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Abstract The ever increasing memory demands
of many scientific applications and the complexity
of today’s shared computational resources still
require the occasional use of virtual memory, net-
work memory, or even out-of-core implementa-
tions, with well known drawbacks in performance
and usability. In Mills et al. (Adapting to mem-
ory pressure from within scientific applications
on multiprogrammed COWS. In: International
Parallel and Distributed Processing Symposium,
IPDPS, Santa Fe, NM, 2004), we introduced a
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basic framework for a runtime, user-level library,
MMlib, in which DRAM is treated as a dy-
namic size cache for large memory objects re-
siding on local disk. Application developers can
specify and access these objects through MMlib,
enabling their application to execute optimally
under variable memory availability, using as much
DRAM as fluctuating memory levels will allow.
In this paper, we first extend our earlier MMlib
prototype from a proof of concept to a usable,
robust, and flexible library. We present a gen-
eral framework that enables fully customizable
memory malleability in a wide variety of scien-
tific applications. We provide several necessary
enhancements to the environment sensing capa-
bilities of MMlib, and introduce a remote memory
capability, based on MPI communication of
cached memory blocks between ‘compute nodes’
and designated memory servers. The increasing
speed of interconnection networks makes a re-
mote memory approach attractive, especially at
the large granularity present in large scientific
applications. We show experimental results from
three important scientific applications that require
the general MMlib framework. The memory-
adaptive versions perform nearly optimally under
constant memory pressure and execute harmo-
niously with other applications competing for
memory, without thrashing the memory system.
Under constant memory pressure, we observe ex-
ecution time improvements of factors between
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three and five over relying solely on the virtual
memory system. With remote memory employed,
these factors are even larger and significantly bet-
ter than other, system-level remote memory im-
plementations.
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1 Introduction

Commoditization of memory chips has enabled
unprecedented increases in the memory available
on today’s computers and at rapidly decreasing
costs. Manufacturing and marketing factors, how-
ever, keep the costs disproportionally high for
larger memory chips. Therefore, although many
shared computational resource pools or even large
scale MPPs boast a large aggregate memory, only
a small amount (relative to the high demands of
many scientific applications) is available on in-
dividual processors. Moreover, available memory
may vary temporally under multiprogramming.
Sharing memory resources across processors is a
difficult problem, particularly when applications
cannot reserve sufficient memory for sufficiently
long times. These realities pose tremendous
problems in many memory demanding scientific
applications.

To quantify the magnitude of the problem, we
use a simple motivating example. We ran a paral-
lel multigrid code to compute a three-dimensional
potential field on four SMPs that our department
maintains as a resource pool for computationally
demanding jobs. Each SMP has 1 GB of memory.
Since our code needed 860 MB per processor,
we could run it using only one processor per
node. While our code was running other users
could run small jobs without interference. When
a user attempted to launch Matlab to compute
the QR decomposition of a large matrix on one
of the processors in an SMP, the time per iter-
ation in our multigrid code jumped from 14 to
472 s as virtual memory system thrashed. Most
virtual memory systems would cause thrashing in
this case, because their page replacement poli-
cies are not well suited for this type of scientific
application.

Memory pressure can also be encountered on
dedicated or space-shared COWs and MPPs. An
important class of scientific applications runs a
large number of sequential or low parallel de-
gree jobs to explore a range of parameters. Typ-
ically, larger numbers of processors enable higher
throughput computing. However, when memory
is insufficient for individual jobs, such applica-
tions grind to a halt under virtual memory. On
some MPPs, with small or no local disks, virtual
memory is not adequate or even possible. Uti-
lizing more processors per job to exploit larger
aggregate memory may not be possible either,
because the jobs are sequential or of limited paral-
lel scalability. Application scientists often address
these issues by implementing specialized out-of-
core codes, and utilizing the parallel file systems
that many MPPs employ. Besides the double per-
formance penalty (data read from disk and propa-
gated through the interconnection network), such
codes often lack flexibility, performing I/O even
for data sets that could fit in memory.

Scenarios such as the above are one of the rea-
sons for using batch schedulers, resource match-
makers, process migration and other techniques
that warrant that each application will have
enough memory to run without thrashing through-
out its lifetime. These methods are not without
problems. They may incur high waiting times for
jobs, or high runtime migration overheads when-
ever there is resource contention. On certain plat-
forms, such as shared-memory multiprocessors,
some of these methods are not even applicable,
as users may reserve more memory than their
memory-per-CPU share [10]. A similar situation
can occur if applications are allowed to use net-
work RAM (NRAM) or other remote memory
mechanisms [40]. Moreover, most remote mem-
ory research has been conducted at page-level
granularity, which may incur unacceptably high
latencies for page replacement [23].

The problem is equally hard at the sequential
level. Page replacement policies of virtual mem-
ory systems are usually generic in nature and are
ill-suited to access patterns encountered in many
scientific applications. In addition, high seek times
during thrashing cannot be amortized by prefetch-
ing, as it may be difficult for the virtual memory
system to predict the locality and pattern of block
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accesses on disk. On the other hand, compiler or
user-provided hints would require modifications
to the system.

To tame these problems we have developed
a runtime library, MMlib (Memory Malleability
library), that controls explicitly the DRAM alloca-
tions of specified large objects during the runtime
of an application, thus enabling it to execute opti-
mally under variable memory availability. MMlib
allows applications to use customized, application-
specific memory management policies, running
entirely at user-level. To achieve portability and
performance, MMlib blocks specified memory ob-
jects into panels and manages them through mem-
ory mapping. This provides programmers with a
familiar interface that has no explicit I/O and can
exploit the same common abstractions used to
optimize code for memory hierarchies. Moreover,
the advantages of running applications fully in-
core are maintained, when enough memory is
available. The library is designed for portability
across operating systems and implemented in a
non-intrusive manner.

In [25], we gave a proof of concept of MMlib
based on a simplified framework, and developed a
parameter-free algorithm to accurately ascertain
memory shortage and availability strictly at user-
level. In this paper, we first provide a general
framework that enables memory malleability in
a variety of scientific applications, and enhance
MMlib’s sensing capabilities to require no user
input. Second, we introduce remote memory capa-
bility into MMlib, based on MPI communication
of panels between compute nodes and designated
memory servers. Besides performance improve-
ments on clusters with high speed networks, our
flexible, user-level design enables a host of options
such as multiple memory servers, and dynamic
migration of panels between servers.

We see several benefits in this library-based ap-
proach for memory malleability. Injecting mem-
ory malleability into scientific applications allows
them to run under memory pressure with de-
graded but acceptable efficiency, under a wider
variety of execution conditions. Efficient memory
adaptive applications can benefit both high-level
batch schedulers, by letting them harness cycles
from busy machines with idle memory, and op-
erating system schedulers, by avoiding thrashing

and thus securing continuous service to jobs. Also,
as we show in this paper, the transparent design
enables the library to implement remote memory
when local disks are small or slower than fetching
data from the network. MMlib is an optimiza-
tion tool for DRAM accesses at the low level
of the memory hierarchy (disk/network), but it
can co-exist with and complement optimization
tools for higher levels (memory/cache), enabling a
unified approach to locality optimization in block-
structured codes.

We present experimental results from three
important scientific applications that we linked
with MMlib. Besides their importance for scien-
tific computing, these applications stress different
aspects of MMlib and motivate the runtime opti-
mizations presented in this work.

The rest of this paper is organized as follows:
Section 2 reviews related work. Section 3 out-
lines our simplified framework and parameter-
free sensing algorithm from [25], and presents
our general framework and runtime support and
performance enhancements. Section 4 presents
our remote memory implementation. Section 5
presents the applications along with experimental
results. Section 6 concludes the paper.

2 Related Work

Interesting memory usage and availability pat-
terns on multiprogrammed clusters of worksta-
tions have been pointed out in a quantitative study
by Acharya and Setia [3]. They show that, on aver-
age, more than half of the memory of the clusters
is available for intervals between 5 and 30 min,
with shorter intervals for larger memory requests.
The study did not investigate mechanisms and
policies for exploiting idle memory or the im-
pact of fluctuations of idle memory on application
performance.

Batch schedulers such as the Maui Scheduler
[22], NQE [35], the Portable Batch System [18]
and experimental systems [7, 33] as well as sched-
ulers for privately owned networks of worksta-
tions and Grids, such as Condor-G [16] and the
GrADS scheduling framework [12], use admission
control schemes which schedule a job only on
nodes with enough memory. This avoids thrashing
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at the cost of reduced utilization of memory and
potentially higher job waiting times. Other coarse-
grain approaches for avoiding thrashing include
checkpointing and migration of jobs. However,
such approaches are not generally aware of the
performance characteristics or the execution state
of the program [39].

Co-scheduling attempts to keep all parallel
processes of a job running at the same time, either
explicitly [14], implicitly [4] or dynamically [37].
Beyond algorithmic and implementation difficul-
ties, these approaches may compromise fairness
and quality-of-service in the presence of memory
contention and disk I/O.

Chang et al. [9] have presented a user-level
mechanism for constraining the resident set sizes
of user programs within a fixed range of available
memory. They assume that the program has an
a-priori knowledge of lower and upper bounds of
the required memory range. This work does not
consider dynamic changes to memory availability,
nor does it address the problem of customizing the
memory allocation and replacement policy to the
memory access pattern of the application – both
central issues in our research.

An approach that addresses a dynamically
changing environment for general applications
has been developed by Brown and Mowry [8].
This approach integrates compiler analysis, oper-
ating system support, and a runtime layer to en-
able memory-intensive applications to effectively
use paged virtual memory. The runtime layer
makes the appropriate memory allocation deci-
sions by processing hints on the predicted mem-
ory usage that the compiler inserted. Although
the approach has shown some good results, it
requires modifications to the operating system.
In addition, applications with complex memory
access patterns can cause significant difficulties in
identifying appropriate release points.

Barve and Vitter [6] presented a theoreti-
cal framework for estimating the optimal per-
formance that algorithms could achieve if they
adapted to varying amounts of available memory.
They did not discuss implementation details or
how system adaptivity can be achieved. Pang et
al. [32] presented a sorting algorithm that dynami-
cally splits and merges the resident buffer to adapt
to changes in the memory available to the DBMS.

This is a simulation-based study that does not
discuss any details of the adaptation interface.

Remote memory servers have been employed
in multicomputers [20] for jobs that exceed the
available memory per processor. They also en-
abled the implementation of diskless checkpoint-
ing [34], a fault-tolerance scheme which exploits
the speed of the interconnection network to accel-
erate saving and restoring of program state.

The advent of high-throughput computing on
shared computational resources has motivated the
design of NRAM systems for clusters of worksta-
tions [5, 15, 21, 23, 31]. Real implementations of
NRAM and memory servers [5, 13, 20, 40] extend
the operating system paging algorithms and pro-
vide support for consistency and fault tolerance
at the page level. Though performance improve-
ments have been reported over disk-based virtual
memory systems, the page level granularity of
memory management still incurs significant over-
heads, and thrashing can still occur. Moreover,
such implementations require substantial changes
to the operating system.

At the user-level, Nieplocha et al. [28] have
developed the Global Arrays Toolkit that imple-
ments a distributed shared memory access to cer-
tain, user-specified arrays. Its design philosophy is
different from ours, however, as many processes
require access to the shared array, and at various
levels of granularity. Global Arrays have been
used to implement out-of-core computations via
shared data structures that spill over onto disk
[11], but this approach does not take dynamic
memory availability into consideration.

Several researchers have utilized remote mem-
ory for implementing cooperative caching and
prefetching in clustered web servers. Recently,
Narravula et al. [27] exploit remote memory
and direct remote DMA operations to improve
utilization of aggregate distributed caches in a
cooperative caching environment. Our work dif-
fers in that it employs remote memory in an
application-controlled execution environment.

Koussih et al. [21] describe a user-level, remote
memory management system called Dodo. Based
on a Condor-like philosophy, Dodo harvests un-
used memory from idle workstations. It provides
allocation and management of fine-grained re-
mote memory objects, as well as user-defined
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replacement policies, but it does not include adap-
tation mechanisms for dynamically varying RAM,
and cannot apply to local disks, or to remote
memory servers that are not idle.

In [30], Nikolopoulos presented an adaptive
scheduling scheme for alleviating memory pres-
sure on multiprogrammed COWs, while co-
ordinating the scheduling of the communicating
threads of parallel jobs. That scheme required
modifications to the operating system. In [29],
the same author suggested the use of dynamic
memory mapping for controlling the resident set
of a program within a range of available physical
memory. The algorithm operated at page-level
granularity and allowed very little space for cus-
tomization to the application access pattern. In
[26], two of the authors of this paper followed an
application-level approach that avoided thrashing
of an eigenvalue solver, by having the node under
memory pressure recede its computation during
the most computationally intensive phase, hope-
fully speeding the completion of competing jobs.

MMlib bears similarities with SHMOD
(Shared-Memory on Disk) [41], an application-
level asynchronous remote I/O library, which
enables effective remote disk space usage, con-
tinuous application-level checkpointing and out-
of-core execution. SHMOD is designed to support
specifically a class of hydrodynamics applications
and uses coarse-grain panels (called things in
SHMOD’s terminology), allocated and managed
transparently across local and remote disks in a
cluster of workstations. SHMOD organizes com-
putation as a bag of tasks, with each task
retrieving, working on and updating a thing.
MMlib differs in that it utilizes remote DRAM
instead of remote disks for faster retrieval of
panels. On the other hand, unlike MMlib,
SHMOD exploits cluster-wide storage and works
with a task-parallel programming model.

In [25] we proposed MMlib as an application-
level, memory management framework for sci-
entific applications that perform repetitive data
accesses. Using the main memory as cache and
a user-defined replacement policy the applica-
tion experiences a graceful degradation of perfor-
mance as memory becomes scarce. The dynamic
adaptation to available memory is performed by
a system independent, parameter-free algorithm

as described in [25]. In this paper we extend the
applicability and functionality of the framework
in a few important aspects: supporting multiple
memory objects and multiple active panels at the
same time; performing automatic accurate esti-
mation of the size of the non-managed memory;
and providing application-level remote memory
capability.

3 User-level Adaptation

Application-level approaches are sometimes re-
ceived with caution because of increased devel-
oper involvement. However, to exploit higher
memory hierarchies, developers of scientific appli-
cations already block the accesses to the data or
use libraries where such careful blocking is pro-
vided. Blocking for memory access is performed
at a much larger granularity and thus comple-
mentary to cache access. Based on this, our ap-
proach in [25] considered the largest data object
partitioned into P blocks, which in out-of-core
literature are often called panels, and operated as
follows:

for i = 1 : P

Get panel ppattern(i) from lower level memory
Work with ppattern(i)

Most scientific applications consist of code seg-
ments that can be described in this familiar to
developers format. As long as the “get panel”
encapsulates the memory management function-
ality, no code restructuring is ever needed.

On a dedicated workstation one can easily se-
lect between an in-core or an out-of-core algo-
rithm and data structure according to the size of
the problem. On a non-dedicated system, though,
the algorithm should adapt to memory variability,
running as fast as an in-core algorithm if there
is enough memory to store its entire data set, or
utilizing the available memory to cache as many
panels as possible. Based on memory mapped I/O,
we provided a framework and supporting library
for modifying codes for memory adaptivity that
are portable to many applications and operating
systems. Memory mapping has several advantages
over conventional I/O because it avoids write-
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outs of read-only panels to swap space, integrates
data access from memory and disk, allows for
fine tuning of the panel size to hide disk latencies
and facilitates an implementation of various cache
replacement policies.

To get a new panel, the application calls a
function from our library that also controls the
number of panels kept in-core. At this point, the
function has three choices: it can increase or de-
crease the number of in-core panels if additional,
or respectively less, memory is available; or it can
sustain the number of in-core panels if no change
in memory availability is detected. The policy for
selecting panels to evict is user defined as only
the application has full knowledge of the access
pattern.

Critical to this functionality is that our library
be able to detect memory shortage and availabil-
ity. However, the amount of total available mem-
ory is a global system information that few systems
provide, and even then, it is expensive and with
no consistent semantics. In [25], we developed an
algorithm which relies only on measurements of
the program’s resident set size (RSS), a widely
portable and local information. Memory shortage
is inferred from a decrease in a program’s RSS
that occurs without any unmapping on the part
of the program. Memory surplus is detected using
a “probing” approach in which the availability of
a quantity of memory is determined by attempt-
ing to use it and seeing if it can be maintained
in the resident set. The algorithm is parameter-
free, expecting only an estimate of the memory
requirements of the program, excluding the man-
aged panels. We call the size of this non-managed
memory, static memory (sRSS). The algorithm
detects memory availability by probing the system
at dynamically selected time intervals, attempting
to increase memory usage one panel at a time.

In [25] we demonstrated the effectiveness of
our algorithm and used it to inject memory-
malleability into an implementation of a
conjugate-gradient linear solver. Our memory
adaptation framework was limited, however, to a
very specific class of applications with repeated,
exhaustive passes through one read-only object.
In Section 3.1 we describe a more comprehensive
framework that captures characteristics from
a much larger set of applications, and in

Section 3.2 we give an abbreviated description of
the new MMlib library that provides memory-
malleability within this framework. In Section 3.3
we explain how we overcome a key technical chal-
lenge, that of estimating the size of the static mem-
ory that is not managed by MMlib. In Section 3.4
we describe an optimization in MMlib that allows
it to deal with antagonistic page replacement by
the operating system by adaptively evicting those
panels that the system has already paged out.

3.1 A General Framework

Scientific applications often work on many large
memory objects at a time, with various access
patterns for each object, sometimes working per-
sistently on one panel, while other panels are only
partially accessed, or even modified. A framework
modeling the memory access needs such applica-
tions is shown in Fig. 1.

Figure 1 depicts only one computation phase,
which is repeated several times during the lifetime
of the program. A computation phase denotes a

Fig. 1 Extended framework modeling the memory access
needs of a wide variety of scientific applications. Although
write-backs are represented explicitly in the framework,
when panels are accessed via a named memory map, write-
backs do not occur until a panel is evicted from main
memory by the virtual memory system. When panels are
accessed via remote memory, the write-back is performed
explicitly at panel eviction
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thematic beginning and end of some computation,
e.g., one iteration of the CG method or the two
innermost of three nested loops. In this phase,
a small number of memory objects are accessed
(e.g., the matrix and the preconditioner in the CG
algorithm), as their sheer size limits their number.
In contrast to the previous simplified framework,
we do not assume a sequential pass through all the
panels of an object, although this is often the case
in practice. In this context, a full sweep denotes a
completion of the phase.

For each iteration of the computation phase,
certain panels from certain memory objects need
to be fetched, worked upon, and possibly written
back. The iteration space in the current compu-
tation phase, the objects needed for the current
iteration, and the access patterns for panels de-
pend on the algorithm and can be described by
the programmer. Finally, our new framework al-
lows memory objects to fluctuate in size between
different computation phases.

3.2 Core MMlib Interface and Functionality

Based on the general framework, we have de-
veloped an object-based C library, MMlib, to
provide memory-malleability while hiding all
bookkeeping and adaptation decisions from the
user. Here we give an abbreviated presentation of
the core library interface and some of the techni-
cal issues involved; for a more detailed discussion
and a complete description of our algorithms and
implementation see [24].

To be managed by MMlib, a given data-set
must be broken into a user-specified number of
panels for which a backing store is created on disk,
accessed through memory mapping. The size of
the panel is usually determined as a large mul-
tiple of the block size that is optimal for cache
efficiency so that it also amortizes I/O seek times.
In case of memory contention, a large number
of panels can fine tune more accurately the ex-
act level of available memory but incur higher
bookkeeping and I/O overheads. Because of di-
minishing returns beyond a 5–10% accurate pre-
diction of available memory, and because our goal
is to match the performance of unmanaged in-
core methods when running without memory con-
tention, we suggest choosing a panel size that will

allow 10–40 panels to fit in the maximum physical
memory one expects to utilize. This guideline is
only a rule of thumb, but we note that in our
experience MMlib displays good performance for
a fairly broad range of panel sizes [24, p. 95–97],
so a user need not agonize over this choice.

The core the MMlib interface and functionality
can be described by the following few functions:

MMS mmlib_new_mmstruct(type, *filename, P)
Each data-set and its panels are associated

with an MMS object, which handles all neces-
sary bookkeeping and through which all access
to the data occurs. The above function constructs
an MMS object of a given MMlib type. Type
examples include MMLIB_TYPE_MATDENSE
for a dense two dimensional array, or MM-
LIB_TYPE_VECTOR for a one dimensional
array. The filename specifies the name of the
backing store, and P is the number of the panels
into which the data are broken.

void *mmlib_get_panel(MMS mms, p)
This function is the basic building block of the

library. It returns a pointer to the beginning of
panel p, hiding the rest of the bookkeeping. If
the panel is already mapped, it returns its address
and updates the global and corresponding local
queues. If the panel is not mapped, it checks for
memory shortage or surplus, consults the eviction
policy and adjusts the number of panels in the
queues accordingly.

void mmlib_release_panel(MMS mms, p)
Some applications work on many memory ob-

jects simultaneously, but not all objects have the
same lifetime. In particular, certain panels may
persist throughout the mapping and unmapping of
other panels of the same or different objects. For
example, assume we need to compute the inter-
action of a panel Xm with panels Xi, i = 1, m − 1.
It would be a performance disaster if, based on
the MRU policy, we decided to unmap this panel
because it was recently accessed. In this case, the
user needs to “lock” this panel as persistent, until
all relevant computation is completed. In MM-
lib, the pointer returned by mmlib_get_panel
remains valid until the mmlib_release_panel
is called. The release does not evict the panel;
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it merely unlocks it so that it can be evicted if
deemed necessary.

void mmlib_set_update_queue(void (*func)
(MMReg, MMS, int))

An MMS object is associated with a distinct
priority queue. This queue orders the panels ac-
cording to the eviction policy chosen by the user
for that object. When more than one objects
are active simultaneously, the choice of panel
eviction must consider not only the intra- but
also the inter-object priorities. For this reason,
MMlib maintains a global registry of all MMS
objects (MMReg), using this instead to make
its adaptation decisions. When a given amount
of space must be freed, the MMlib eviction
function evicts panels according to their order-
ing in the queue until enough space has been
freed. The priority queue is updated each time
that mmlib_get_panel() is called, inserting
the newly accessed panel in the proper place.
mmlib_set_update_queue() allows the user
to specify the function that should be called to
perform this update and maintain any other data
structures that may be required to implement the
eviction policy, such as queues local to each MMS
object. MMlib defaults to Most Recently Used
(MRU) replacement, as this is suited to the cyclic
access patterns of many scientific applications.

We should note that to provide maximum
flexibility, MMlib also provides an interface
for the user to specify the function that per-
forms panel evictions. The preferred method
for specifying an eviction policy is to use
mmlib_set_update_queue() when possible,
however.

3.3 Estimating Static Memory Size

Our memory adaptation algorithm in [25] assumes
that the program has an accurate estimate of the
size of its static memory, i.e., memory not asso-
ciated with managed objects. This is needed for
calculating how much of the RSS belongs to the
mapped objects. However, this size may not be
easily computed or even available to the program
if large enough static memory is allocated within
linked, third party libraries. Moreover, for some
programs the static memory may fluctuate be-

tween sweeps of the computation phase. A more
serious problem arises when the static memory
is not accessed during the computation phase.
Under memory pressure, most operating systems
consider the static memory least recently used
and slowly swap it out of DRAM. This causes
a false detection of memory shortage, and the
unmapping of as many panels as the size of the
swapped static memory.

An elegant solution to this problem relies on a
system call named mincore() for most Unix sys-
tems and VirtualQuery() for Windows. The
call allows a process to obtain information about
which pages from a certain memory segment are
resident in core. Because MMlib can only ascer-
tain residency of its managed memory objects, it
uses mincore() to compute the actual resident
size of the managed panels, which is exactly what
our algorithm needs. Obviously, the use of this
technique at every get_panel() is prohibitive
because of the overhead associated with check-
ing the pages of all mapped panels. We follow a
more feasible, yet equally effective strategy. We
measure the residency of all panels (mRSS) at
the beginning of a new computational phase, and
derive an accurate estimate of the static memory:
sRSS = RSS − mRSS, with RSS obtained from
the system. As long as no memory shortage is
detected, we continue to use this value of sRSS
during the computation phase. If a shortage is de-
tected, we call mincore() again to obtain a new
value for mRSS and then recalculate sRSS; this
allows us to discern whether a detected shortage
is real or simply due to a fluctuation in sRSS.
Since detection of a memory shortage (real or
spurious) is not a frequent occurrence, the overall
mincore overhead is tiny, especially compared to
the slowdown the code experiences when panel
unmapping is required.

3.4 A Most-missing Eviction Policy

One of the design goals of MMlib is to preempt
the virtual memory system paging policy by hold-
ing the RSS of the application below the level at
which the system will begin to swap out the pages
of the application. Under increasing memory pres-
sure, the paging algorithm of the system could
be antagonistic by paging out data that MMlib
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tries to keep resident, thus causing unnecessary
additional memory shortage. In this case, it may
be beneficial to “concede defeat” and limit our
losses by evicting those panels that have had most
of their pages swapped out, rather than evicting
according to our policy, say MRU. The rationale
is that if the OS has evicted LRU pages, these
will have to be reloaded either way, so we might
as well evict the corresponding panels. Evicting
MRU panels may make things worse because we
will have to load the swapped out LRU pages as
well as the MRU panels that we evicted.

The mincore() functionality we described
above facilitates the implementation of this “most
missing” policy. This policy is not at odds with
the user specified policy because it is only applied
when memory shortage is detected, which is when
the antagonism with the system policy can occur.
Under constant or increasing memory availability
the user policy is in effect. Preliminary results in
Section 5 show clear advantages with this policy.

4 Remote Memory Extension

Despite a dramatic increase in disk storage capac-
ities, improvements in disk latencies have lagged
significantly behind those of interconnection net-
works. Hence, remote virtual memory has often
been suggested [23]. The argument is strength-
ened by work in [2, 3, 21] showing that there
is significant benefit to harvesting the ample idle
memory in computing clusters for data-intensive
applications. The argument is imposing on MPPs,
where parallel I/O must also pass through the
interconnection network.

The general MMlib framework in Fig. 1 lends
itself naturally to a remote memory extension.
The key modification is that instead of memory
mapping a new panel from the corresponding file
on disk, we allocate space for it and request it from
a remote memory server. This server stores and
keeps track of unmapped panels in its memory,
while handling the mapping requests. In imple-
menting this extension we had to address several
design issues.

First, we chose MPI for the communication
between processors, because it is a widely portable
interface that users are also familiar with. Also,

because MMlib works entirely at user-level, we
need the user to be able to designate which
processors will play the role of remote memory
servers. MMlib is not concerned with locating
memory servers, and the long experience of some
of the authors in scientific programming suggests
that users are empowered, not burdened, by exer-
cising this control. We note, however, that nothing
precludes the use of a system such as Condor
or Dodo to suggest appropriate machines to use.
The downside of using MPI is that the user must
compile and run sequential programs with MPI.
All other MPI set up and communications are
handled internally in MMlib. For parallel pro-
grams there is no additional burden to the user. In
the future, and if experience deems it necessary, a
more transparent communication mechanism can
be implemented with minimal change to MMlib.
Nevertheless, our implementation is practically
transparent, and it has provided a proof of concept
for this functionality.

Second, because each panel is associated with
a particular remote server, the executing process
knows where to request it from and there is no
need for consistency maintenance between repli-
cas of panels. This allows the panels of one mem-
ory object to be kept on a number of servers. At
the same time each server may be storing and han-
dling panels from many objects, and possibly from
many processors. Because of the large granularity,
there is only a small number of panels, so the addi-
tional bookkeeping is trivial. This flexible design,
which is reminiscent of home-based shared virtual
memory research [19], enables a load balancing
act between servers, that can migrate panels com-
pletely independently from the execution nodes.
As long as the server pointer of each unmapped
panel is updated in the corresponding managed
memory object, execution nodes know where to
direct their next request. An exploration of the
many possibilities that arise from this design as
well as more fine-grain consistency models is be-
yond the scope of this paper.

Third, the memory that will hold a remotely
fetched panel does not have to be allocated
with named memory mapping. Named memory
mapping was important in the original MMlib
as it was used to read a panel implicitly from
a disk file, and because of that file it could
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avoid writing to the swap device under mem-
ory pressure. With remote memory, the exis-
tence of a file image for each panel is not
required. We have explored the question of which
allocation mechanism among malloc(), named
mmap(), and anonymous mmap() provides the
most benefits in performance and flexibility. Our
experimental testbed and results, shown in the
following section, yield anonymous mmap() as
the best choice. In principle, memory mapping
should be preferred because it permits the use
of mincore() by MMlib to compute the static
memory size, and thus provide accurate sensing
measurements for adaptation. On some operating
systems malloc() is not implemented on top
of mmap(), and thus does not permit the use of
mincore().

An outline of the remote memory algorithm
follows. Initially, the memory server(s) load all the
(initially unmapped) panels of all objects of the
application into their memory. When a working
process issues a get_panel(mms,p), and the
panel is not in memory (mapped), MMlib sends
a request to the appropriate server holding panel
p of the object mms. If no panel is to be unmapped,
MMlib allocates the appropriate memory space
and issues an MPI_Recv. If a panel, q, is to be
unmapped, MMlib figures out the server to send
it to, and initiates an MPI_Send. When the send
returns, this space of q can be reused to store
the incoming panel p, so MMlib simply issues an
MPI_Recv. We should point out that if an object
is designated as read-only, its panels need not be
sent to the memory server when unmapped, pro-
vided that the server keeps all panels, not only the
unmapped. Finally, the MMlib framework retains
all of its adaptivity to external memory pressure
when our remote memory implementation is used
in place of disk I/O.

5 Experiments

First we describe three applications that we
modified to use MMlib; their special character-
istics require our extended framework and opti-
mizations and cannot be implemented using the
simple framework of [25]. Second, we present
experiments with these applications under con-

stant and variable memory pressure. Third, we
explore experimentally the question posed in the
previous section about the most appropriate al-
location mechanism for remote memory. Finally
we demonstrate the power of remote memory in
MMlib using the CG application.

5.1 The Applications

The first application is the conjugate gradient
(CG) linear system solver provided in sparskit
[36]. Each iteration of CG requires one sparse
matrix-vector multiplication and a few inner prod-
ucts and vector updates. Our only managed object
is the coefficient matrix, as it poses the bulk of the
memory demands of the program, and is broken
into 40 panels. CG also has a sizable amount of
static memory for six work vectors. For MMlib to
work, this size must be known. In [25], we hard
coded the size of this static memory. Here, we
let MMlib detect it dynamically. Our test code,
CG, does not construct a matrix, but loads from
disk a pre-generated sparse matrix in diagonal
format. Figure 2 depicts the algorithm for matrix-

Fig. 2 Matrix-vector multiplication algorithm for a sparse
matrix of dimension N consisting of a number of diagonals.
x is the input vector and y is the output vector. The array
A[] consists of the elements from the first row, followed by
the elements from the second row, and so on. Note that
all rows consume the same number of entries in A[], so
some entries will not be used: for example, the first row of
the matrix does not contain any elements from diagonals
below the main diagonal, so some empty elements will be
“stored” in A[]. The offset[] array stores the offset of each
of the diagonals with respect to the main diagonal
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vector multiplication of a sparse matrix in this
format; this is the algorithm in which MMlib is
used to enable memory adaptivity. The matrices
used in our experiments are generated from a
three-dimensional, eighth order finite-difference
discretization of the Laplacian operator on the
unit cube using a regular grid and Dirichlet bound-
ary conditions. In the memory-adaptive code, they
are partitioned row-wise into panels of consec-
utive rows. Matrix-vector multiplications sweep
through each panel in typewriter fashion, left to
right and top to bottom. We note that, as far as
MMlib is concerned, CG is a read-only application:
writes do not occur to the matrix managed by the
library.

The second application is a modified Gram-
Schmidt (MGS) orthogonalization procedure. A
memory demanding application of MGS stems
from materials science, where Krylov eigensolvers
are used to find about 500–2,000 eigenvectors for
an eigenvalue problem of dimension on the order
of one million [38]. Figure 3 depicts the algorithm
executed by the MGS code. Our code simulates

Fig. 3 The algorithm executed by our MGS test code, which
simulates the behavior of a GMRES-type solver, generat-
ing random vectors of dimension N which are added to an
orthonormal basis via modified Gram-Schmidt. After the
basis size grows to a set maximum, the basis is discarded
and the computation is “restarted.” To ensure that a min-
imum level of memory pressure is maintained, one can
specify a minimum basis size, below which the size of the
basis never drops

a Krylov solver (such as GMRES) except that it
generates the recurrence randomly, not through
matrix vector multiplication, because our goal is
to focus solely on the memory demands imposed
by the vectors. At each step, a new vector is
generated, orthogonalized against previously gen-
erated vectors, normalized, and then appended to
them. Only these vectors need to be managed by
MMlib. In our experiment, we use one panel per
vector for a total of 30 vectors, each of 350,000
doubles (80 MB total). The code allows a “restart
size” max_basis_size to be specified: that is, once
the basis has grown to max_basis_size vectors, it
discards all but min_basis_size vectors from the
basis and begins building a new set. Restarting
is commonly employed with GMRES and related
solvers because as the basis grows, memory and
computational costs may become prohibitive. A
remedy is to restart the algorithm, retaining the
current approximate solution vector and discard-
ing the basis vectors. We note that MGS is the only
one of our test codes whose memory requirements
vary considerably throughout its lifetime, as the
basis grows or is discarded; our improved MMlib
is needed because the size of the managed object
varies at runtime, and multiple panels are active
simultaneously.

The third application is an implementation of
the Ising model [17, pp. 550–556], which is used
to model magnetism in ferromagnetic material,
liquid-gas transition, and other similar physical
processes. Considering a two-dimensional lattice
of atoms, each of which has a spin of either up
or down, the code runs a Monte-Carlo simulation
to generate a series of configurations that repre-
sent thermal equilibrium. The memory accesses
follow a simple 5-point stencil pattern, common
to many scientific applications. Figure 4 presents
a pseudocode summary of the operation of our
ISING code. For each iteration the code sweeps
the lattice and tests whether to flip the spin of
each lattice site. The flip is accepted, if it causes
a negative potential energy change, �E. Other-
wise, the spin flips with a probability equal to
exp

(−�E
kT

)
, where k is the Boltzmann constant

and T the ambient temperature. The higher the
T, the more spins are flipped (equivalent to a
“melting” of magnetic order or evaporation of
liquids). In computational terms, T determines
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Fig. 4 The algorithm for executing a Metropolis sweep
through the L × L spin lattice of the Ising model. Sites in
the lattice possess either spin up (+1) or down (−1). Pe-
riodic boundary conditions are used to calculate the spins
(up, down, left, right) of the four nearest neighbors. The
array w[] is a lookup table of Boltzmann probability ratios;
these ratios are dependent on the ambient temperature in
the simulation. The total energy E and the magnetization
M are scalar quantities that track some macroscopic ob-
servables of interest; they do not factor into the computa-
tions. Note that for each lattice site, we always generate a
random number to determine whether the spin should flip.
This could actually be avoided by automatically accepting
a spin flip whenever �E < 0, but by always generating the
random number we ensure that the amount of computation
is the same at any temperature. This allows us to ensure
that performance differences observed at different temper-
atures are solely due to differences in frequency of writes
to memory

the frequency of writes to the lattice sites at every
iteration. The memory-adaptive version partitions
the lattice row-wise into 40 panels. To calculate
the energy change at panel boundaries, the code
needs the last row of the above neighboring panel
and the first row of the below neighboring panel.
The improved MMlib framework is needed for
panel write backs with variable frequency, and
multiple active panels: Note that unlike CG, which
performs no writes to the panels, and MGS, which
writes only when a vector is added to the basis,
ISING performs frequent writes when higher val-
ues of T are used. Also, ISING requires more
than two panels to be active simultaneously, so
that interactions across panel boundaries can be
computed.

In all three applications the panel replacement
policy is MRU, but there is also use of persistent
(MGS) and neighboring (ISING) panels.

5.2 Adaptation via Local Disk

5.2.1 Graceful Degradation of Performance

Figure 5 includes one graph per application, each
showing the performance of three versions of
that application under constant memory pressure.
Each point in the charts shows the execution
time of one version of the application when run
against a dummy job that occupies a fixed amount
of physical memory, using the mlock() system
call to pin its pages in-core. For each application
we test a conventional in-core version (blue top
curve), a memory-adaptive version using MMlib
(red lower curve), and an ideal version (green
lowest curve) in which the application fixes the
number of panels cached at an optimal value –
previously determined by experimenting with all
possible numbers of panels cached – provided
by an oracle. The charts show the performance
degradation of the applications under increasing
levels of memory pressure. In all three applica-
tions, the memory-adaptive implementation per-
forms consistently and significantly better than the
conventional in-core implementation. Addition-
ally, the performance of the adaptive code is very
close to the ideal-case performance, without any
advance knowledge of memory availability and
static memory size, and regardless of the number
of active panels (whether read-only or read/write).

5.2.2 Effects of Panel Write-frequency

One might question whether MMlib becomes in-
effectual when applications write to the panels
frequently, as many dirty pages must be flushed
to disk before a panel can be unmapped. In the
case of CG the panels are never updated and thus
never need their contents flushed. MGS does write
to panels, but infrequently, doing so only when
an orthonormalized vector is added to the basis.
ISING, however, updates the panels with each
sweep through them, with the frequency of mem-
ory writes increasing as the ambient temperature
T of the simulation rises. To determine if frequent
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writes to the panels negatively affect performance,
we tested MMlib-enabled ISING under con-
stant memory pressure for different values of T.

� Fig. 5 Performance under constant memory pressure. The
top chart shows the average time per iteration of CG
with a 70 MB matrix, which requires a total of 81 MB of
RAM including memory for the work vectors. The middle
chart shows the time to orthogonalize via modified Gram-
Schmidt the last 10 vectors of a 30 vector set. Approxi-
mately 80 MB are required to store all 30 vectors. The
bottom chart shows the time required for an Ising code
to sweep through a 70 MB lattice. All experiments were
conducted on a Linux 2.4.22-xfs system with 128 MB of
RAM, some of which is shared with the video subsystem

Figure 6 displays performance curves generated
under static memory pressure on Linux 2.4 for
temperatures T = 0, T = 2, and T = 50. At T =
0, the simulation quickly reaches equilibrium after
a few sweeps through the matrix, and afterwards
never flips any spins. At the other extreme, T =
50, the lattice is in a highly disordered state, with
an average of 97.0% of the spins flipping during
one sweep through the panels. At T = 2, a more
modest 16.2% of spins are flipped during a sweep
through the panels. The ISING code performs the
same amount of CPU work for each sweep, re-
gardless of the simulation temperature. However,
we see that as memory pressure increases, ISING
at T = 0 performs much better than in the T = 2
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Fig. 6 Effects of write frequency on MMlib performance
in ISING. ISING runs with a 70 MB spin lattice against sta-
tic memory pressure applied via memlock on a Linux 2.4
system with 128 MB RAM. The spin lattice is broken into
20 panels. Performance curves are shown for temperatures
T = 0, T = 2, and T = 50, which correspond to acceptance
probabilities of 0, 16.2, and 97.0%. Error bars represent
95% confidence intervals. Performance is markedly better
in the T = 0 case because no time is spent flushing panels
to disk
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or T = 50 cases. This confirms that, not surpris-
ingly, frequent writes to the panels do increase ex-
ecution times, as there is no avoiding flushing dirty
pages to disk when panels are unmapped. Note,
however, that even for extremely frequent writes,
graceful performance degradation is observed.

One may notice that despite the much higher
frequency of writes in the T = 50 case, the ob-
served performance is essentially the same as in
the T = 2 case. This makes sense because al-
though only around 16% of the flips are accepted
in the T = 2 case, those flips are distributed widely
throughout the spin lattice. Because one page can
contain over a thousand spins, it is likely that
with 16% acceptance, almost every page will be
updated and therefore must be flushed to disk.
To the memory subsystem, there is essentially no
difference between 16 and 97% acceptance.

The impact of frequent writes on performance
explains, at least partially, why in Fig. 5, MMlib
seems to confer less benefit to ISING than to CG
or MGS in the sense that lower speedups over
the in-core version are observed. The MMlib-
enabled CG and MGS spend very little time writing
to disk, which gives them an advantage over the
in-core versions which must write to the swap de-
vice. Memory-adaptive ISING on the other hand,
running at T = 2, must devote considerable time
to such writes, so it loses some of its advantage
over the in-core code. (We could make memory-
adaptive ISING show better performance in Fig. 5
by running at T = 0, but this temperature is of no
scientific interest, so we use T = 2, a temperature
that physicists might actually wish to simulate.)

5.2.3 Quick Response to Transient Memory
Pressure

Our goal is for MMlib-enabled applications to
not only exhibit graceful performance degrada-
tion under memory pressure, but also to respond
quickly to changes in memory availability. To ver-
ify that this is the case, we performed a test in
which we started a memory-adaptive Ising model
computation, allowed it to complete a few sweeps
through its lattice, and then applied transient
memory pressure in the form of a competing
memory-intensive job that ran for 30 s. The results
or this experiment are depicted in Fig. 7 and show
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Fig. 7 Adaptation to transient memory pressure. A
memory-adaptive ISING job with a 60 MB lattice begins
running on a Linux 2.4.22-xfs system with 128 MB of RAM.
Circles in the figure represent sweeps through the lattice.
Twelve seconds later a competing jobs starts and writes
randomly to a 60 MB region of RAM for 30 s

that the job quickly adapts its resident set size to
a safe level at the onset of memory pressure and,
furthermore, readily adjusts its memory usage
back to normal when the competing job finishes.

5.2.4 Adaptive Versus Adaptive Jobs

The litmus test for MMlib is when multiple in-
stances of applications employing the library are
able to coexist on a machine without thrashing
the memory system. Figure 8 shows the resident
set size (RSS) over time for two instances of the
memory adaptive ISING code running simultane-
ously on a Sun Ultra 5 node running Solaris 9 with
256 MB of RAM. After the job that starts first has
completed at least one sweep through the lattice,
the second job starts. Both jobs have 150 MB
requirements, but memory pressure varies tem-
porally. The circles in the curves denote the
beginning of lattice sweeps. Distances between
consecutive circles along a curve indicate the time
of each sweep.

The results show that the two adaptive codes
run together harmoniously without constantly
evicting each other from memory and the jobs
reach an equilibrium where system memory uti-
lization is high and throughput is sustained with-
out thrashing. The operating system does not
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allow more than about 170 MB for all jobs, and
it tends to favor the application that starts first.
A similar phenomenon was observed in Linux.
We emphasize that the intricacies of the memory

� Fig. 8 Running adaptive versus adaptive jobs. The top
chart plots RSS vs. time for two equal-sized (150 MB)
memory-adaptive ISING jobs. The second job is started
30 s after the first job. The chart in the middle plots the
performance of a small (100 MB) and a large (200 MB)
Ising job. The small job starts 70 s after the large job. The
bottom chart plots the performance of a small and a large
job (100 and 200 MB respectively), where the large job
starts 40 s after the small job. The tests were conducted
on a Sun Ultra 5 system running Solaris 9 with 256 MB of
RAM

allocation policy of the OS are orthogonal to the
policies of MMlib. MMlib allows jobs to utilize as
efficiently as possible the available memory, not
to claim more memory than what is given to each
application by the OS.

5.2.5 Performance under a Most-missing Eviction
Policy

Figure 9 shows the benefits of our proposed
“most-missing” eviction policy. After external
memory pressure starts, the job that uses strict
MRU eviction exhibits very slow performance ini-
tially, because it must load the pages evicted by
the operating system as well as the MRU panels
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that MMlib has evicted, which usually do not
coincide with the panels from which the operating
system has taken pages. The job that employs
the “most-missing” policy adapts more nimbly to
the sudden increase in memory pressure, because
it does not make the mistake of automatically
throwing out many panels that have been un-
touched by the virtual memory system. Note that
after the application adapts to the sudden de-
crease in available memory, it automatically re-
verts from most-missing to MRU replacement
when no further shortage is detected.

5.2.6 Dependence of Performance Gains
on Replacement Policy

Because all three of the applications we have
tested employ memory access patterns for which
MRU replacement is appropriate (and are thus
very poorly served by the LRU-like algorithms
employed by virtual memory systems), one might
wonder if all of the performance gains provided by
MMlib are attributable to the MRU replacement
that it enables. To test this notion, we devised two
experiments.

In the first experiment, we modified the CG
code to utilize an LRU-friendly access pattern.
Normally, CG performs matrix-vector multiplica-
tions starting with the first row of the matrix
and proceeding down the rows until the last row
is processed. Similarly for the memory-adaptive
case, at each CG iteration, a sweep from the first
(top) to the last (bottom) panel of the matrix
is performed. We can make CG LRU-friendly,
however, by employing an alternating access pat-
tern: during one iteration, sweep through the ma-
trix from top to bottom, and then during the
next iteration, sweep from bottom to top. In our
LRU-friendly implementation, CG-LRU, the con-
ventional in-core code performs the backsweeps
row by row, while the MMlib-enabled version
sweeps backwards through its set of panels, but
processes the rows of each panel in the usual
top to bottom fashion. In this manner the MMlib
version utilizes an LRU-friendly access pattern
while still taking advantage of the pre-fetching
that the large units (panels) of data access en-
able. Figure 10 compares the in-core and MMlib-
enabled versions of CG-LRU with the in-core CG
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Fig. 10 Performance of in-core and memory adaptive ver-
sions of CG-LRU, which uses an LRU-friendly access pat-
tern. Jobs run under static memory pressure provided by
memlock on a Linux 2.4 system with 128 MB of RAM. The
performance profile for in-core, MRU-friendly CG is also
depicted for comparison. The number of panels P = 20.
Error bars represent 95% confidence intervals

that uses the conventional, MRU-friendly access
pattern. The MMlib-enabled CG-LRU performs
well (as expected) under memory pressure. But
somewhat surprisingly, the in-core CG-LRU per-
forms only marginally better than conventional
in-core CG, implying that the improved access
pattern of CG-LRU is immaterial. Tracing the
reasons for this is challenging because the sys-
tem activity that occurs during thrashing can be
quite complicated. Although in-core CG-LRU does
not avoid virtual memory-system overheads and
write-backs to the swap device, and it cannot take
advantage of pre-fetching from backing store like
MMlib-enabled codes can, it is likely that its poor
performance also stems from problems in the page
replacement policy of the operating system. The
LRU-like page replacement policies employed by
many operating systems are prone to thrashing
given certain small disruptions in the LRU access
pattern. Although CG-LRU uses an LRU-friendly
pattern to access the matrix, this modification does
not extend to the work vectors (static memory),
which cannot be protected from page reclamation
in the same way they are by MMlib-enabled CG
codes; this may explain at least part of the poor
performance observed.
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In our second experiment, we tested what per-
formance gains MMlib could still provide when
used with an inappropriate replacement policy:
We ran the standard (MRU-friendly) MMlib-
enabled CG under memory pressure and in-
structed MMlib to use LRU replacement. This
introduces a serious performance bug in the
replacement policy – in the presence of memory
pressure, all panel fetches will result in a miss!
Consequently, any performance benefits observed
will be unrelated to the ability of MMlib to en-
able the use of application-specific replacement
policies. Figure 11 compares the performance of
CG using the wrong (LRU) replacement policy
with the CG correctly employing MRU. The ver-
sion using LRU replacement performs markedly
worse, requiring roughly twice the amount of time
required by the MRU version to perform one
iteration. However, when compared to the per-
formance of in-core CG under memory pressure,
the code using the wrong replacement policy still
performs iterations in roughly half the time of in-
core CG at lower levels of memory pressure, and
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Fig. 11 Performance of memory-adaptive CG versus
memory pressure when using the wrong panel replace-
ment policy, which is depicted by the curve labeled
MMLIB-CG-LRU-wrong. The appropriate replacement
policy is MRU, but LRU is used instead; any observed
performance gains are not due to the ability of MMlib
to allow application-specific replacement. For comparison,
the performance of memory-adaptive CG correctly em-
ploying MRU is depicted by the curve labeled MMLIB-
CG-MRU-correct. Jobs run under static memory pressure
provided by locking a region of memory in-core on a Linux
2.4 system with 128 MB of RAM

at higher levels performs even better. The perfor-
mance benefits in this case come strictly from the
large granularity of panel access, as opposed to
the page-level granularity of the virtual memory
system, and from avoiding thrashing. Our exper-
iments also suggest that for a good replacement
policy to offer additional benefits, the code must
have structured, controlled memory accesses.

5.3 Adaptation via Remote Memory

The remote memory experiments are conducted
on the SciClone cluster [1] at William & Mary.
All programs are linked with the MPICH_GM
package and the communications are routed via
a Myrinet 1280 switch. We use dual-cpu Sun Ultra
60 workstations at 360 MHz with 512 MB mem-
ory, of which about 80 MB are reserved by the
Solaris 9 system.

5.3.1 Microbenchmark Results

These experiments help us understand the effect
of various allocation schemes (malloc, named
mmap, anonymous mmap) on the MPI_Recv per-
formance, under various levels of memory pres-
sure. Figure 12 shows three graphs corresponding
to the three methods for allocating the receiving
block of the MPI_Recv call. Each graph con-
tains six curves plotting the perceived MPI_Recv
bandwidth for six different total ‘buffers’ that the
MPI_Recv tries to fill by receiving ‘Block Size’
bytes at a time. This microbenchmark simulates an
MMlib process that uses remote memory to bring
each one of the panels (of ‘Block Size’ each) of
a memory object (of ‘buffer’ size). On the same
node with the receiving process, there is a compet-
ing process reading a 300 MB file from the local
disk. The larger the total ‘buffer’ size, the more
severe the memory pressure on the node. The
remote memory server process is always ready to
send the requested data.

The top chart suggests that named mapping is
the worst choice for allocating MPI_Recv buffers,
especially under heavy memory pressure, which
is exactly when MMlib is needed. In fact when
the receiving block is small, performance is bad
even without memory pressure (e.g., all curves for
block size of 256 kB). With large block sizes band-
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Fig. 12 MPI_Recv perceived bandwidth microbench-
mark results. The charts show the perceived MPI_Recv
bandwidth vs. receiving block size for six different total
buffer sizes. The receiving block is allocated using named
mmap() (top chart), anonymous mmap() (middle chart), or
malloc() (bottom chart)

width increases but only when the total ‘buffer’
does not cause memory pressure (e.g., the 20 MB
‘buffer’ curve). A reason for this is that receiving
a remote panel causes a write-out to its backing
store on the local disk, even though the two may
be identical.

For both the middle and bottom charts, all six
curves are very similar, suggesting that alloca-
tion using anonymous mmap() or malloc() is
not very sensitive to memory pressure. The
MPI_Recv bandwidth performance of using
malloc() for memory allocation is better than
that of using anonymous mmap(). As no other
processes were using the network during the ex-
periments, the perceived differences in bandwidth
must be due to different mechanisms of Solaris 9
for copying memory from system to user space.

Although these microbenchmarks suggest
malloc() as the allocator of choice for imple-
menting remote memory, experiments with CG
favor anonymous mapping, with malloc()
demonstrating unpredictable behavior.

5.3.2 CG Application Results

To demonstrate the remote memory capability of
MMlib, we performed two sets of experiments
with the CG application on the same computing
platform as in the microbenchmark experiments.

In the first set, the MMlib enabled CG applica-
tion runs on one local node. It works on a 200 MB
matrix, which is equally partitioned into 20 panels.
We create various levels of memory pressure on
the local node by running in addition the in-core
CG application (without MMlib) with matrices
requiring 300, 150, and 100 MB memory sizes.
The experimental results are shown in Table 1.
There are two rows of data for each of the three
memory allocation methods. In the first row, we
run the MMlib CG without remote memory; in
the second row, we run MMlib CG with remote
memory capability.

First, we see that under named mmap(), per-
formance for remote mode is inferior to local
mode, while under anonymous mmap() mode and
malloc(), remote mode is obviously superior to
local mode, especially when memory pressure is
severe. The results also confirm the microbench-
mark observations that named mmap() is the
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Table 1 Wall-clock time(seconds) for MMlib CG running against in-core CG, for six modes corresponding to the six rows
in the table

Memory pressure

300 MB 150 MB 100 MB No pressure

Mode
Named mmap() local 388.097 326.642 309.365 285.135
Named mmap() remote 484.34 472.831 371.277 289.617

Anonymous mmap() local 541.005 367.357 317.726 294.406
Anonymous mmap() remote 379.114 360.516 317.756 293.213

malloc() local 1,325.485 1,023.782 1,059.640 1,050.507
malloc() remote 534.229 504.043 475.662 462.117

MMlib CG works on local node on a 200 MB matrix, which is the managed object, requiring a total of 263 MB. Memory
pressure on the local node is created by in-core CG running on three different matrix sizes: 300, 150, 100 MB, with total
memory requirements: 385, 194, and 128 MB respectively. No pressure means in-core CG is not running.

wrong choice for remote memory: it requires both
a store to local disk (as in local MMlib) and a com-
munication with the remote server. On the other
hand, with low memory pressure, the local MMlib
with named mapping is marginally preferable to
remote memory. The reason is that panel reading
from disk uses prefetching, and when only small
parts of the panel may be missing, it is usually
more efficient than receiving the panel from re-
mote memory.

In contrast to the microbenchmark results,
however, remote mode performance is better un-
der anonymous mmap() than under malloc().

There are two reasons for this. The most impor-
tant reason is that on Solaris 9 malloc() extends
the data segment by calling brk(), rather than
by calling mmap(). Because MMlib issues a series
of malloc() and free() calls, especially when
there is heavy memory pressure, the unmapped
panels may not be readily available for use by
the system; unlike munmap(), free() does not
return memory to the system. This causes the run-
time scheduler to think that there is not enough
memory and thus to allocate less resources to the
executing process. In our experiments on the dual
CPU Suns, we noticed that the Solaris scheduler

Table 2 Wall-clock time(seconds) for MMlib CG running against MMlib CG

Matrix size

300 MB 250 MB 200 MB 150 MB 100 MB

Processes
cg1 local 1,496.700 1,116.355 413.500 265.929 181.252
cg2 local 1,015.495 755.859 638.448 266.697 185.796
Total local 2,512.195 1,872.214 1,051.948 532.626 367.048

cg1 remote 1,139.011 815.240 415.056 266.049 158.954
cg2 remote 809.446 519.031 603.588 252.822 157.289
Total remote 1,948.457 1,334.271 1,018.644 518.871 316.243

Time reduction of 22.4% 28.7% 3.16% 2.58% 13.8%
remote over local

Both MMlib CG applications use anonymous mmap() to allocate memory. The first three rows show the results when local
disk is used by both MMlib CG applications. The following three rows show the results when remote memory is used by
both MMlib CG applications. The last row shows the total wall-clock time reduction for remote over local mode. Actual
memory requirements for all codes are about 28% more than the matrix size.
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gave less than 25% CPU time to the application in
malloc() mode, while it gave close to 50% CPU
time to the one in anonymous mmap() mode. In-
terestingly, the local MMlib implementation with-
out remote memory demonstrates even a worse
behavior, suggesting that, on Solaris, the use of
malloced segments should be avoided for highly
dynamic I/O cases. The second reason is that the
mincore() system call does not work on mem-
ory segments allocated by malloc(). Therefore,
MMlib cannot obtain accurate estimates of the
static memory to adapt to memory variabilities.

In the second set of the experiments, we let two
MMlib CG applications run against each other
to measure the performance advantages of using
remote memory over local disk in a completely
dynamic setting. Both MMlib CG applications use
anonymous mmap() to allocate memory and work
on different matrices of equal size. Each matrix
is equally partitioned into 10 MB panels. The
experimental results are shown in Table 2. When
remote memory instead of local disk is used, the
total wall-clock time of the two MMlib CG ap-
plications is always reduced. Especially when the
overall memory pressure is severe such as the 300
and 250 MB matrix cases (the overall memory re-
quirements for these matrices are 750 and 640 MB
respectively), the wall-clock time reduction can be
22.4 and 28.7% respectively.

We emphasize that these improvements are
on top of the improvements provided by the lo-
cal disk MMlib over the simple use of virtual
memory. Considering also the improvements from
Fig. 5, our remote memory library improves local
virtual memory performance by a factor of be-
tween four and seven. This compares favorably
with factors of two or three reported in other
remote memory research [21].

6 Conclusions

We presented a general framework and support-
ing library that allows scientific applications to au-
tomatically manage their memory requirements at
runtime, thus executing optimally under variable
memory availability. The library is highly trans-
parent, requiring minimal code modifications and
only at a large granularity level. To facilitate porta-

bility, our design places minimal expectations on
the operating system, requiring only the means to
determine the resident set size of a process, to al-
locate more memory, and to effectively release al-
located memory back to the system.

This paper extends our previous simplified
framework and adaptation algorithm for memory
malleability with the following key functionalities:
(a) multiple and simultaneous read/write memory
objects, active panels, and access patterns, (b) au-
tomatic and accurate estimation of the size of the
non-managed memory, and (c) application level
remote memory capability.

We showed how each of the new functionali-
ties (a) and (b) were necessary in implementing
three common scientific applications, and how
(c) has significant performance advantages over
system-level remote memory. Moreover, the re-
mote memory functionality has opened a host of
new possibilities for load and memory balancing
in COWs and MPPs, which will be explored in
future research. Our experimental results with
MMlib have confirmed its adaptivity and near
optimality in performance. Integration of MMlib
with high-level parallel programming models will
also be explored in future work.
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