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Abstract \

Detailed modeling of reactive flows through geologic media is necessary
to understand a number of environmental problems of national
importance; examples are migration of radioactive fluids and geologic
sequestration of COZ2 in deep reservoirs. Such problems generally
require simulations in three spatial dimensions and involve
multiphase, multicomponent geochemical systems; typical simulations
are very computationally demanding and might involve 10 or more
chemical degrees of freedom on a grid of millions of nodes.

This poster describes PFLOTRAN, a massively parallel code for solving
multiphase-multicomponent reactive flow and transport equations in
nonisothermal, variably saturated porous media. PFLOTRAN is built
on top of the PETSc parallel scientific toolkit and uses its efficient
Newton-Krylov solver framework to solve the nonlinear equations
arising from the fully-implicit timestepping scheme, using a domain-
decomposition approach. We present performance timings from the
MPP2 machine at EMSL/PNNL and the Cray XT3 machine (Jaguar) at
NCCS/ORNL that demonstrate the extreme scalability of PFLOTRAN,
and we illustrate some of science that is being done with the code.
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Mathematical formulation

PFLOTRAN consists of two distinct modules: a mass and energy flow code
(PFLOW) and a reactive transport code (PTRAN). The module PFLOW solves
mass conservation equations for water and other fluids and an energy balance

Mass Conservation: Flow Equations
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The module PTRAN solves mass conservation equations for a
multicomponent geochemical system. The reactions included in PTRAN
involve aqueous species and minerals which can be written in the genereral

respectively, where the set of species {Aj} refer to a set of primary or basis

species in terms of which all other species are written, A; denotes an aqueous

complex referred to as a secondary species, M,,, refers to a mineral, and Vji and
Vjp are reaction stoichiometric coefficients derived from an extensive

database.

/Architecture of PFLOTRAN

Flow and transport modules

PFLOTRAN consists of two separate modules PFLOW and PTRAN that can be
run either in standalone or coupled modes. PFLOW solves multiphase flow
equations and PTRAN solves multicomponent reactive transport equations. In
coupled mode, flow velocities, saturation, pressure and temperature fields
computed from PFLOW are fed into PTRAN. For transient problems,
sequential coupling allows changes in porosity and permeability due to
chemical reactions to alter the flow field.

Modular design

Both codes employ a modular design and use Fortran 90 features to provide
some degree of object orientation. Fortran 90 modules reduce unnecessary
sharing of program variables and procedures. PFLOW uses modules and
derived types to encapsulate data and the methods that operate on them. A
PFLOW driver program loads pflow_grid_module, which provides a
constructor function pflowGrid_new that returns a pflowGrid object. That
object contains all data about the state of the variables on the flow grid, but the
driver does not access those directly. Instead, method subroutines provided
by pflow_grid _module are wused, for example pflowGrid_step which
advances the flow simulation one time step.
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PTRAN Newton solver
DAGlobalToLocalBegin ()
DAGlobalTolLocalEnd ()
Until convergence do
DAGlobalToLocalBegin ()

enddo

enddo

PFLOTRAN DRIVER
pflowGrid_new
ptran_init
pflowGrid_ptran_init
do steps=1l, stepmax
pflowGrid_step()
do kstep=1l,
pflotranGrid_interp
!Do a PTRAN step

| ———ptran_solve

pflowGrid_update

P

kmax

DAGlobalTolocalEnd
ptran_multi !Calculate J and R
KSP_Solve ()

SNESSolve ()

PFLOW time stepping
DAGlobalTolLocalBegin ()
DAGlobalToLocalEnd ()

Y

s

KSPSolve ()

PET'Sc SNES nonlinear solvers

Until convergence do
FormFunction ()
FormJacobian ()

PFLOW residual routines

T

PFLOW Jacobian routines

coun| |tH| |THC| [H20-CcO2 | |..] [cowp| [ta] |TEC]| [H20-CO2 |[...]
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PFLOW equations of state
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Figure: Cartoon representation of relationships between PFLOTRAN and PETSc components.

PETSc solvers

PETSc solvers (Balay et al., 1997) are used to solve the system of nonlinear
equations arising at each timestep. PTRAN uses its own Newton solver
routine, while PFLOW uses the SNES nonlinear solver framework of PETSc:
this allows easy application of various trust region or line search techniques as
well as methods for choosing the accuracy required for each Newton step.
Jacobians can be evaluated analytically, or, if memory is at a premium, a
matrix-free approach, in which the action of the Jacobian is calculated via
finite differences, can be employed. We note that the modular
implementation of the nonlinear solvers we use makes it convenient to add
new physics to the code: a new residual function (and, optionally, a Jacobian
calculation routine) for the Newton-Raphson equations simply need be added.
Both codes use the PETSc kSP linear solvers and PC preconditioners to solve
the linear systems arising at each Newton step; this allows the choice of any of
several iterative methods (e.g. GMRES, TFQMR) or preconditioners at runtime.
Parallel preconditioning has usually been accomplished using an additive
Schwarz method with ILU applied to each subdomain. We are currently
adding support for geometric multigrid techniques using the PETSc high-level
DMMG multigrid framework.

Parallelism

Parallelism is achieved using a domain-decomposition
approach. Each processor is assigned a subdomain of the system
and a parallel solve of the system is implemented over all
processors. Message passing is required at the boundary nodes
to adjacent processors to compute flux terms (see Figure below).
PETSc ""Distributed Array'' DA objects are used manage the
distribution of field variables across the domains and message
passing between domains. Ghost point scatters and gathers are
handled conveniently by DA routines.
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Figure: Schematic of domain-decomposition showing position
of ghost nodes and message passing indicated by arrows.
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/Performance and scalability

PFLOTRAN been designed from scratch with parallel scalability in mind, and it
displays excellent scaling characteristics on modern supercomputers. The
figure at right shows the performance of PFLOW running a one phase thermo-
hydrologic benchmark problem on a 256 x 64 x 256 grid with three degrees of
freedom per node (approximately 12.6 million degrees of freedom total). The
benchmark was run on both the MPP2 cluster at PNNL/EMSL, a cluster of 1960
1.5 GHz Itanium?2 processors with Quadrics QsNetll interconnect, and Jaguar,
the 5200 Opteron processor Cray XT3 at ORNL/NCCS. PFLOW scales quite
well on both machines, bottoming out at around 1024 processors on MPP2,
and scaling exceptionally well on Jaguar, displaying linear speedup all the way
up to 2048 processors, and still displaying modest speedup when going from
there to 4096 processors.

PTRAN scales similarly, which is not surprising because its computational
structure is nearly identical to that of PFLOW. The figure shows the
performance of PTRAN on MPP2 running a benchmark problem on 256 x 64 x
256 grid with four degrees of freedom per node.
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Anomalous behavior of Pu at the Nevada Test Site

PFLOTRAN is being used to understand the anomalous migration of
radionuclides at the Nevada Test Site, where 828 underground nuclear tests
were conducted between 1951 and 1992.
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mineral alteration. Mineral alteration is minimal, though it is expected that
given longer times (~104 years), significantly greater alteration will occur. (Lu
and Lichtner, 2005)

Figure: Ca2+.

Figure: SiOz(aq).
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PFLOTRAN uses a finite-volume discretization on a regular grid. Time stepping is fully 200
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