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Abstract. We describe PFLOTRAN, a recently developed code for modeling multi-phase, multi-
component subsurface flow and reactive transport using massively parallel computers. PFLOTRAN is
built on top of PETSc, the Portable, Extensible Toolkit for Scientific Computation. Leveraging PETSc has
allowed us to develop—with a relatively modest investment in development effort—a code that exhibits
excellent performance on the largest-scale supercomputers. Very significant enhancements to the code are
planned during our SciDAC-2 project. Here we describe the current state of the code, present an example of
its use on Jaguar, the Cray XT3/4 system at Oak Ridge National Laboratory consisting of 11706 dual-core
Opteron processor nodes, and briefly outline our future plans for the code.

1. Introduction
Detailed modeling of reactive flows in geologic media is necessary to understand a number of
environmental problems of national importance; examples are migration of radionuclides in groundwater
and geologic sequestration of CO2 in deep reservoirs. Such problems generally require three dimensional
simulations of non-isothermal systems consisting of multiple phases and possibly dozens of chemical
components, and often must incorporate processes operating at different spatial and temporal scales
ranging over orders of magnitude. In many cases, detailed understanding will require extremely
computationally demanding simulations that will require not only the coming advances in hardware
but commensurate advances in algorithms and software.

This paper briefly describes PFLOTRAN, a recently developed and highly scalable code for
simulating subsurface flow and reactive transport on machines ranging from laptops to ultrascale
computers. We describe the mathematical formulation used by the code, detail its architecture and
parallel implementation, present performance results using a benchmark problem from the Nevada Test
Site, and briefly outline some of our planned enhancements to the code under SciDAC-2.

2. Mathematical formulation
2.1. Multiphase-Multicomponent Mass and Energy Conservation Equations
The computer code PFLOTRAN solves a coupled system of mass and energy conservation equations
for a number of phases including H2O, supercritical CO2, black oil, and a gaseous phase. PFLOTRAN



describes coupled thermal-hydrologic-chemical (THC) processes in variably saturated, nonisothermal,
porous media in one (1D), two (2D), or three (3D) spatial dimensions. It consists of two modules,
PFLOW and PTRAN, which solve for flow and reactive transport, respectively. The multiphase partial
differential equations solved by PFLOW for mass and energy conservation can be summarized as [1]:
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In these equations, α designates a phase (e.g. H2O, supercritical CO2), species are designated by the
subscript i (e.g. w = H2O, c = CO2), φ denotes porosity of the geologic formation, sα denotes the
saturation state of the phase, Xα

i denotes the mole fraction of species i; ρα, Hα, Uα refer to the molar
density, enthalpy, and internal energy of each fluid phase, respectively; qα denotes the Darcy flow rate
defined by
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where k refers to the water saturated permeability, kα denotes the relative permeability, µα denotes the
fluid viscosity, Wα denotes the formula weight, and g denotes the acceleration of gravity. The source/sink
terms, Qα

i and Qe, describe injection and extraction at wells, respectively.
The multicomponent reactive transport equations solved by PTRAN have the form [1]:
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for the mth mineral. Ψα
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j denote the total concentration and flux, defined by the expressions
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where Cα
j denotes the solute concentration in phase α, and Cα

i denotes the concentration of the ith
secondary species related to the concentration of primary species through the mass action equations
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where γα
j denotes the activity coefficient and Kα

i the equilibrium constant for reaction (10), below.
The mineral concentration is represented by the volume fraction φm with molar volume V m. The

kinetic reaction rate Im for the mth mineral is assumed to have the form
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(
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)
, (8)

based on transition state theory, where km denotes the kinetic rate constant, Km the equilibrium constant
for reaction (11), below; Am the mineral specific surface area, and Qm the ion activity product defined
by
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The factor Φ(φm) is unity if φm > 0 or KmQm > 1, and zero otherwise, where φm denotes the mineral
volume fraction. The sign of the rate is positive for precipitation and negative for dissolution and vanishes
at equilibrium when KmQm = 1.

Chemical reactions included in PTRAN involve homogeneous and heterogeneous reaction between
aqueous species and minerals which can be written in the general forms∑

j

νjiAj 
 Ai, (10)
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respectively, where the set of species {Aj} refer to a set of primary or basis species in terms of which
all other species are written, Ai denotes an aqueous complex referred to as a secondary species, and
Mm refers to a mineral. The corresponding thermodynamic equilibrium constants Ki, Km, and reaction
stoichiometric coefficients νji, νjm are derived from an extensive database for aqueous species, gases,
and minerals.

2.2. Discretization and numerical solution
In both PFLOW and PTRAN, the governing partial differential equations all have the general form

∂A

∂t
+ ∇ · F = S, (12)

with accumulation term A, source/sink term S, and flux term F of the form

F = qρX − φDρ∇X, (13)

We solve these numerically using an integrated finite volume method. Partitioning the computational
domain into a set of finite volumes Vn and integrating the partial differential equations over each volume
yields a discretized form of the mass conservation equations. Denoting the kth time step with superscript
k, the residual equation for the discretized form of the partial differential equations is
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The flux Fnn′ across the n−n′ interface connecting volumes Vn and Vn′ is defined by
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where the subscript nn′ indicates that the quantity is evaluated at the interface, and the quantities dn, dn′

denote the distances from the centers of the control volumes Vn, Vn′ to the their common interface with
interfacial area Ann′ . In general, Rn is a nonlinear function of the independent field variables. We use
an inexact Newton method to solve the discretized equations for zero residual.

Within the PFLOW and PTRAN modules the equations are solved fully implicitly, but because
PTRAN generally requires much smaller time steps than PFLOW, we couple these modules sequentially.
A linear interpolation is used to obtain PFLOW field variables within PTRAN. To account for changes in
porosity and permeability due to mineral reactions, PTRAN is used to calculate an updated porosity over
a flow time step and the revised porosity is passed back to PFLOW. Future implementations will explore
independent grid hierarchies for PFLOW and PTRAN, as well as fully coupled schemes.



3. Architecture and parallel implementation
Both PFLOW and PTRAN employ a modular design and use Fortran 90 features to provide some
degree of object orientation. Fortran 90 modules reduce unnecessary sharing of program variables
and procedures. PFLOW uses modules and derived types to encapsulate data and the methods that
operate on them. A PFLOW driver program loads pflow grid module, which provides a constructor
function pflowGrid new that returns a pflowGrid object. That object contains all data about the
state of the variables on the flow grid, but the driver does not access those directly. Instead, method
subroutines provided by pflow grid module are used; for example, pflowGrid step advances
the flow simulation one time step.

PFLOTRAN has been written from the ground up with parallel scalability in mind, and can run
on machines ranging from laptops to the largest massively parallel computer architectures [2, 3, 4].
Scalability has been achieved in large part through the use of the PETSc parallel framework [5] developed
at Argonne National Laboratory, which provides tools for managing parallel data distribution and a wide
assortment of powerful parallel solvers. PFLOTRAN employs domain-decomposition parallelism. Each
processor is assigned a subdomain of the problem and a parallel solve is implemented over all processors.
Message passing (3D “halo exchange”) is required at the boundary nodes with adjacent processors to fill
ghost points in order to compute flux terms. PETSc “Distributed Array” DA objects are used to manage
the distribution of field variables across the domains and message passing between domains. Ghost point
scatters and gathers are handled conveniently by DA routines.

Parallel solvers provided by PETSc are used to solve the system of nonlinear equations arising at
each timestep. PTRAN uses its own Newton solver routine, while PFLOW uses the SNES nonlinear
solver framework of PETSc. The SNES framework allows easy application of various trust region or
line search techniques as well as methods for choosing the accuracy required for each Newton step
when an inexact method is employed. Jacobians can be calculated explicitly or, if memory is at a
premium, a matrix-free approach, in which the action of the Jacobian is calculated “on-the-fly” via finite-
differences, can be employed. However, effective use of this method requires some other approach to
preconditioning since a Jacobian matrix is not directly available. Hammond et al. [3] considered physics-
based preconditioning based on operator splitting; however, for strong chemical interaction the technique
often failed to converge. We note that the modular implementation of the nonlinear solvers we use makes
it convenient to add new physics to the code: essentially only a new residual function (and, optionally,
a Jacobian calculation routine) for the Newton-Raphson equations must be added. Both PFLOW and
PTRAN use the PETSc KSP linear solvers and PC preconditioners to solve the linear systems arising at
each Newton step; this allows the choice of any of several iterative methods (e.g., GMRES, BiCGSTAB,
TFQMR) or preconditioners at runtime. Currently we usually use an additive Schwarz method with an
incomplete LU factorization applied on each subdomain for parallel preconditioning, but we are adding
support for geometric multigrid techniques using the PETSc high-level DMMG framework.

4. Modeling the BENHAM test using the Cray XT3/4
To provide an example of the capabilities and parallel performance of PFLOTRAN, we describe an
application in which it is being used to understand a case of long distance migration of radionuclides in
an area at the Nevada Test Site, where 828 announced underground tests were conducted before the U.S.
declared a moratorium in 1992.

The BENHAM test was conducted on December 19, 1968, and had an announced official yield of 1.15
megatons. During the period from 1996 to 1998, a number of radionuclides, including 239,240Pu were
detected in trace quantities in two monitoring wells sampling different aquifers at a location 1.3 km from
the BENHAM site [6]. Isotopic fingerprinting indicates that the 239,240Pu originates at BENHAM, rather
than the much closer TYBO test [7]. This poses a puzzle: How did 239,240Pu migrate to such distant wells
located in aquifers that apparently do not interact except through the chimney system created by the test?
Fully answering this question will require detailed simulations that couple complex thermal, hydrologic,
and chemical processes [8]. We are conducting preliminary investigations using PFLOTRAN to focus on



Figure 1. Cross-sections of the simulation domain showing evolution of the temperature distribution (°C)
after re-wetting for a simulation with an initial melt glass temperature of 75 °C. The left plot depicts 30
years after re-wetting and the right plot depicts 100 years after re-wetting. Thermal plumes are apparent;
radionuclides are carried upward and are then advected by the lateral flow field in the TSA aquifer near
the top of the simulation domain.

the complex interplay between heat and fluid flow processes while utilizing a simple non-reactive model
of solute transport. These simulations utilize only a limited subset of the capabilities of PFLOTRAN but
nonetheless serve to illustrate the scalability of the code on massively parallel machines on a non-trivial
problem.

The geometry of the system we must simulate is intrinsically three dimensional. The BENHAM
detonation produced a spherical cavity estimated at 200 m in diameter. The intense heat of the blast
fused the rock into a “melt glass” at the bottom of the cavity. A cylindrical, rubblized chimney formed as
rock above the cavity collapsed, extending from the working point of the test to above the TSA welded
tuff aquifer.

Simulations using PFLOTRAN with a relatively coarse grid of 95 × 50 × 65 = 308750 grid points
(926250 total degrees of freedom, with pressure, temperature, and solute concentration defined on each
node) have explained part of the puzzle by showing a pulse of radionuclides in the TSA aquifer over a
narrow window in time due to the creation of convection cells by the heat released from the melt glass [9].
Figure 1 illustrates the development of such convection cells. The grid used in these simulations is fairly
coarse, however, and the question of whether simulations utilizing a finer grid will exhibit significantly
different evolution of the convection cells arises. We are currently using Jaguar, the Cray XT3/4 system
at Oak Ridge National Laboratory consisting of 11706 dual-core Opteron processor nodes, to run much
higher-fidelity simulations. Figure 2 shows the parallel scaling we have observed when running on a
256 × 128 × 256 grid (approximately 25 million total degrees of freedom). In this case, we employ
BiCGSTAB as the linear solver and use a block-Jacobi preconditioner with block-ILU(0) applied on
each Jacobi block. The code scales very well on Jaguar, displaying linear speedup all the way up to 2048
processor cores, and still displaying modest speedup when going from there to 4096 processor cores.
This is quite impressive, considering that there are only 6144 unknowns per core when 4096 processor
cores are employed.

To further investigate the drop-off in scaling at the highest processor counts, we used the PETSc
event logging framework to collect a detailed performance profile. The main culprit appears to be an
unexpectedly large jump in the time spent in global dot products (most of which are computed within
the BiCGSTAB solver) when going to the largest processor count. As Figure 3 shows, the average time
spent in dot products during a flow step jumps from 1.53 seconds at 2048 processor cores to 1.84 seconds
at 4096 cores! This jump, in fact, accounts for almost all of the departure from linear scaling observed
when going from 2048 to 4096 cores: the wall-clock time consumed by all non-dot product operations
is approximately halved when going from 2048 to 4096 cores. A natural question to ask is whether
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Figure 2. Parallel strong scaling observed
for a 25 million degrees of freedom
benchmark simulation on Jaguar, the Cray
XT3/4 system at ORNL.
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Figure 3. Trends in the time spent in dot products per flow step for the 25 million degrees of freedom
benchmark on Jaguar. The left plot displays the average time spent in dot products per flow step, while
the right one depicts the proportion of total wall-clock time spent in dot products. Because the nature of
the preconditioner employed causes the number of BiCGSTAB iterations (and hence the number of dot
products computed) to grow with increasing number of processor cores employed, we include “adjusted”
curves that depict what the trends would be if the number of dot products remained constant.

our choice of preconditioner is partly responsible for the increased time spent in dot products. Because
the number of Jacobi blocks is equal to the number of processor cores, as processor count increases the
blocks become smaller and the preconditioner less effective; as Figure 4 illustrates, more BiCGSTAB
iterations and, consequently, more dot products (4 per BiCGSTAB iteration) will be required. The
decrease in the effectiveness of the preconditioner, however, is quite mild—at 2048 processor cores,
an average of 3493 dot products are computed over one flow step, and at 4096 processor cores, 3610 dot
products are computed. In Figure 3, we plot “adjusted” curves based on the observed cost of individual
dot products, but assuming that the number of dot products remains constant as the number of processor
cores increases; that is, we effectively subtract out the trend due to our choice of preconditioner to obtain
trends that are correlated solely with the cost of a global dot product operation as processor core count
increases. These trends clearly indicate that the departure from linear scaling that we have observed is
largely connected to a similar trend in the performance of global dot products. Because this performance
is almost entirely tied to that of MPI Allreduce collectives, it may be possible for us to improve
scalability by better tuning these collectives for large processor counts. Clearly, however, we should also
experiment with more powerful preconditioners (of which PETSc already provides several) and solvers
that will allow us to reduce the number of dot products required.

5. Conclusions and future directions
PFLOTRAN has proved to be a highly scalable code for the simulation of multiphase, multicomponent
subsurface reactive flows on machines ranging from laptops to leadership-class supercomputers. It is
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currently restricted to conventional single-continuum models with simple orthogonal grids, however, and
this limits its predictive capability for problems posessing an intrinsically multiscale nature. Significant
enhancements will be made during our SciDAC-2 project to extend its usefulness for multiscale
problems. In order to capture sharp reaction fronts and evolving phase boundaries, efforts are currently
underway to add adaptive mesh refinement (AMR) capability. Although many communities have been
using AMR for years, utilizing it for subsurface flow presents new challenges, because the governing
equations involve many scale-dependent quantities such as permeability, dispersivity, and reactive
surface area; the upscaling techniques required to transfer these quantities between different refinement
levels must be carefully considered. Below the scales that AMR can resolve, we are also adding sub-
grid models utilizing multiple interacting continua to capture fracture-matrix interactions, inter-grain
diffusion, and dead-end pores. In order to effectively capture irregular problem geometries, we are also
adding unstructured grid capabilities using PETSc data structures based on topological sieves. Finally,
we are also extending the capabilities of PETSc by developing solvers specifically tailored for generic
multi-phase simulations.
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