
 Groundwater Reactive Transport Models, 2012, 141-159 141

Fan Zhang, Gour-Tsyh (George) Yeh, Jack C. Parker and Xiaonan Shi (Eds)
All rights reserved - © 2012 Bentham Science Publishers

CHAPTER 6

PFLOTRAN: Reactive Flow & Transport Code for Use on Laptops to
Leadership-Class Supercomputers

G. E. Hammond1, P. C. Lichtner2*, C. Lu3 and R. T. Mills4

1Pacific Northwest National Laboratory, Richland, WA, USA; 2Los Alamos National Laboratory, Los
Alamos, NM, USA; 3Energy and Geoscience Institute, University of Utah, Salt Lake City, UT, USA and
4Oak Ridge National Laboratory, Oak Ridge, TN, USA

Abstract: PFLOTRAN, a next-generation reactive flow and transport code for modeling subsurface
processes, has been designed from the ground up to run efficiently on machines ranging from
leadership-class supercomputers to laptops. Based on an object-oriented design, the code is easily
extensible to incorporate additional processes. It can interface seamlessly with Fortran 9X, C and C++

codes. Domain decomposition parallelism is employed, with the PETSc parallel framework used to
manage parallel solvers, data structures and communication. Features of the code include a modular
input file, implementation of high-performance I/O using parallel HDF5, ability to perform multiple
realization simulations with multiple processors per realization in a seamless manner, and multiple
modes for multiphase flow and multicomponent geochemical transport. Chemical reactions currently
implemented in the code include homogeneous aqueous complexing reactions and heterogeneous
mineral precipitation/dissolution, ion exchange, surface complexation and a multirate kinetic sorption
model. PFLOTRAN has demonstrated petascale performance using 217 processor cores on problems
composed of over 2 billion degrees of freedom. The code is currently being applied to simulate uranium
transport at the Hanford 300 Area and CO2 sequestration in deep geologic formations.

Keywords: High performance computing, reactive transport, carbon sequestration, multiple realizations,
multiphase flow and transport, Richards equation, domain decomposition.

1. INTRODUCTION

Over the past several decades, subsurface flow and transport models have become vital tools for the U.S.
Department of Energy (DOE) in its environmental stewardship mission. These models have been employed
to evaluate the impact of fossil energy resources, such as CO2 sequestration in deep geologic formations, on
the environment, and the efficacy of proposed remediation strategies for legacy waste sites.

For years, traditional models—simulating groundwater flow and solute transport, with basic chemical
reactions such as aqueous complexing, mineral precipitation/dissolution, sorption to rock/soil surfaces and
radioactive decay—have been employed in 1D or 2D systems [1]. Although these simplified groundwater
models are still in wide use, advances in subsurface science have enabled the development of more
sophisticated models that employ multiple fluid phases and chemical components coupled through a
network of biological and geochemical reactions at multiple scales. With this increased complexity,
however, comes the need for increased computing power, typically far beyond that of the average desktop
computer. This is especially true when applying these models to large-scale three-dimensional problem
domains. This paper gives a brief description of PFLOTRAN—a next-generation, highly-scalable code for
simulations of reactive flows in geologic media—and discusses some of the challenges encountered and the
progress made in scaling PFLOTRAN simulations to the petascale on Cray XT4 and XT5 architectures.

PFLOTRAN is a subsurface multiphase, multicomponent reactive flow and transport code intended for use
on a variety of computer architectures ranging from laptops to leadership-class supercomputers (see Section
4). It is founded upon established frameworks for high-performance computing [i.e. HDF5 (Hierarchical

*Address correspondence to P.C. Lichtner: Los Alamos National Laboratory, Los Alamos, NM, USA; Tel: 1-505-667-3420; E-
mail: lichtner@lanl.gov

142 Groundwater Reactive Transport Models Hammond et al.

Data Format 5), MPI (Message Passing Interface), PETSc (Parallel Extensible Toolkit for Scientific
computing), SAMRAI (Structured Adaptive Mesh Refinement Application Interface)], and supports
seamless integration of Fortran 9X, C and C++ programming languages. PFLOTRAN is licensed under an
open source GNU Lesser General Public License (LGPL).

2. GOVERNING EQUATIONS

The governing equations employed in PFLOTRAN to model subsurface flow depend on the physical and
chemical processes simulated. Thus, the code is divided up into several flow modes including multiphase CO2-
H2O, air-liquid water, Thermal-Hydrologic-Chemical (THC), and Richards’ equation for variably saturated
porous media. The flow modes are coupled to a multicomponent geochemical transport mode through
temperature, pressure, flow velocity, and phase saturation state. Likewise, the geochemical transport mode may
alter the flow field through changes in porosity, permeability and tortuosity caused by chemical reactions.

2.1. Multiphase Flow

Local equilibrium is assumed between phases for modeling multiphase systems with PFLOTRAN. The
multiphase partial differenttial equations for mass and energy conservation solved by PFLOTRAN have the
general form [2]:

i i i is X q X s D X Q
t

  
      

 

                 
  (1a)

for the i th component, and

   + 1- r r es U c T q H T Q
t      

 

               
  (1b)

for energy. In these equations α designates a fluid phase (e.g. H2O, supercritical CO2) at temperature T and
pressure Pα with the sums over all fluid phases present in the system; species are designated by the
subscript i (e.g. w = H2O, c = CO2);  denotes the porosity of the geologic formation; s denotes the

phase saturation state; 
iX denotes the mole fraction of species  1  ii

i X ;  , H , U refer to the

molar density, enthalpy, and internal energy of each fluid phase, respectively; and q denotes the Darcy

flow rate defined by

 (2)

where k refers to the intrinsic permeability, k denotes the relative permeability,  denotes the fluid

viscosity, W denotes the formula weight, g denotes the acceleration of gravity, and z designates the

vertical of the position vector. The source/sink terms, iQ and eQ , describe injection and extraction of mass

and heat at wells, respectively. The quantities r , rc , and κ refer to the density, heat capacity, and thermal

conductivity of the porous rock.

Additional constitutive relations are needed to account for capillary pressure, and changes in phase which
are not discussed in detail here (see [3]). In PFLOTRAN a variable switching approach is used to account
for phase changes enforcing local equilibrium. According to the Gibbs phase rule there are a total of NC +1
degrees of freedom where NC denotes the number of independent components. This can be seen by noting
that the intensive degrees of freedom are equal to Nint = NC − NP +2, where NP denotes the number of

PFLOTRAN Groundwater Reactive Transport Models 143

phases. The extensive degrees of freedom equals Next = NP − 1. This gives a total number of degrees of
freedom Ndof = Nint + Nint = NC +1, independent of the number of phases NP in the system.

2.2. Richards’ Equation

The governing mass conservation equation for PFLOTRAN’s variably-saturated single phase flow mode is
given by

 (3)

and

 (4)

Here,  denotes porosity, s saturation, ρ water density, q Darcy flux, k intrinsic permeability, kr relative
permeability,  viscosity, P pressure, g gravity, and z the vertical component of the position vector.
Supported relative permeability functions for Richards’ equation include van Genuchten, Books-Corey and
Thomeer-Corey, while the saturation functions include Burdine and Mualem. Water density and viscosity
are computed as a function of temperature and pressure through an equation of state for water.

2.3. Geochemical Transport

In PFLOTRAN, the geochemical transport equations may be coupled to the flow equations or run in standalone
mode. In coupled mode, the flow equations provide the pressure, temperature, Darcy flow velocity, and
saturation as functions of time and position. In standalone mode, these quantities are given constant values.
Chemical reactions currently implemented in the code are listed in Table 1 and consist of homogeneous
aqueous complexing reactions, and heterogeneous mineral dissolution/precipitation, ion exchange and surface
complexation reactions. Thermodynamic data are read from an extensive database for equilibrium constants
over a range of temperatures from 0–300

o
C and fixed pressure at 1 bar for temperatures below 100 and along

the saturation curve for pure water for higher temperatures, reaction stoichiometry, mineral molar volumes,
species valence, and Debye-Hückel parameters. The user may also use a customized database for higher
temperatures, although pressure must be fixed in the current implementation. Surface complexation reactions
may be treated either as intrinsically fast reactions in local chemical equilibrium or through a kinetic multirate
model defined below. Reactions are transformed to canonical form [4] using a basis set of Nc aqueous primary
species that may differ from the species used to construct the database.

The governing mass conservation equation for PFLOTRAN’s geochemical transport mode for a multiphase
system written in terms of a set of independent aqueous primary or basis species has the form.

  
   

 

 
             

   j
j j j jm m

m

S
s q s D v I

t t
Q (5)

where the sums over α are over all fluid phases in the system, and where  j denotes the total

concentration in the α th fluid phase for primary species pri
jA defined by:

 (6)

144 Groundwater Reactive Transport Models Hammond et al.

Table 1: Chemical reactions implemented in PFLOTRAN written in terms of primary species pri
jA , secondary species

sec
jA , minerals mM , gaseous species g

lA , sorbed species
kz kX A , surface complexes  kA

 and empty surface sites

X , with corresponding stoichiometric coefficients jlv , jmv , g
jlv , and 

kv . Reaction rates are based on local

equilibrium (LEQ) or kinetic rate laws. Primary and secondary aqueous species may be interchanged provided the
resulting reactions are linearly independent.

The superscript l denotes the aqueous phase and l
jC represents the concentration of primary species pri

jA

assumed to be chosen from the set of aqueous species. The secondary species concentration 
iC is

computed in terms of the primary species from the mass action relation

 (7)

with equilibrium constant 
iK , and activity coefficients  j

,  i . The activity coefficients are currently

computed using the Debye-Hückel equation. Both kinetic and equilibrium sorption are described through the
quantity Sj which denotes the concentration of sorbed species in units of mol per bulk volume (see [5] for more
details). The quantity jQ denotes a source/sink term. The coefficient D represents hydrodynamic dispersion

and molecular diffusion as a diagonal tensor. A full dispersion tensor is not currently supported, as the approach
presents the potential for oscillatory behavior and negative concentrations that are physically impossible and
cause the geochemical algorithms to fail. Although other codes may truncate minimum concentrations to
resolve this problem, cutoffs for concentrations are arbitrary and can introduce error themselves. Diffusion is
considered to be species-independent in the current formulation, which greatly simplifies the flux term in the
transport equations. Mineral reactions are described by the reaction rate mI for mineral mM with the mineral

concentration computed from the equation

 (8)

with molar volume mV . The reaction rate mI is based on transition state theory with the form

 (9)

using the sign convention of a positive value for precipitation and negative for dissolution, where mk and

mK denote the kinetic rate constant and equilibrium constant, respectively, both functions of temperature

and pressure, and ma refers to the mineral specific surface area. The ion activity product mQ is defined by

PFLOTRAN Groundwater Reactive Transport Models 145

 (10)

The quantity mP is a prefactor with accounts for the pH dependence and other attenuation factors on the

rate. The factor  m takes on the values zero or one to ensure that if a mineral is not present at some

particular point in space, it cannot dissolve:

 (11)

Porosity and permeability may be altered through chemical reactions and coupled back to the flow
equations. Porosity is obtained from the relation

 (12)

which presumes that the total porosity of the porous medium is connected. From this relation permeability
may be computed using a phenomenological relation between permeability and porosity, for example, a
power law relation of the form

 (13)

for some power n, with initial porosity and permeability 0 , 0k , respectively. Likewise, mineral surface

area can vary according to a power law relation of the form

 (14)

where typically mn =2/3, and 0
ma and 0m

 denote the initial mineral surface area and volume fraction. This

relation only applies to primary minerals with 0 0 m .

3. PFLOTRAN FRAMEWORK

PFLOTRAN is developed for use with leadership class, high-performance computing architectures. The
code is designed from the ground up to efficiently scale on the latest ultrascale supercomputers. It can also
run efficiently on desktops and notebook computers and is developed on the latter by most of the
development team. The code is written in a modular manner facilitating the incorporation of new
computational algorithms and scientific processes. This section describes several concepts or features that
are considered to be important for modern code development and key to attaining scalability on the latest
leadership-class supercomputers. These key aspects of PFLOTRAN’s development include the integration
of computational science within an object-oriented coding paradigm, PFLOTRAN’s founding upon the
robust and sophisticated PETSc library, and the incorporation of scalable I/O through parallel HDF5.

3.1. Object-Oriented Fortran 9X

In order to facilitate code development and modularity in PFLOTRAN, an object-oriented coding paradigm
is employed through the judicious use of Fortran9X features. The nature of Fortran9X dictates that the
object-oriented paradigm employed within PFLOTRAN differ somewhat from traditional object-oriented
languages such as C++ and Java in that no attempt is made to explicitly leverage polymorphism or

146 Groundwater Reactive Transport Models Hammond et al.

inheritance within the framework, though some use is coincidental. Bea et al. [6] explains that Fortran9X
polymorphism can be achieved through the use of appropriate interfaces within the code. Although their
statement is technically correct, the user must still provide a unique argument list to enable the interface to
select the correct subroutine. Within PFLOTRAN, most science subroutines that could exhibit
polymorphism pass identical arguments, and thus the interface cannot differentiate between routines.
Besides, it can be argued that the user might as well explicitly declare the name of the subroutine called for
improved clarity and readability within the code. That being said, interfaces are used widely throughout the
code, but not with the explicit intent of enabling polymorphism.

It is our view that the most important aspects of the object-oriented paradigm are data encapsulation and
modularity within the code. Since data abstraction, polymorphism and inheritance are not necessarily
naturally implemented within Fortran9X, it can be argued that one should use a truly object-oriented
language such as C++ or Java for those purposes. As of late, Fortran 2003/2008 has increased the number of
object-oriented features within Fortran (e.g. type extension and inheritance, polymerphism, dynamic type
allocation and type-bound procedures) [7]. However, in PFLOTRAN extensive utilization of Fortran
2003/2008 paradigms has been avoided due to inconsistent implementation across compiler platforms, the
use of which would greatly limit the platform independence of the code.

As would be expected with any object-oriented code, the numerical algorithms, data structures, and
scientific processes within PFLOTRAN all revolve around classes and their instantiations, objects. A
PFLOTRAN class is defined in Fortran through derived data types composed of standard Fortran data
structures (i.e. dynamically allocated arrays of characters, integers, reals) and pointers to other lower-level
derived types/classes; it is not an actual Fortran 2003/2008 CLASS statement described by [7]. Within the
code a hierarchy of classes exist ranging from lower-level ones such as auxiliary data structures that contain
raw data such as pressures, temperatures, or concentrations, to mid-level ones such as the realization class,
which encompasses all low-level data sets and objects, or the timestepper class that controls the procedural
workflow to the high-level simulation class that encompasses all other objects in a PFLOTRAN simulation.

Although a comprehensive description of PFLOTRAN’s object-oriented paradigm is beyond the scope of
this paper, a brief descryption of several mid-to high-level classes is provided. For instance, PFLOTRAN’s
highest level object is the simulation object (or multi-realization simulation object if run in stochastic
mode). The simulation object contains pointers to two types of objects, the realization and the timesteppers
for flow and transport, as shown in Fig. 1.

type :: simulation_type
type(realization_type), pointer :: realization
type(timestepper_type), pointer :: flow_stepper
type(timestepper_type), pointer :: tran_stepper

end type simulation_type

Figure 1: Fortran9X data type for PFLOTRAN simulation class.

The realization object contains a hierarchy of data structures and objects that define the problem statement and
scientific algorithms being employed to solve the mathematical/scientific equations that govern the problem
statement. The timestepper encompasses the nonlinear and linear solvers utilized to solve the systems of PDEs
either for steady-state conditions or for an increment in time (i.e. a time step). The timestepper essentially
utilizes the realization object to first determine which scientific processes are being simulated and then populate
the system of equations being solved through residual and Jacobian function evaluations based on realization
parameters/properties (e.g. rock/soil permeabilities, reaction rate constants, time step size, etc.) and processes
(Richards’ equation, saturation functions, geochemical reaction equations, etc.).

Fig. 2 illustrates a lower-level class for defining an aqueous species using linked lists. Within the aqueous
species object, primary and secondary aqueous species are assigned an id, name, Debye-Hückel ion size
parameter (a0), molecular weight (molar_weight), valence (Z) and flag (print_me) for I/O purposes. For the

PFLOTRAN Groundwater Reactive Transport Models 147

case where the species is a secondary aqueous complex, an equilibrium reaction object (i.e.
equilibrium_rxn_type) is allocated, which contains parameters for calculating the complex concentration (i.e.
primary species ids, stoichiometries, equilibrium constant). As PFLOTRAN reads each species from the
prescribed input file, an aqueous species object is created and appended to a linked list of species. Parameters
from these species lists are later parsed into compact arrays for efficient lookup during PFLOTRAN execution.

type, public :: aq_species_type
PetscInt :: id
character(len=MAXWORDLENGTH) :: name
PetscReal :: a0
PetscReal :: molar_weight
PetscReal :: Z
PetscTruth :: print_me
type(equilibrium_rxn_type), pointer :: eqrxn
type(aq_species_type), pointer :: next

end type aq_species_type

Figure 2: Fortran9X data type for PFLOTRAN aqueous species class.

Object-oriented Fortran9X syntax can appear quite different in comparison to traditional Fortran programming.
Fig. 3 illustrates two do loops for setting total component concentrations to a value using object-oriented
Fortran9X with PFLOTRAN objects and traditional Fortran77. Notice that in the case of object-oriented
Fortran9X, the total component concentration array total, of size reaction%ncomp, is embedded within each
element of the rt_aux_vars array, which is an array of reactive transport auxiliary objects of size grid%nlmax.
In this case, the grid object owns the size of the local on-processor portion of the computational grid (i.e.
nlmax) and the reaction object owns the number of primary chemical degrees of freedom (i.e. ncomp). All of
these objects (grid, reaction, rt_aux_vars) are compartmentalized as descendants of the high-level realization
object. The arrays and parameters are accessed by referencing descendants of the realization object instead of
using a common statement. This object-oriented approach improves the modularity of the code and better
ensures the correct data locality (i.e. there is no need for common statements throughout the code).

Figure 3: Comparison of object-oriented Fortran9x and traditional Fortran loops.

Constructor and destructor routines exist for all classes employed within PFLOTRAN. Objects are created as
needed and initialized to default values in their respective constructor routines. The first object to be created is
the simulation object (i.e. SimulationCreate()), after which all underlying objects are created. In certain cases,
objects can be replicated in the construction process by passing the original object to the constructor interface.
The use of constructors guarantees that the initialization of data types within PFLOTRAN objects is uniform
throughout the code. At the end of a simulation, the destructor routine is called for the highest simulation object
(i.e. SimulationDestroy()). This routine in turn calls the destructors for its realization and timestepper objects,
each of which do the same for underlying objects and data structures. In the case of standard Fortran data
structures (e.g. arrays of integers, reals), deallocate is called instead of the destructor. This process propagates to
the lowest-level objects until all objects are destroyed and memory is freed.

common/array/a(nlmax,ncomp)

do n = 1, nlmax
do j = 1, ncomp

a(n,j) =..
enddo

enddo

Traditional Fortran77

grid => realization%patch%grid
reaction => realization%reaction
rt_aux_vars => &
realization%patch%aux%Global%aux_vars

do n = 1, grid%nlmax

do j = 1, reaction%ncomp
rt_aux_vars(n)%total(j) =..

enddo
enddo

OO Fortran9X

148 Groundwater Reactive Transport Models Hammond et al.

Figure 4: Schematic of PFLOTRAN workflow and data dependence illustrating the use of procedures, operators, and
objects within the code (see text for explanation of numbers).

Fig. 4 illustrates PFLOTRAN’s workflow and data dependence. Explanation of numbers appearing in the
figure are:

1. Multi-Realization Simulation object: Highest level data structure providing all information
for running simulations composed of multiple realizations.

2. Simulation object: Data structure providing all information for running a single simulation.

3. Timestepper object: Pointer to Newton-Krylov solver and tolerances associated with time
stepping.

4. Solver object: Pointer to nonlinear Newton and linear Krylov solvers (PETSc) along with
associated convergence criteria.

5. Realization object: Pointer to all discretization and field variables associated with a single
realization of a simulation.

6. Level object: Pointer to discretization and field variables associated with a single level of grid
refinement within a realization.

7. Patch object: Pointer to discretization and field variables associated with a subset of grid cells
within a level.

8. Auxiliary Data object: Pointer to auxiliary data within a realization/patch.

A comprehensive list of PFLOTRAN objects and their linkage to the processes in the workflow would be
difficult to include in a single schematic, and thus, only higher-level objects/processes are shown. To the
left is the standard flowchart for flow and transport simulators where the model initializes, reads the input
deck, and steps through time computing flow and transport while writing results at select times. In addition
to this traditional sequence, a multi-realization loop has been added to signify the simulation of more than
one realization. To the right, higher-level data objects are illustrated along with their connectivity within
the code’s data space. The flowchart illustrates that the flow and transport algorithms call a solver within
the timestepper. The solver then calls for a (residual) function evaluation and the calculation of the
associated Jacobian matrix. Both solver function calls require auxiliary data provided by the realization
object to complete the task (e.g. permeability, reaction rates, etc.), and thus, the realization object
possessing this data is passed to the routines.

For Adaptive Mesh Refinement (AMR), auxiliary data is associated with levels of grid refinement and
patches of cells within each level; thus, the linkage through the level and patch objects. The hierarchy of

PFLOTRAN Groundwater Reactive Transport Models 149

objects is designed to minimize the amount of data explicitly passed to procedures (without resorting to
global variables) and maximize compartmentalization of the parameters and processes. In doing so,
parameters and processes may be altered and customized with minimal impact to the remainder of the code
(i.e. procedure argument lists), thus greatly facilitating code development and maintenance. The object-
oriented paradigm is also vital in the implementation of the AMR framework within PFLOTRAN as the
physical domain must be divided among grid levels and patches, which are treated as lists of objects and
are easily accommodated within the PFLOTRAN framework.

Critics of object-oriented programming and the extensive use of pointers within Fortran codes may argue that
computational performance degrades due to limitations in the compilers’ ability to optimize the code. In the
case of PFLOTRAN, the bulk of computation time is spent in isolated “kernels”, and it has been demonstrated
that the object-oriented design of the code has minimal, if any, negative impact on the code’s execution time.
Considering that a large fraction of the code’s execution time is spent within the PETSc nonlinear solvers for
larger parallel runs (e.g. 95+% for large-scale flow simulations and 60+% for large-scale reactive transport
simulations) and that the residual function evaluations scale exceptionally well, one could argue that the ease of
programming and exceptional modularity of the code far outweigh any existing degradation in performance.

3.2. Parallel Implementation

PFLOTRAN is founded upon parallel data structures and solvers provided by PETSc [8]. The code
employs domain decomposition through PETSc DA (Distributed Array) or DM objects (The DM object is a
generalization of the DA object for managing an abstract grid object.) to partition a physical gridded
domain across processor cores, depending on whether structured or unstructured grids are employed (Note:
Unstructured grids are currently in the development phase, yet to be completed). With this approach, each
processor core possesses locally the data necessary to calculate its portion of the global problem being
solved, regardless of the algorithm employed. With the decomposition in place, PETSc provides the
necessary index sets or mappings for passing data between processors during the course of the simulation
(e.g. updating ghost cells, checkpointing vectors, etc.). In fact, PETSc actually performs the necessary
vector gather/scatters when requested, masking the details of communication.

PFLOTRAN accesses PETSc linear and nonlinear solvers through the SNES (Scalable Nonlinear Equation
Solvers) component which provides an interface to various methods (primarily Newton-based) for solving
systems of nonlinear equations. Through the SNES and the underlying linear equation solver (KSP) and
preconditioner (PC) components, the user may specify which solver algorithms and associated parameters
(e.g. tolerances, maximum iteration counts, etc.) are to be employed to solve the system PDEs for flow and
transport. From the “physics” or “science” side, PFLOTRAN provides to SNES two types of function
evaluations for solving the Newton-Raphson method: one that computes the residual vector on the right
hand side and another that calculates the coefficients for the Jacobian matrix. For each nonlinear solver
iteration, SNES calls the function evaluation routines on each processor core to compute the local entries in
the residual vector and coefficients for the local rows of the Jacobian. The SNES solver then employs the
selected parallel KSP solver to solve the global, linear system of equations and update the nonlinear
solution on each processor. This iterative process continues until the solution converges as dictated by the
tolerances specified. From the outside, the SNES solve appears no different in parallel than in serial. This is
the beauty of parallel domain decomposition within the PETSc framework: the framework masks the
intricate details of parallel computing (data decomposition, message passing, etc.) at the upper-level user
interfaces, exposing them only if the user so desires.

In order to obtain scalable solutions on massively-parallel leadership class machines, the developer must
take care to prevent unnecessary bottlenecks from impeding efficient parallel performance. The developer
must understand the data requirements and communication patterns of the parallel algorithms employed,
including underlying numerical libraries, and resolve parallel inefficiencies. The better the developer
understands the parallel implementation of the entire code, the easier it is to resolve parallel bottlenecks.
For this reason, the use of poorly understood, black box algorithms within parallel codes increases the
likelihood of inefficient scalability. If the user introduces algorithms that continually require off-processor

150 Groundwater Reactive Transport Models Hammond et al.

data, a potential exists for excessive communication, which may limit parallel scalability. Often, such
bottle-necks are not so evident on tens to hundreds of processor cores. However, as the number of cores
increases, the inefficiencies become more evident.

Take for instance, parallel I/O through processor zero with a round-robin approach where data is passed to
processor zero on a processor by processor basis (i.e. a global vector is not required). The model may scale
well up to a few hundred processor cores even through such an I/O algorithm is a serial bottleneck; the
bottleneck has just not yet become obvious. However, as the number of processor cores grows into the
thousands, I/O through processor zero is a known bottleneck, especially for ASCII I/O. At that point, the
developer must improvise and employ a more novel approach to I/O such as parallel HDF5, as is employed
in PFLOTRAN. At tens to hundreds of thousands of processor cores, the algorithms that limit
PFLOTRAN’s scalability are in the parallel solvers (i.e. global reductions or dot products) and I/O.

3.3. Multiple Realization Simulations

Perhaps one of the most unique and innovative features of PFLOTRAN is its ability to launch multiple
simulations of different realizations simultaneously, each realization being executed across multiple
processor cores. Although the embarrassingly parallel execution of multiple simultaneous realizations is
common these days, the discharge of each in parallel through domain decomposition within a processor
subcommunicator group is a novel feat within subsurface simulation. This ability will revolutionize Monte-
Carlo style analyses used to better quantify uncertainty in the subsurface.

For the user, the implementation of a stochastic multi-realization simulation is quite straightforward. For
example, suppose multiple realizations of permeability are to be employed in a Monte-Carlo fashion.
Assuming the correlated random fields have been generated beforehand, a simple script is utilized (e.g. a
Python script using h5py and numpy libraries) to load these datasets into an HDF5 formatted file under a
dataset with a name describing the dataset and the realization id (e.g. Permeability1 – permeability for
realization #1). At the prompt or within the job script, the user enters command line arguments that specify
that the simulation be run in stochastic mode with a specified number of realizations and processor groups
(Note: the number of processor groups must be less than or equal to the number of processor cores). An
example of the command line arguments follows:

mpirun -np 10000 pflotran
-stochastic
-num_realizations 1000
-num_groups 100

Upon execution, the realizations and parallel job’s processor cores are divided as evenly as possible among the
processor groups. In this case, 1000 realizations will be run on 100 processor groups using 10,000 processor
cores.

Each processor group will utilize 100 processor cores (np/num groups) and run 10 realizations apiece (num
realizations/num groups), one after another. Thus, only 100 realizations may be executed simultaneously as
each processor group may only simulate a single realization on 100 processor cores at a time. Each
processor group continues to run realizations until its allocation of 10 has completed.

An alternative approach would be a masterslave paradigm where the root processor core assigns
realizations to sub-communicator groups on a one by one basis. This approach would prove beneficial
should significant load imbalance exist between sub-communicator groups. Either way, the implementation
of the algorithm is straightforward and embarrassingly parallel.

Output for the stochastic simulation is written to files labeled by the realization id and/or processor group
id. The user then employs scripts or codes to postprocess the results, computing statistical averages,
sampling data, etc. To date, this approach has been successfully demonstrated with PFLOTRAN on
stochastic simulations composed of hundreds of thousands of realizations and utilizing thousands of
processor cores.

PFLOTRAN Groundwater Reactive Transport Models 151

3.4. Parallel HDF5 I/O

Parallel I/O plays an important role in enabling, or perhaps better stated, not degrading parallel scalability
within a code. PFLOTRAN employs scalable I/O through the parallel HDF5 [9] which leverages collective
MPI-IO operations across high-performance file systems. The HDF5 data model provides a sophisticated
set of data objects and associated metadata for archiving virtually any combination of data within a single
binary file. The HDF5 API provides the programmer with flexible interfaces for reading/writing data
from/to a file with relative ease. Through this interface, one specifies the attributes, properties, and data
types associated with the data set, all of which can be compartmentalized within a hierarchy of groups
within the file. In fact, data sets within an HDF5 file are arranged in a manner similar to the file and
directory structure of a standard file system, but within a single file. That is not to say that the file can be
navigated in the same manner.

HDF5 files are platform-independent, and data can be accessed through high-level API interfaces written in
C, C++, Fortran 90, Java, and Python regardless of the native datatypes on a particular machine (e.g. 32-bit
vs 64-bit, bigendian vs little-endian, C-specific vs Fortran-specific). For instance, one may write an HDF5
file using Python on a 32-bit, Windows-based laptop computer and read it in parallel across 100,000
processor cores using Fortran90 on a 64-bit Linux-based supercomputer. The library also provides linkage
to external libraries such as zlib and szip for compressed storage. All data are stored in an optimal binary
format for rapid access.

Critical to the scalability of its parallel I/O, HDF5 employs MPI-IO to enable super-computers to write data
either independently or collectively to the same file across hundreds of thousands of processor cores. Our
profiling has demonstrated that parallel HDF5’s collective writes (all processor cores within an MPI
communicator writing in unison) are much more scalable than independent writes (processor cores writing
independently), as one would expect. For data sets associated with structured grids, PFLOTRAN scalable
parallel I/O relies heavily on the HDF5 hyperslab data layout (i.e. up to 3D in memory and file space) to
efficiently write data in parallel.

All input data files are read as one-dimensional data in file space and mapped accordingly to memory
space, using hash tables to sample for local on-processor values. This approach has reduced initialization
time by orders of magnitude for highly parameterized and heterogeneous problem domains. The one-
dimensional file space enables PFLOTRAN to read a wider variety of grid structures, as opposed to solely
structured grids. Another enhancement to the HDF5 reading algorithms within PFLOTRAN is the use of
subsets of processors through MPI sub-communicators to read data and distribute it to the remainder of the
processor cores (e.g. within the global communicator): this results in more optimal communication patterns
and reduces contention at file metadata servers.

4. PARALLEL PERFORMANCE

We have put significant focus on achieving parallel scalability on leadership-class high-performance
computing architectures as part of a SciDAC-2 groundwater project (http://ees.lanl.gov/pflotran/). Designed
from the ground up for parallel efficiency, PFLOTRAN delivers to the end user the ability to simulate real-
world problems at scales limited by only the scalability of linear/nonlinear system solvers. The code runs
on machines ranging from the laptop to the largest massively-parallel computer architectures. In fact, core
development of the code generally takes place on lap-tops and desktops (Mac, Linux, Windows) with
testing on smaller 1D, 2D or 3D problems sized to fit within the machine’s memory limits. Testing at scale
is carried out on a supercomputer. It should be noted that on any specified architecture, a single
PFLOTRAN executable can be run utilizing any of the code’s flow or geochemical transport modes in both
serial and parallel without modifying the executable (assuming that the job fits into the available memory).
In other words, changes to the number of processor cores, parallel decomposition, simulated physical and
chemical processes, problem size, etc. do not require recompiling the code, since PFLOTRAN utilizes
dynamic memory and processor allocation. Production jobs using PFLOTRAN can be run in serial or
parallel (provided MPI is installed) on desktop or laptop computers for smaller problem sizes (e.g. 1D or

152 Groundwater Reactive Transport Models Hammond et al.

small 2D or 3D problems), whereas to simulate large 3D field-scale problems generally much larger
supercomputing resources are required.

Perhaps the most significant factor in achieving PFLOTRAN’s scalability is the consistent use of PETSc data
structures and solvers. Because PFLOTRAN uses PETSc’s parallel data structures and associated routines to
manage parallel domain decomposition, details such as MPI communication patterns are handled by highly
efficient algorithms in PETSc. Furthermore, the large number of solver and preconditioner algorithms made
available within PETSc and through PETSc interfacing allows the user to choose the most suitable and scalable
solver algorithms for a particular application. For instance, for steady-state flow in a saturated, heterogeneous
porous medium, one might choose PETSc’s stabilized biconjugate gradient algorithm (Bi-CGStab) coupled
with a multilevel preconditioner such as Hypre’s PFMG solver [10]. Whereas, for multicomponent
biogeochemical transport, PETSc’s block Jacobi algorithm may adequately precondition Bi-CGStab for most
problem scenarios. Thus through use of PETSc, PFLOTRAN has access to a wide range of algorithms for
testing and comparison purposes. In addition, PETSc provides shells for research and development of user-
defined solvers/preconditioners (e.g. [11]).

Figure 5: Performance of PFLOTRAN (PFLOW refers to flow and PTRAN to reactive transport) running a single
phase thermohydrologic benchmark problem on a 256×64×256 grid with three and four degrees of freedom per node,
respectively (approximately 12.6 and 16.8 million degrees of freedom total), on the now-defunct Cray XT3 incarnation
of Jaguar at ORNL and the Itanium2-based MPP2 cluster at PNNL.

Prior to being funded by SciDAC, PFLOTRAN demonstrated efficient scalability as shown in Fig. 5 for a
moderately-sized, single-phase, thermo-hydrologic benchmark problem composed of 12 to 16 million
degrees of freedom (dofs) executed on 16 to 4096 processors on Oak Ridge National Laboratory’s (ORNL)
Cray XT3 supercomputer. Since SciDAC-funded development, PFLOTRAN has been run on problems
composed of up to two-billion degrees of freedom and utilizing up to 131,072 (217) processor cores on
ORNL’s Jaguar Cray XT5, the world’s fastest open science supercomputer. These large-scale problems are
based on real-world variably-saturated flow and geochemical transport modeling of uranium at the Hanford
300 Area in Washington State (see Section 5.1). At this site the migration of a Cold-War era uranium
plume is being modeled to better quantify the mass flux of uranium leaching into the neighboring Columbia
River, a quantity crucial to environmental decision making and policy at the site.

Fig. 6 demonstrates the strong scaling performance of PFLOTRAN while simulating variably-saturated
flow at the Hanford 300 Area using Richards’ equation on a problem composed of 270 million degrees of
freedom on up to 27,580 processor cores on ORNL’s Jaguar XT4 supercomputer. The scenario was run for
50 time steps with I/O turned off. Although good, the scalability is not perfect as the performance deviates
from ideal as the processor core count grows. There are several factors contributing to this behavior. First,

PFLOTRAN Groundwater Reactive Transport Models 153

at 27,580 cores, a 10% increase in the number of linear Bi-CGStab solver iterations was observed relative
to the number in the 1024 core run. This increase in linear solver iterations is attributable to an expected
and well-understood loss of effectiveness in single-level domain decomposition preconditioners such as
block Jacobi. Block-Jacobi preconditioning approximates the inversion of the local on-processor portion of
the Jacobian matrix within the linear solver (in this case, through ILU[0] factorization). As the number of
cores grows, each processor core owns a smaller portion of the global matrix, resulting in decreased
coupling of matrix coefficients (fewer rows and columns of coefficients are coupled), and thus a less-
accurate approximate inverse of the matrix.

Figure 6: Strong scaling performance on the Cray XT4 partition of ORNL’s Jaguar for a variably-saturated flow
problem at the Hanford 300 Area with 270 million degrees of freedom (no I/O).

A perhaps more important factor in the departure from linear scaling is the large growth in the relative cost of
vector norms and inner products performed within the linear solver as more cores are employed to solve the
problem. The cost of these operations is dominated by the cost of global reduction operations, which increases
substantially as the number of cores approaches extreme scales. For instance, the time spent in MPI Allreduce()
calls grew from 10% of the total wall clock time on 1024 cores to up to 56% on 16,384 cores. (We note that we
have since worked with the PETSc development team to implement a restructured version of Bi-CGStab that
requires only one MPI Allreduce() operation per iteration.) Finally, with the current structured-grid formulation
of the Hanford 300 Area problem, inactive grid cells exist on the eastern edge of the problem domain where
grid cells lie above the river bank and river bottom (see Section 5.1). As the number of processor cores grows, a
load imbalance develops, the impact of which is not necessarily easy to quantify when superimposed on the
inefficiencies in the preconditioner and increased communication costs.

Aside from the communication issue, which is likely hardware bound, there are several ongoing efforts to
further improve PFLOTRAN performance, such as the development of novel solver and preconditioner
algorithms to improve both strong (fixed problem size) and weak (fixed problem size per processor core)
scalability of the code. Preliminary studies have demonstrated that for steady-state problems, where the
Jacobian is less diagonally dominant, multi-level solvers such as multigrid improve weak scalability with
much success [12]. With regard to the inactive grid cells, the addition of unstructured gridding is currently
underway and will enable a more optimal domain decomposition of the structured grid outside the PETSc
Distributed Array (DA) through mesh partitioning software such as ParMETIS, an MPI-based parallel
library that implements a variety of algorithms for partitioning unstructured graphs, meshes, and for
computing fill-reducing orderings of sparse matrices. The PETSc DA currently does not handle the removal
of inactive grid cells, which requires an unstructured grid formulation. However, parallel efficiency is not
expected to be nearly as good with unstructured grids as that obtained from structured grids due to such
issues as the difficulties in generating optimal mesh partitioning (load balancing), and the lack of geometric
multigrid solvers/preconditioners.

Fig. 7 further illustrates the strong scalability of PFLOTRAN for the simulation of uranium transport (see
Section 5.1) depicted in Fig. 8 which utilizes up to 65,536 cores on ORNL’s Cray XT5 petaflop incarnation
of Jaguar. Here, 15 chemical components depicting a subset of geochemical components coupled to
uranium mobility through changes in pH, carbonate and calcium concentrations as groundwater and river
water mix, are transported within a grid composed of 136 million cells or spatial degrees of freedom. Thus,

154 Groundwater Reactive Transport Models Hammond et al.

for flow the nonlinear system is composed of 136 million dofs while geochemical transport consists of 2
billion dofs. Not surprisingly, these performance results reflect relatively poor scalability for flow at larger
processor core counts. This is expected given the increased size of the utilized interconnect (increasing cost
of global communications) and the small number of flow degrees of freedom per processor core at near
2000—as a general rule of thumb a minimum of 10,000 dof per core is needed to obtain good scaling
performance—which results in a very poor ratio of computation to communication. On the other hand for
transport, the number of unknowns per core remains above 30,000 using 64,536 cores, and thus it scales
rather well considering that only a conventional PETSc solver and preconditioner are being employed (i.e.
Bi-CGStab with block-Jacobi ILU[0]). For situations such as this where the size of the flow problem is
much smaller than the transport problem, it may make sense to add the ability for PFLOTRAN to solve the
flow problem redundantly on disjoint groups of MPI processes, much as parallel multigrid solvers do for
coarse-grid problems. This may prove unnecessary, however, as in many cases the cost of the transport
solve dominates.

Figure 7: Strong scalability of flow (left) and geochemical transport (right) portions of PFLOTRAN for the Hanford
300 Area 136M dof and 2B dof problems, respectively.

5. APPLICATIONS

In this section two applications of PFLOTRAN are described briefly: (i) uranium migration at the Hanford
300 Area, and (ii) CO2 sequestration in a deep geologic formation. These examples illustrate, respectively,
the use of complex time-dependent boundary conditions and multi-component chemistry coupled to
variably saturated flow, and two-phase simulation of H2O and supercritical CO2.

5.1. Hanford 300 Area

The Hanford 300 Area is located along the Columbia River in southeastern Washington State. The site was part
of plutonium production beginning in 1943. Significant quantities of uranium, copper and other contaminants
were disposed at the site in liquid waste streams. Waste was disposed of in two ponds which lie at a distance of
approximately 100 m west of the river referred to as the North (NPP) and South (SPP) Processing Ponds. In
addition, waste was also placed in nearby trenches. Today a uranium plume persists at the site with
concentrations exceeding the EPA 30 µg/L maximum contaminant level [13] despite excavation of
contaminated sediments. Particularly perplexing is the persistence of the uranium plume and the factors
controlling uranium mobility. Simulations using a Kd model predicted that uranium would be removed by
ambient groundwater flow within a decade. Fifteen years later the uranium plume remains where it was with no
apparent measurable degradation [14]. Presumably, this is a consequence of slow leaching of uranium from
millimeter or smaller scales which causes the uranium source to persist over long time spans.

In a preliminary effort, PFLOTRAN has been applied to model the migration of uranium at the Hanford
300 Area taking into account multicomponent chemistry with a realistic description of uranium sorption
through surface complexation [5, 15]. This work differs from other attempts to model the site (e.g. [16]) in
that the evolution of the uranium plume is divided into three distinct phases. These correspond to: (I) the

PFLOTRAN Groundwater Reactive Transport Models 155

disposal of uranium and other contaminants and their subsequent migration into the Columbia River, (II)
present-day conditions in which non-labile forms of uranium are released at slow rates characterized by
diffusion-limited mass transfer from various source regions providing an approximate steady release of
uranium into the river, and finally (III) the period in which all non-labile forms of uranium have been
removed and multirate sorption governs the behavior of the uranium plume [5]. It is extremely difficult, if
not impossible, to model Phase I because of the lack of historical data for the waste stream. Therefore, in
Phase II it is assumed that uranium is present in both labile and non-labile forms with sorbed uranium
extending from the source regions to the river.

The Hanford 300 Area model consists of a three-dimensional domain measuring 900×1300×20 meters (x, y, z)
in size with orientation aligned with the Columbia River at 14° west of north. The base of the model domain lies
at 90 meters elevation above sea level. The computational grid is composed of 1,872,000 grid cells with 5-
meter horizontal and 0.5-meter vertical grid spacing. Aquifer material properties (e.g. permeability, porosity,
etc.) are assigned to grid cells based on hydrostratigraphic data available at the site [17]. The predominant
hydrologic unit at the Hanford 300 Area is the highly-permeable Hanford Unit, which is underlain by several
less transmissive Ringold Units. Hydraulic conductivities in the Hanford Unit are on the order of thousands of
meters per day, while those of the Ringold Units are hundreds of meters or less per day.

Model geochemistry consists of 15 primary aqueous species (H+, Ca2+, Cu2+, Mg2+, 2+
2UO K+, Na+, -

3HCO ,

Cl−, F−, 2-
4HPO , -

3NO , 2-
4SO and 2 tracers), 88 secondary aqueous complexes, 2 kinetically-formulated

minerals (Calcite and Metatorbernite), 2 surface complexes (>SOUO2OH and >SOHOU2CO3) and 1
surface site (>SOH). Important geochemical reactions for equilibrium and multirate surface complexation
and mineral dissolution include:

>SOH + 2+
2UO - 2H+ + H2O >SOUO2OH, (15a)

>SOH + 2+
2UO -2H+ + H2O + CO2 >SOHUO2CO3, (15b)

2 2+
2UO

+ Cu2++2 2-
4HPO +8H2O -2H+ Metatorbernite (s), (15c)

Ca2++ CO2 - 2H+ + H2O Calcite (s). (15d)

Mobility of uranium is also affected by aqueous complexation reactions with the two dominant species
 2-

2 3 3
CaUO CO and    2 2 3 3 aq

Ca UO CO . It should be noted that Metatorbernite serves as surrogate source
of non-labile U(VI), and although identified at the site in small quantities, the precise form of non-labile
U(VI) is still unknown. Overall, 28,080,000 geochemical degrees of freedom are represented in the model.

The tight coupling of Hanford 300 Area hydrology to rapid fluctuations in the Columbia River stage
necessitates the use of transient boundary conditions. For variably saturated flow, transient hydrostatic and
seepage face/conductance boundary conditions are assigned to the western inland and river boundaries,
respectively, with time-varying datums and gradients on a 1-hour time interval. The seepage face boundary
condition calculates the boundary flux for river bank cells above the water surface as a function of internal
cell and external atmospheric pressures. The conductance boundary condition replicates the lower
permeability of the river hyporheic zone sediments for submerged cells. A constant specified surface
recharge is assigned to the top of the model domain, while the north and south boundaries are no flow.

For geochemical transport, chemical compositions of background groundwater and river water are obtained
from Hanford 300 Area IFRC and USGS data, respectively. The background groundwater concentrations
are assigned to the inland boundary and river chemistry to the river seepage face/conductance boundary.
Note that a slightly higher pH and lower carbonate concentration in the river relative to the groundwater
significantly impact the sorption of U(VI) to Hanford Unit media.

156 Groundwater Reactive Transport Models Hammond et al.

Initial geochemical conditions are set by running a non-sorbing simulation of U(VI) transport based on the
boundary conditions discussed above for several years to generate an initial U(VI) plume that reaches to the
river. An intermediate initial condition is derived from a snapshot of the flow and transport solution at that time.
Sorbed phase U(VI) concentrations are then equilibrated with the aqueous phase to generate the final initial
condition.

Figure 8: Isosurfaces of total aqueous U(VI) concentration. The Hanford Unit is hidden to better illustrate the U(VI)
plume that resides above the Ringold Units. Piezometric pressure is draped on the top of the Ringold Units while water
saturation is contoured on the posterior side surfaces of the domain.

Central to this work is the use of high performance computing carried out on the world’s fastest open
science computer, Jaguar, the Cray XT4/5 at ORNL. Use of HPC made possible the ability to capture the
rapidly fluctuating Columbia River stage and multi-component U(VI) chemistry at a sufficiently fine 3D
grid resolution. Simulations of the approximately 1.8 million flow and 28 million geochemical transport
degrees of freedom were run on over 4k processor cores—runs that would have required several years of
computation time on a conventional single processor work-station. Fig. 8 illustrates simulated concentration
isosurfaces of a U(VI) plume at the Hanford 300 Area during the October time frame when the river stage
is relatively low and groundwater flow is primarily toward the river. Several conceptual models based on
this real-world application of PFLOTRAN to radionuclide migration have served as test problems for
assessing the parallel performance of PFLOTRAN at the extreme scale. More details can be found in [5].

5.2. Supercritical CO2 Sequestration

An example of modeling sequestration of supercritical CO2 using PFLOTRAN is discussed in this section. The
code is based on a variable switching approach to account for phase changes between CO2 and H2O. The Span
and Wagner [18] equation of state is used to compute the density of supercritical CO2 and correlations for the
solubility of CO2 in brine are taken from [19]. The density of the brine-CO2 mixture is taken from [20]. To
illustrate the code a 3D simulation was carried out for a sandstone host rock containing calcite cement [3].

An isotropic permeability of 2×10-12 m2 is used in the simulation with a porosity of 15%. The nominal
temperature and pressure is 50 and 200 bars. The computational domain is 250 m thick and 7×7 km in
lateral extent. CO2 is injected at a depth of 50 m below the top of the domain. No flow boundary conditions
are imposed at the top, bottom, front, and back of the domain with constant pressure at the left and right
sides. An injection rate of 1 Mt/y for 20 years was used in the simulations. This corresponds to roughly
75% of the CO2 produced by a 1000 MW gas-fired power plant in 20 years. Calculations were carried out
with 256 processor cores for 160 ×160 × 25 × 3=1, 920, 000 degrees of freedom. A grid spacing of 47.35 m
in the x-and y-directions and 10 m in the z-direction is used. The strong fingering observed in the figures is

PFLOTRAN Groundwater Reactive Transport Models 157

(a) 50 Years (b) 100 Years

(c) 200 Years (d) 300 Years

Figure 9: Mole fraction of dissolved CO2 plotted at the indicated times. Fingering is caused by a density instability as
CO2 dissolves into the aqueous phase.

a result of the high permeability of the formation and is caused by a density instability as CO2 dissolves
into the brine. The result is sensitive to the mixing rule used for the density of the CO2-brine system. Ideal
mixing, for example, results in the mixture density being lighter than the original brine causing the CO2-
brine mixture to move upwards rather than downwards. As can be seen in Fig. 9(d), grid orientation effects
appear in the solution as a result of the simple 7-point stencil employed. To remove these effects higher
order discretization methods are being considered which honor the positive definiteness of the solution.
This latter property is especially important to maintain in the reactive transport algorithms which solve for
the logarithm of the concentration.

Further development of the CO2 algorithm will involve adding methane and oil fluid phases, implementing
higher order discretization methods to avoid grid orientation effects, and refining the time stepping
algorithm to allow for larger time steps as phase changes take place. One possibility being investigated is
the use of a kinetic formulation based on persistent variables, rather than the current basis switching
algorithm. This formulation would also have the advantage of avoiding the problem of solving for different
independent variables on different discretization levels when using multilevel solvers.

6. CONCLUSION & FUTURE DEVELOPMENT

A flexible, extensible, parallel computer code, PFLOTRAN, has been developed for modeling subsurface
groundwater processes. The code has achieved petascale performance on ORNL’s quad-core Cray XT5,
Jaguar. PFLOTRAN is based on an object-oriented framework implemented in Fortran 9X, but it provides
seamless integration with C and C++ packages such as SAMRAI for adaptive mesh refinement. Rapid
development has been enabled through the use of PETSc as the parallel framework providing data
structures, message passing and efficient solvers. A novel approach for running multiple realizations with

158 Groundwater Reactive Transport Models Hammond et al.

each realization run on multiple processor cores was implemented. The code can be applied to various
scenarios ranging from variably saturated media to CO2 sequestration in deep geologic formations.

Future work will add capabilities for unstructured grids, Adaptive Mesh Refinement (AMR) based on the
SAMRAI package, colloid-facilitated transport, Pitzer activity coefficient model, operator splitting
algorithms, and multiple continua, among others. In addition, more work remains to be done to improve
preconditioners and solvers at the extreme limit of hundreds of thousands of processor cores.

ACKNOWLEDGEMENTS

We would like to acknowledge the contributions of the PETSc development team and especially Barry Smith,
Satish Balay, and Matt Knepley, without whose help PFLOTRAN would not have achieved its high degree of
scalability. We are also indebted to G. (Kumar) Mahinthakumar and Vamsi Sripathi for their enhancement of
PFLOTRAN’s parallel I/O scalability. This research is supported under the U.S. Department of Energy
SciDAC-2 program with funding provided by DOE Offices of Biological & Environmental Research (BER)
and Advanced Scientific Computing Research (ASCR). Supercomputing resources were provided by the DOE
Office of Science Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program
with allocations on NCCS Jaguar at Oak Ridge National Laboratory.

REFERENCES

[1] C. I. Steefel, D. DePaolo, P. C. Lichtner, “Reactive transport modeling: An essential tool and a new research
approach for the Earth sciences”, Earth and Planetary Science Letters, vol. 240, no. 3-4, pp. 539-558, 2005.

[2] P. C. Lichtner, “Continuum formulation of multicomponent-multiphase reactive transport”, in P. Lichtner, C.
Steefel, E. Oelkers (Eds.), Reactive Transport in Porous Media, Vol. 34 of Reviews in Mineralogy,
Mineralogical Society of America, pp. 1-81, 1996.

[3] C. Lu, P. C. Lichtner, “High resolution numerical investigation on the effect of convective instability on long
term CO2 storage in saline aquifers”, in D. Keyes (Ed.), SciDAC 2007 Scientific Discovery through Advanced
Computing, Vol. 78 of Journal of Physics: Conference Series, IOP Publishing, Boston, Massachusetts, p.
012042, 2007.

[4] P. Lichtner, “Continuum model for simultaneous chemical reactions and mass transport in hydrothermal
systems”, Geochimica et Cosmochimica Acta, vol. 49, pp. 779-880, 1985.

[5] G. E. Hammond, P.C. Lichtner, “Field-scale model for the natural attenuation of uranium at the Hanford 300
Area using high performance computing”, Water Resources Research, (ISSN 0043-1397).

[6] S. Bea, J. Carrera, C. Ayora, F. Batlle, M. Saaltink, “Cheproo: A Fortran 90 object-oriented module to solve
chemical processes in earth science models”, Computers & Geosciences, vol. 35, pp. 1098-1112, 2009.

[7] J. C. Adams, W. S. Brainerd, R. A. Hendrickson, R. E. Maine, J. T. Martin, B. T. Smith, The Fortran 2003
Handbook: The Complete Syntax, Features and Procedures, Springer-Verlag, London, 2009.

[8] S. Balay, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. Melnes, B.F. Smith and H.
Zhang. PETSc users manual, Tech. Rep. ANL95/11 -Revision 3.0.0, Argonne National Laboratory, 2009.

[9] The HDF Group, HDF5 User’s Guide: HDF5 Release 1.8.3, NCSA, May 2009.
[10] J. E. Jones, C. S. Woodward, “Newton-Krylov-multigrid solvers for large-scale highly heterogeneous, variably

saturated flow problems”, Advances in Water Resources, vol. 24, pp. 763-774, 2001.
[11] G. E. Hammond, A. J. Valocchi, P.C. Lichtner, “Application of Jacobian-free Newton-Krylov with physics-based

preconditioning to biogeochemical transport”, Advances in Water Resources, vol. 28, no. 4, pp. 359-376, 2005.
[12] B. Lee, G. E. Hammond, “Parallel performance of preconditioned Krylov solvers for Richards equation”, in

preparation.
[13] EPA, U. S. environmental protection agency soil cleanup criteria in 40 CFR part 192, Tech. rep. 1998.
[14] J. M. Zachara, J. A. Davis, C. Liu, J. P. McKinley, N. Qafoku, D. M. Wellman, S. Yabusaki, “Uranimum

geochemistry in vadose zone and aquifer sediments from the 300 Area uranium plume”, Report PNNL-15121,
Pacific Northwest National Laboratory, Richland, WA, 2005.

[15] D. Bond, J. Davis, J. Zachara, “Uranium(VI) release from contaminated vadose zone sediments: estimation of
potential contributions from dissolution and desorption”, Adsorption of Metals by Geomedia II: Variables,
mechanisms, and model applications, pp. 375-416, 2008.

PFLOTRAN Groundwater Reactive Transport Models 159

[16] S. B. Yabusaki, Y. Fang, S. R. Waichler, “Building conceptual models of field-scale uranium reactive transport
in a dynamic vadose zone-aquifer-river system”, Water Resources Research, vol. 44, pp. 1-24, 2008.

[17] M. D. Williams, M. L. Rockhold, P.D. Thorne, Y. Chen, “Three-dimensional groundwater models of the 300
area at the hanford site, washington state”, Report PNNL-17708, Pacific Northwest National Laboratory, 2008.

[18] R. Span, W. Wagner, A new equation of state for carbon dioxide covering the fluid region from the triple-point
temperature to 1100 K at pressures up to 800 MPa, Journal of Physical and Chemical Reference Data 25, pp.
1509-1596, 1996.

[19] Z. Duan, R. Sun, “An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from
273 to 533 K and from 0 to 2000 bar”, Chemical Geology, vol. 193, pp. 257-271, 2003.

[20] Z. Duan, J. Hu, D. Li, S. Mao, “Densities of the CO2-H2O and CO2-H2O-NaCl systems up to 647 k and 100
MPa”, Energy & Fuels, vol. 22, no. 3, pp. 1666-1674, 2008.

