate centroids can be safely
discarded without any distance calculations.

IV. BASELINE PERFORMANCE CHARACTERIZATION

We collected performance data with our baseline clustering
implementation using the LiDAR data set for the Great Smoky
Mountains National Park (GSMNP).
• We utilized the Oxbow toolkit and Performance Analytics

Data Store (PADS) [24] infrastructure for this application
characterization.

• This kind of data is invaluable to identify potential
opportunities for improvement and aid in adaptation to
emerging architectural features.

A. Computational Profiling

The computational profile of application execution is de-
scribed by the mix of executed micro-operations. Figure 1
shows the instruction mix of our clustering application.
• Obtained by decoding the x86 assembler instructions

and grouping them into coarser categories like memory,
control, floating point and integer arithmetic.

• Obtained using a tool based on Intel’s PIN [25], a
dynamic binary instrumentation tool.

• The data is useful to ascertain if there is potential
for improved performance. For instance, we identified
an opportunity for improved performance by better uti-
lization of floating point operations including single-
instruction-multiple-data (SIMD) operations which led to
the development of the distance calculation using BLAS
formulation as described in Section V-A.

Fig. 2. Communication volume for baseline clustering algorithm using 16
MPI processes. The axes show the ranks of the sender and receiver process
respectively.

B. Communication Behavior

We used augmented version of the communication profiling
tool (mpiP) [26] to capture the volume of data transferred
between MPI ranks and visualized the results to understand
the communication topology (Figure 2). It is evident that we
are using a master-worker protocol because all communication
is point-to-point between the first process and rest of the
processes.

C. Memory Behavior

We instrumented the kernel of our application using PAPI
hardware counters for obtaining detailed memory performance
data. The kernel achieves a read bandwidth of 122 MB/s and
a write bandwidth of 58.9 MB/s. These results are for the
baseline application with no in-memory data rearrangement to
optimize memory performance.

V. OPTIMIZATIONS

This section elaborates on the recent additions for improving
performance by using a more efficient problem formulation
for computing distances between observations and centroids,
as well as threading support.

A. Distance Calculation: Using BLAS

Our clustering code has, for years, calculated observation–
centroid differences one at a time (necessary to employ the
“acceleration” technique previously described). Recently, one
of the authors realized that it is possible to achieve much
greater computational intensity in the observation–centroid
distance calculations by expressing the calculations in matrix
form. This enables the use of level-2 and level-3 BLAS
routines, for which highly cache-optimized implementations
that have also been tuned to make good use of SIMD in-
structions, etc., are available, and also facilitates the use of
compute accelerators like GPGPUs (general purpose graphical
processing units).

Internally, our clustering code stores observation vectors as
rows in a matrix, so we adopt that convention here. Let obs

be the observation matrix that contains n observations of m
dimensions, and cent be the centroid matrix that contains the
k desired centroids and their coordinates in m dimensions.

We wish to compute the n×k matrix of squared Euclidean
distance, dist, for which the i, jth entry

disti,j = ‖obsi,∗ − centi,∗‖2 (1)

contains the squared Euclidean distance between observation
i and centroid j. The key insight to reformulating the distance
calculation in matrix form is that, via binomial expansion,

disti,j = ‖obsi,∗‖2 + ‖centi,∗‖2 − 2 · obsi,∗ · centj,∗ (2)

and, therefore, we can express

dist = obs · 1T + 1 · centT − 2 · obs · centT (3)

where obs and cent are vectors of the sums of all squares of
the rows of obs and cent, respectively, and 1 is a vector of
all 1s.

Formulated as above, we utilize BLAS routines as follows
to calculate the matrix of squared Euclidean distances:

1) Calculate −2·obs·centT via xGEMM, the level-3 general
matrix-matrix multiplication subroutine that computes

C := alpha ∗ op(A) ∗ op(B) + beta ∗ C

Where alpha and beta are scalars, A,B, and C are
matrices and op optionally performs matrix transpose
or conjugate transpose.

2) After the xGEMM operation, use the level-2 BLAS
routine xGER, to add obs · 1T and 1 · centT via a
rank-one update, of the form

A := alpha ∗ x ∗ y′ +A

Here, alpha is a scalar, x, y are element vectors and A
is the input matrix.

Casting the distance calculation into the form of level 2
and (especially) level 3 BLAS operations facilitates the use of
highly computationally efficient implementations. Because we
use standardized BLAS interfaces, we are able to use vendor-
optimized BLAS libraries—such as Cray’s LibSci, Intel’s
MKL, and IBM’s ESSL—on their respective systems.

Our experiments using the above matrix formulation for the
distance calculations show that, as expected, it is dramatically
faster than the straightforward loop over vector distance cal-
culations when many distance comparisons must be made. We
give details in Section VIII. For architectures that employ a
high level of fine-grained parallelism with wide SIMD lanes,
increasing the computation intensity has an especially high
payoff in terms of improved performance. In a future paper,
we will discuss the performance of this implementation on
one such architecture, the second-generation Intel Xeon Phi
(“Knights Landing”) processor, where the matrix formulation
is especially advantageous and can beat the triangle inequality-
based “acceleration” technique in several situations, despite
performing many more distance calculations within a k-means
iteration.

B. Application Phases
During the initial phase of the application, a large number

of pairwise distances between observations and centroids need
to be computed resulting in a relatively higher number of
changes in cluster assignments for the observations. This phase
is particularly suitable for distance matrix computation using
the BLAS formulation. Once the clusters stabilize, there are
fewer changes and the triangle inequality based acceleration
technique obviates the need for computing the full distance
matrix using the BLAS formulation. We have empirically
determined the transition points between these two application
phases for specific data sets and switch from the BLAS
formulation to the triangle inequality method. We intend to add
the capability to identify this phase transition during runtime
in the future.

C. Vectorization and OpenMP
We have added SIMD compiler directives for vectorization

where applicable. Although the clustering code already em-
ployed full distributed-memory parallelism via MPI, we added
threading support and used dynamic thread scheduling for
the triangle inequality acceleration component, which enables
better use of all available hardware threads on architectures
such as the second-generation Intel Xeon Phi processor. Due to
the requisite updates and branching involved, we incorporated
a critical region to ensure correctness.

VI. TARGETING GPUS

This section details our application porting work to the
GPUs using cuBLAS and OpenACC kernels.

A. cuBLAS
We utilized NVIDIA’s cuBLAS [27] library on the GPUs.

Our application uses row-major ordering for the major data
structures as it is written in the C programming language.
Hence, we had to modify our arguments to the cuBLAS
subroutines as it assumes the Fortran column-major ordering
for matrices.

We developed a standalone kernel and conducted a detailed
performance analysis after incorporating the cuBLAS calls.
Table III shows the performance profile for the GPU kernel
using the GCR dataset.

TABLE III
PERFORMANCE PROFILE OF OUR CUBLAS GPU KERNEL

Time(%) Avg. Time Calls Name
97.20 9.89 s 1 [CUDA memcpy DtoH]
1.41 71.8 ms 2 void ger kernel
0.77 78.18 ms 1 sgemm sm heavy nn ldg
0.37 6.22 ms 6 [CUDA memcpy HtoD]
0.26 26.43 ms 1 sgemm sm35 ldg nn 64x16x128x8x32
0.00 33.69 us 1 sgemm sm35 ldg nn 128x16x64x16x16

We identified the copying back of the pairwise distance
matrix from the GPU back to the host CPU as the major
performance bottleneck. We decided to perform the requisite
post-processing of the distance matrix on the GPU itself to
avoid copying the matrix back to host. This effort is described
in detail in the next section.

B. OpenACC additions

We implemented a couple of OpenACC kernels to post-
process dist, the pairwise squared distance matrix of obser-
vations and centroids on the GPU itself. This is required to
update the cluster assignments for the observations in addition
to bookkeeping tasks to keep track of farthest observation in
each cluster. This process entails operations such as finding the
minimum value and index for each row and maximum value
and index for each column.

C. Verification

We performed unit testing at every step to ensure the accu-
racy of the new kernels. It is infeasible to achieve bit-for-bit
reproducibility due to variations in floating point arithmetic in
BLAS libraries, etc. However, we have verified the final cluster
assignments in a quantitative manner (numerical comparison)
and qualitatively by generating maps of the final clustering
results.

VII. COMPUTATIONAL PLATFORM

We conducted our experiments on Titan [28], a Cray
supercomputer installed at Oak Ridge National Laboratory
(ORNL). Titan is a hybrid-architecture Cray XK7 system
with a theoretical peak performance exceeding 27 petaflops.
It comprises of 18,688 compute nodes, wherein each node
contains 16-core AMD Opteron CPUs and NVIDIA Kepler
K20X GPUs for a total of 299,008 CPU cores and 18,688
GPUs. Each node has 32 GB memory that amounts to 2
GB/CPU core. Additionally, there is 6 GB of memory available
on the GPU. It has a total system memory of 710 terabytes, and
utilizes Cray’s high-performance Gemini interconnect. Titan
has a 25× 16× 24 3D torus network where 2 compute nodes
share a network interface. As of November 2016, it is the third
fastest supercomputer in the world according to the TOP500
list [29].

The software environment for the reported experiments is as
follows: Cray PGI programming environment (version 5.2.82)
which uses PGI 16.10.0 compilers and Cray’s MPICH im-
plementation (version 7.5.2). We utilized Intel’s MKL (Math
Kernel Library) for BLAS matrix operations on the host
CPU. We used cuBLAS and CUDA toolkit (version 7.5.18-
1.0502.10743.2.1) for GPU programming.

VIII. COMPUTATIONAL PERFORMANCE

We performed several experiments on Titan using the large
GCR data set and different problem configurations. The perfor-
mance gains from our optimization efforts are demonstrated in
figure 3. In this scenario, we are comparing the performance
of the baseline application with the optimized version while
using the large GCR data set to find 8,000 clusters till a
specified convergence target is reached. We used a target of 5%
or fewer changes in cluster memberships between iterations
as the termination criteria for the performance experiments.
We use a better threshold (0.5%) for higher fidelity scientific
experiments. Note that the optimized version yields a speedup
of 2.7× over the baseline version. The application spends

 0

 500

 1000

 1500

 2000

 2500

 3000

Baseline Optimized

T
im

e
 i
n
 s

e
co

n
d

s

One Titan node (16 Opteron CPU cores + 1 K20X GPU)

Parallel Spatio-Temporal Clustering - Baseline vs. Optimized

Total
Phase1

Fig. 3. Parallel Spatio-Temporal Clustering : Performance comparison of the
Baseline application with the Optimized version for finding 8,000 clusters
using the GCR data set on one node of Titan. A speedup of 2.7× is observed
with the Optimized version.

 0

 500

 1000

 1500

 2000

 2500

 3000

Baseline Optimized

T
im

e
 i
n
 s

e
co

n
d

s

One Titan node (16 Opteron CPU cores + 1 K20X GPU)

Performance impact of varying number of clusters (k)

1000
2000
4000
8000

Fig. 4. Parallel Spatio-Temporal Clustering : Performance impact of the
parameter k (number of clusters) using the GCR data set on one node of
Titan. Please note that performance gains with optimized implementation are
more conspicuous with larger clusters due to increased computation.

a majority of time in the first phase (Phase1), and the
substantial improvement stems from accelerating Phase1
using GPUs.

A. Impact of k

The desired number of clusters (k) has significant influence
on application execution time. We conducted several exper-
iments to quantify this impact as shown in figure 4. The
performance benefits of the optimized version become more
prominent as k increases due to the increased computational
intensity of the application.

B. Dynamic Load Balancing

We have a centralized master process that allocates work
dynamically to both CPU and GPU workers. At every itera-
tion, the master process distributes initial chunks to available
workers and assigns next chunk upon completion. We can vary
the number of chunks of work, or aliquots, per iteration using
a parameter naliquot for effective load balancing between
non-homogeneous workers . The impact of this parameter on

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

60 120 240 480 960

T
im

e
 i
n
 s

e
co

n
d

s

Number of work chunks

Performance impact of varying number of work chunks - One node

Optimized k=1000

Fig. 5. Parallel Spatio-Temporal Clustering: Experimenting with number of
work chunks used for load balancing among non-homogeneous workers (CPU
and GPU) using the GCR data set for finding 1,000 clusters. A chunk size of
240 results in comparatively better performance for this case.

 100

 1000

 1 2 4 8 16 32

T
im

e
 i
n
 s

e
co

n
d

s

Number of Nodes (Each node: 16 CPU cores + 1 GPU)

Parallel Spatio-Temporal Clustering - Strong Scaling on Titan

Optimized k=8000

Fig. 6. Parallel Spatio-Temporal Clustering : Strong scaling performance for
finding 8,000 clusters using the GCR data set on Titan. The scaling is limited
at higher node counts due to insufficient computational workload per process.

performance is shown in figure 5 using a single node of Titan
for the problem of finding 1,000 clusters for the GCR data set.
Although there is low degree of variability, we can observe that
a chunk size of 240 seems optimal for this particular problem
configuration.

C. Scaling

The strong scaling performance of our parallel clustering
implementation is shown in figure 6 for the 8,000 cluster
scenario. For this problem configuration, the application scales
well to sixteen nodes for a total of 256 CPU cores + 16 GPUs.
It must be noted that there is insufficient computation for the
8,000 cluster problem to amortize the communication and data
distribution overheads at larger node counts.

D. Limitations and Future Work

Our current approach uses a centralized master process to
coordinate and keep track of worker processes. If used with a
sufficiently small chunk (aliquot) size, this provides dynamic
load balancing, which is especially useful when employing the
triangle inequality-based acceleration technique, as the number

of required distance comparisons will vary between chunks.
The centralized master-worker paradigm has inherent scalabil-
ity limits, however, and introduces a large amount of overhead
when many processes are used; furthermore, for certain large
data sets or problem configurations with higher number of
desired clusters, the memory requirements for storing the
cluster assignment table and intermediate data structures will
exceed the available memory on a node, which limits what
we can analyze on Titan. For these reasons, we plan to add
support for a decentralized approach (which we have explored
using a different version of the clustering implementation
[11]). Furthermore, we are interested in using non-volatile
memory (NVM)—which promises very large amounts of byte-
addressible memory—to store the cluster assignment table and
other applicable data structures.

One of our key optimizations has been the use of level-2
and level-3 BLAS routines using the matrix formulation of
the distance calculations. We currently combine this with the
triangle inequality-based acceleration in a crude manner by
simply specifying an iteration count at which to switch from
using the former approach to the latter. Developing a heuristic
to automatically select when this transition should occur is
one possible improvement. It may be feasible to do something
more sophisticated and combine the two approaches, perform-
ing all distance calculations in initial iterations via the matrix
approach, and then, as cluster memberships stabilize, using the
matrix formulation for calculations using only a subset of the
centroids.

IX. APPLICATIONS

A. Vegetation structure of Great Smoky Mountains National
Park

LiDAR based vertical density profiles of vegetation in
GSMNP were classified among 30 clusters to identify dis-
tinct vegetation structure type within the park. Choice of
30 clusters in our study was based on [4]. Figure 7 show
the 30 representative vertical structures (cluster centroids)
identified by the cluster algorithm. For example, cluster 1
represent tall forests with mean height of 30− 40 m but with
low understory vegetation, while cluster 2 represent forests
with slightly lower mean height of 25 − 30 m, but with a
dense understory vegetation under 10 m. Clusters 13, 14, 20
represent low height grasslands and heath balds that are small
in area but distinct landscape type within the GSMNP. While
most of the past LiDAR based studies of forest ecosystems
focus primarily on the maximum canopy height derived from
the point clouds, our clustering based analysis identifies and
highlights the immense diversity in vertical structure of the
vegetation (Figure 7) of different height, density and stature
across the park.

Figure 8 show the spatial distribution of the 30 vegetation
clusters across the national park. Structural complexity of the
vegetation in GSMNP across the gradients of topography,
precipitation and moisture availability and climate expressed
through diversity in vegetation species composition is visual-
ized in the Figure 8. High elevation regions of the park are

Fig. 7. Representative vegetation structure profiles identified by k-means
cluster algorithm (k=30) across GSMNP. Each vegetation profile show a
normalized density distribution of the vegetation bioss in the vertical canopy.
Also shown for each cluster is the fraction of total land area within the park
which it occupies.

dominated by the short height vegetation canopies with dense
understory. Vegetation at these high elevations are subjected
to harsher climate conditions and are thus dominated by
relatively shorter tree canopies with dense understory shrubs
like Rhododendron and Mountain Laurels. Tall canopy vege-
tation are prominent in mid to low elevation mountain coves,
especially on northern aspect mesic slopes that provides high
moisture and radiation environment to support tall vegetation
species in the park. Analysis of the entire vertical canopy,
unlike the maximum height in most previous studies, reveals
spatial patterns of vegetation structure that are influenced by
microclimatic conditions leading to a great range of diversity
not just across different vegetation types and species but also
within same species and forest types. These patterns provides
insights in the range of climate conditions a given species
grow in and adapt to and is indicative of vegetation health
and diversity.

B. Global climate regimes

Tremendous amount of heterogeneity in terms of climate,
vegetation, soil properties and nutrients and topography exist
in the terrestrial land ecosystem across the globe. At the same
time similarities in environmental conditions exist at regional
scales and at times across regions that may be geographically

Fig. 8. Spatial distribution of 30 vegetation structure classes/clusters (Fig-
ure 7) across the Great Smoky Mountains National. Boundaries of the GSMNP
are shown by black lines on the map. The black line across the middle of the
park following the ridge line of mountains is the state line with Tennessee in
north and North Carolina to south of it. Color scheme is the map corresponds
to the color scheme for cluster in Figure 7.

disconnected and distant. Goal of global climate regimes is to
characterize the environmental conditions descried by multi-
dimensional data sets (Table II) in a set of cohesive data
defined regions and help quantify the large scale patterns of
climate and environment.

Level of divisions (k) in k-means clustering provides res-
olution in multi-dimensional data space, that can be tuned
depending on the specific resolution. Figure 9 show map
of 1000 climate regimes identified by k-means clustering
using multi-dimensional data sets (Table II). Clustering is able
to identify biomes all across the globe, like, Appalachian
mountains in eastern United States, agricultural regions in
United States mid-west, Alaskan boreal forests, dry and wet
tropical forests in Amazon etc. However, while clustering can
characterize the heterogeneities in the complex data sets well,
visualization of the results for analysis purposes pose a unique
challenge. Colored using random colors, Figure 9 is difficult
to interpret. Generating 1000 distinctly identifiable colors for
visualization is a difficult problem, bound by the limitations
of human eye to perceive colors.

We quantitatively generated color schemes (similarity col-
ors) for the map that embeds the environmental conditions in
the color used for the maps, making their interpretation easy
and intuitive. We performed a Principal Component Analysis
(PCA) on the final centroids identified for the 1000 clusters by
the k-means algorithm. The first three principal components
(PCs) explain 62% of the total variance in the data. First
principal component (PC1) represents 30% of the variance
and was dominated by precipitation related variables and
evapotranspiration. Second principal component (PC2) was
dominated by temperature variables and length of growing
season and explained 20% of total variance. Third principal
component (PC3) primarily represented solar radiation, topog-
raphy and soil nutrient variables and explained 12% of the
total variance. Values of first three principal components were
used to generate RGB color schemes for the map. PC1 was
assigned to Green channel, PC2 to Blue and PC3 was assigned
to the Red channel to generate the similarity colors. Figure 10

shows the same map as Figure 9 but using similarity colors.
While Figure 9 highlights the boundaries between climate
regimes well, Figure 10 uses a continuous color scheme
that highlights the dominant environmental conditions (based
on PCs) that characterizes the regime. Northern hemisphere
temperate and high latitudes are dominated by temperature
variables. Effect of precipitation and soils are visible in eastern
United States, and topographic complexities of Sierra Nevada
and Rocky Mountains in western United States are depicted
by complexity of colors on the map. Precipitation and soil
conditions are increasingly dominant in tropical region in both
hemispheres and latitudinal similarities across the continents
in tropical region are prominent.

Analysis of future climate regimes using two climate models
and two different climate scenarios show key shifts expected in
the large scale climate regimes globally under climate change
scenarios. Due to space limitations, we present results only
for HadCM3 climate model under A1FI scenario in 2100
(Figure 11). A northward shift in regimes can be observed,
especially in northern hemisphere temperate zones under in
future warming climate. The changes in the climate regimes
are especially prominent in tropical regions due to expected
shift in precipitation patterns and warmer climate.

X. CONCLUSION

In this paper, we presented a parallel multivariate spatio-
temporal clustering algorithm and its application to processing
big data sets in ecology. Through a detailed performance
characterization of our application, we identified the need to
increase the computational intensity to achieve better perfor-
mance on advanced architectures. Towards that end, we imple-
mented a high performance BLAS formulation to accelerate
Euclidean distance calculations that formed the dominant com-
ponent of our baseline application. We have made substantial
efforts to improve the performance of the baseline algorithm
by utilizing all the computational resources available on hybrid
supercomputers. Using a combination of MPI, CUDA and
OpenACC, we demonstrated up to 2.7X speedup in certain
problem configurations with the optimized implementation on
the Titan supercomputer at Oak Ridge National Laboratory.
We applied our technique and demonstrated efficacy in ad-
dressing two of Earth science problems, namely (a) Great
Smoky Mountains National Park: identification of vegetation
structure and (b) Globlal Climate Regimes: understanding the
global patterns of climate, vegetation and terrestrial ecology.

Our future plans include (a) design of a decentralized
version to overcome scalability limitations with large pro-
cess counts and memory limitations with large data sets,
(b) experimenting with non-volatile memory technologies for
storing cluster assignments and intermediate data structures,
(c) better integration of matrix and triangle inequality-based
formulations of the distance calculations, and (d) techniques
for effective utilization of fat hybrid nodes like those present in
the next generation supercomputer, Summit, which will have
multiple GPUs per node.

Fig. 9. 1000 Global climate regimes generated by the k-means clustering algorithm for contemporary time period. Randomly generated colors were assigned
to each cluster to highlight the extent and boundaries among the climate regimes.

Evapotranspiration

 Precipitation,

Temperature & Growing

 Season Length

and Soil nutrients

Elevation, radiation

Fig. 10. 1000 Global climate regimes generated by the k-means clustering algorithm (same as Figure 9) for contemporary time period. Similarity color scheme
was used where Red color channel highlights effect of topography and soil properties, Green channel highlight precipitation variables and evapotranspiration,
and Blue channel demonstrate the effect of temperature variables and growing season length.

ACKNOWLEDGMENT

This research was partially supported by the U.S. De-
partment of Agriculture, U.S. Forest Service, Eastern Forest
Environmental Threat Assessment Center. Partial support for
this work was provided through the Scientific Discovery
through Advanced Computing (SciDAC) program funded by
the U.S. Department of Energy Office of Advanced Scientific
Computing Research (ASCR). Awards of computer time was
provided by the Innovative and Novel Computational Impact
on Theory and Experiment (INCITE) program. This research
used resources of the Oak Ridge Leadership Computing Facil-
ity at the Oak Ridge National Laboratory, which is supported
by the Office of Science of the U.S. Department of Energy

under Contract No. DE-AC05-00OR22725. This manuscript
has been authored by UT-Battelle, LLC under Contract No.
DE-AC05-00OR22725 with the U.S. Department of Energy.
The United States Government retains and the publisher, by
accepting the article for publication, acknowledges that the
United States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the
published form of this manuscript, or allow others to do so,
for United States Government purposes. The Department of
Energy will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access
Plan(http://energy.gov/downloads/doe-public-access-plan).

Evapotranspiration

 Precipitation,

Temperature & Growing

 Season Length

and Soil nutrients

Elevation, radiation

Fig. 11. 1000 Global climate regimes generated by the k-means clustering algorithm for predicted future 2100 by HadCM3 climate model under A1FI
emissions scenario. Similarity color scheme was used where Red color channel highlights effect of topography and soil properties, Green channel highlight
precipitation variables and evapotranspiration, and Blue channel demonstrate the effect of temperature variables and growing season length.

REFERENCES

[1] J. M. Omernik, “Ecoregions of the conterminous united states,” Annals
of the Association of American Geographers, vol. 77, no. 1, pp. 118–
125, 1987.

[2] B. Baker, H. Diaz, W. Hargrove, and F. Hoffman, “Use of the kppen-
trewartha climate classification to evaluate climatic refugia in statistically
derived ecoregions for the people’s republic of china,” Climate Change,
vol. 98, pp. 113–131, 2010.

[3] B. M. Steele, “Combining multiple classifiers: An application using
spatial and remotely sensed information for land cover type mapping,”
Remote Sensing of Environment, vol. 74, no. 3, pp. 545 – 556,
2000. [Online]. Available: //www.sciencedirect.com/science/article/pii/
S0034425700001450

[4] J. Kumar, J. Weiner, W. W. Hargrove, S. P. Norman, F. M. Hoffman, and
D. Newcomb, “Characterization and classification of vegetation canopy
structure and distribution within the Great Smoky Mountains National
Park using LiDAR,” in Proceedings of the 15th IEEE International
Conference on Data Mining Workshops (ICDMW 2015), P. Cui, J. Dy,
C. Aggarwal, Z.-H. Zhou, A. Tuzhilin, H. Xiong, and X. Wu, Eds.,
Institute of Electrical and Electronics Engineers (IEEE). Conference
Publishing Services (CPS), Nov. 2015, pp. 1478–1485.

[5] A. Guisan and W. Thuiller, “Predicting species distribution: offering
more than simple habitat models,” Ecology Letters, vol. 8, no. 9,
pp. 993–1009, 2005. [Online]. Available: http://dx.doi.org/10.1111/j.
1461-0248.2005.00792.x

[6] W. W. Hargrove and F. M. Hoffman, “Potential of multivariate quanti-
tative methods for delineation and visualization of ecoregions,” vol. 34,
no. Supplement 1, pp. S39–S60, Apr. 2004.

[7] D. R. Cutler, J. Thomas C. Edwards, K. H. Beard, A. Cutler, K. T.
Hess, J. Gibson, and J. J. Lawler, “Random forests for classification in
ecology,” Ecology, vol. 88, no. 11, pp. 2783–2792, 2007.

[8] F. M. Hoffman, J. W. Larson, R. T. Mills, B.-G. J. Brooks, A. R.
Ganguly, W. W. Hargrove, J. Huang, J. Kumar, and R. R. Vatsavai,
“Data Mining in Earth System Science (DMESS 2011),” in Proceedings
of the International Conference on Computational Science (ICCS 2011),
M. Sato, S. Matsuoka, P. M. Sloot, G. D. van Albada, and J. Dongarra,
Eds., vol. 4. Amsterdam: Elsevier, Jun. 2011, pp. 1450–1455.

[9] F. M. Hoffman and W. W. Hargrove, “Multivariate geographic clustering
using a Beowulf-style parallel computer,” in Proceedings of the Inter-
national Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA ’99), H. R. Arabnia, Ed., vol. III. CSREA
Press, Jun. 1999, pp. 1292–1298.

[10] F. M. Hoffman, W. W. Hargrove, R. T. Mills, S. Mahajan, D. J. Erickson,
and R. J. Oglesby, “Multivariate Spatio-Temporal Clustering (MSTC) as

a data mining tool for environmental applications,” in Proceedings of the
iEMSs Fourth Biennial Meeting: International Congress on Environmen-
tal Modelling and Software Society (iEMSs 2008), M. Sànchez-Marrè,
J. Béjar, J. Comas, A. E. Rizzoli, and G. Guariso, Eds., Jul. 2008, pp.
1774–1781.

[11] J. Kumar, R. T. Mills, F. M. Hoffman, and W. W. Hargrove, “Parallel k-
means clustering for quantitative ecoregion delineation using large data
sets,” in Proceedings of the International Conference on Computational
Science (ICCS 2011), M. Sato, S. Matsuoka, P. M. Sloot, G. D. van
Albada, and J. Dongarra, Eds., vol. 4. Amsterdam: Elsevier, Jun. 2011,
pp. 1602–1611.

[12] R. M. Esteves, T. Hacker, and C. Rong, “A new approach for accurate
distributed cluster analysis for big data: competitive k-means,” Interna-
tional Journal of Big Data Intelligence, vol. 1 (1-2), 2014.

[13] ——, “Competitive k-means, a new accurate and distributed k-means
algorithm for large datasets,” in 2013 IEEE 5th International Conference
on Cloud Computing Technology and Science, vol. 1, Dec 2013, pp. 17–
24.

[14] C. M. Potera, M. C. Mihescu, and M. Mocanu, “An optimized version
of the k-means clustering algorithm,” in 2014 Federated Conference on
Computer Science and Information Systems, Sept 2014, pp. 695–699.

[15] R. Farivar, D. Rebolledo, E. Chan, and R. H. Campbell, “A parallel
implementation of k-means clustering on gpus.” in Pdpta, vol. 13, no. 2,
2008, pp. 212–312.

[16] S. A. Shalom, M. Dash, and M. Tue, “Efficient k-means clustering using
accelerated graphics processors,” in International Conference on Data
Warehousing and Knowledge Discovery. Springer, 2008, pp. 166–175.

[17] P. Mackey and R. R. Lewis, “Parallel k-means++ for multiple shared-
memory architectures,” in Parallel Processing (ICPP), 2016 45th Inter-
national Conference on. IEEE, 2016, pp. 93–102.

[18] T. Jordan, M. Madden, B. Yang, J. Sharma, and S. Panda, “Acquisition
of LiDAR for the Tennessee Portion of Great Smoky Mountains National
Park and the Foothills Parkway,” Center for Remote Sensing and
Mapping Science (CRMS), Department of Geography, The University
of Georgia, Athens, Georgia, USA, Tech. Rep. USGS Contract #
G10AC0015, 2011.

[19] R. J. Hijmans, S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis,
“Very high resolution interpolated climate surfaces for global land
areas,” International Journal of Climatology, vol. 25, no. 15, pp. 1965–
1978, 2005. [Online]. Available: http://dx.doi.org/10.1002/joc.1276

[20] E. Saxon, B. Baker, W. Hargrove, F. Hoffman, and C. Zganjar, “Mapping
environments at risk under different global climate change scenarios,”
vol. 8, no. 1, pp. 53–60, Jan. 2005.

[21] B. Baker, H. Diaz, W. Hargrove, and F. Hoffman, “Use of the Köppen-
Trewartha climate classification to evaluate climatic refugia in statisti-

cally derived ecoregions for the People’s Republic of China,” vol. 98,
no. 1, pp. 113–131, Jan. 2010.

[22] S. J. Phillips, “Reducing the computation time of isodata and k-means
unsupervised classification algorithms,” in Geoscience and Remote Sens-
ing Symposium, 2002 (IGARSS’02), vol. 3, Jun. 2002, pp. 1627–1629.

[23] ——, “Acceleration of k-means and related clustering algorithms,” in
ALENEX ’02: Revised Papers from the 4th International Workshop on
Algorithm Engineering and Experiments, D. M. Mount and C. Stein,
Eds. London, UK: Springer-Verlag, 2002, pp. 166–177.

[24] S. Sreepathi, M. L. Grodowitz, R. Lim, P. Taffet, P. C. Roth,
J. Meredith, S. Lee, D. Li, and J. Vetter, “Application Characterization
Using Oxbow Toolkit and PADS Infrastructure,” in Proceedings of the
1st International Workshop on Hardware-Software Co-Design for High
Performance Computing, ser. Co-HPC ’14. IEEE Press, 2014, pp.
55–63. [Online]. Available: http://dx.doi.org/10.1109/Co-HPC.2014.11

[25] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building
customized program analysis tools with dynamic instrumentation,” in
Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’05. New York,
NY, USA: ACM, 2005, pp. 190–200. [Online]. Available: http:
//doi.acm.org/10.1145/1065010.1065034

[26] J. S. Vetter and M. O. McCracken, “Statistical scalability analysis of
communication operations in distributed applications,” in ACM SIG-
PLAN Symp. on Principles and Practice of Parallel Programming
(PPOPP). Snowbird, UT: ACM, 2001.

[27] “cuBLAS - NVIDIA’s BLAS implementation on top of the CUDA
runtime,” http://docs.nvidia.com/cuda/cublas/index.html, 2017.

[28] “Titan - Cray XK7 Supercomputer at Oak Ridge National Laboratory,”
https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/, 2017.

[29] “TOP500 - Top 500 Supercomputer Sites in the World - June 2015,”
http://top500.org/lists/2016/11/, 2017.

