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Abstract

From field-scale measurements to global climate simulations and remote sensing, the growing body of very large

and long time series Earth science data are increasingly difficult to analyze, visualize, and interpret. Data mining, in-

formation theoretic, and machine learning techniques—such as cluster analysis, singular value decomposition, block

entropy, Fourier and wavelet analysis, phase-space reconstruction, and artificial neural networks—are being applied

to problems of segmentation, feature extraction, change detection, model-data comparison, and model validation. The

size and complexity of Earth science data exceed the limits of most analysis tools and the capacities of desktop com-

puters. New scalable analysis and visualization tools, running on parallel cluster computers and supercomputers, are

required to analyze data of this magnitude. This workshop will demonstrate how data mining techniques are applied

in the Earth sciences and describe innovative computer science methods that support analysis and discovery in the

Earth sciences.
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1. Introduction

The Workshop on Data Mining in Earth System Science (DMESS 2011) continues and expands upon a primary

theme of the GeoComputation 2009 Workshop [1], which was held in conjunction with the International Conference

on Computational Science (ICCS 2009) in Baton Rouge, Louisiana, USA. As the name states, DMESS 2011 is fo-

cused on applications of data mining techniques to studies in the Earth sciences. Spanning many orders of magnitude

Email addresses: forrest@climatemodeling.org
(Forrest M. Hoffman), larson@mcs.anl.gov (J. Walter Larson), rmills@ornl.gov (Richard Tran Mills), bjorn@climatemodeling.org

(Bjørn-Gustaf J. Brooks), gangulyar@ornl.gov (Auroop R. Ganguly), hnw@geobabble.org (William W. Hargrove),

huangj@eecs.utk.edu (Jian Huang), jkumar@climatemodeling.org (Jitendra Kumar), vatsavairr@ornl.gov (Ranga R. Vatsavai)



Forrest M. Homan et al. / Procedia Computer Science 4 (2011) 1450–1455 1451

in time and space scales, Earth science data are increasingly large and complex and often represent very long time

series, making such data difficult to analyze, visualize, interpret, and understand. Moreover, advanced electronic data

storage technologies have enabled the creation of large repositories of observational data, while modern high per-

formance computing capacity has enabled the creation of detailed empirical and process-based models that produce

copious output across all these time and space scales. The resulting “explosion” of heterogeneous, multi-disciplinary

Earth science data has rendered traditional means of integration and analysis ineffective, necessitating the application

of new analysis methods and the development of highly scalable software tools for synthesis, comparison, and visu-

alization. This workshop explores various data mining approaches to understanding Earth science data, emphasizing

the technological challenges associated with utilizing very large and long time series geospatial data sets.

2. Earth Science Data

Observational and modeled data acquired or generated by the various disciplines within the realm of the Earth sci-

ences encompass temporal scales of seconds (1 s) to millions of years (1013 s) and spatial scales of microns (10−6 m)

to tens of thousands of kilometers (107 m). Because of rapid technological advances in sensor development, compu-

tational capacity, and data storage density, the volume, complexity, and resolution of Earth science data are increasing

equally rapidly. Moreover, combining, integrating, and synthesizing data across Earth science disciplines offers new

opportunities for scientific discovery that are only beginning to be realized. In fact, the rise of data-intensive scien-

tific pursuits, in Earth sciences and other disciplines, has led some visionaries to proclaim it the fourth paradigm of

discovery alongside the traditional experimental, theoretical, and computational archetypes [2]. Data-centric science,

however, also poses unique technological and social challenges, many of which are exacerbated by the sheer size of

the data sets involved.

The promise of scientific advances from data mining and synthesis has stimulated an increase in the number of

users of Earth science data within the research community. Worldwide interest in sustainability and environmental

policy, as well as mounting political pressure from climate change skeptics, has added decision-makers and the general

public to the growing list of data users. Open and user-friendly access to Earth science data is required, particularly

for climate change data, and decision-makers often need distilled data products for assessing impacts and planning

and implementing climate adaptation and mitigation strategies. Organized global climate modeling activities, like the

Coupled Model Intercomparison Project (CMIP) that coordinates simulations in support of the United Nations’ Inter-

governmental Panel on Climate Change (IPCC) assessment reports, can generate tens of terabytes to several petabytes

of simulation results in raw form [3], and are now made available to the research community and the general public

through a series of distributed, interconnected servers called the Earth System Grid (ESG) [4]. For the IPCC Fourth

Assessment Report (AR4), ESG distribution of CMIP Phase 3 model output resulted in hundreds of new papers ana-

lyzing various aspects and implications of the simulated climate change scenarios. Additionally, efforts are underway

to develop composited, summary data from future simulation output collections that will be more directly useful for

decision-makers and public users.

Observational data pose their own challenges. Satellite remote sensing data tend to be very large and their size

has grown as spatial and temporal resolutions have increased. Meanwhile, small ecological data sets, often the most

useful for synthesis, may be the most difficult to preserve, distribute, and use [5]. Such data must be well curated

and their provenance must be formally documented. Data format standards and metadata conventions are needed for

both observational and model data. The continually evolving Climate and Forecast (CF) Metadata Convention [6]

is a framework that has successfully served the climate modeling community. Heterogeneous data resulting from

multi-disciplinary fields in Earth sciences may require entirely new metadata languages [5]. The workflow associated

with processing, quality control, gap-filling, analyzing, and synthesizing data should also be documented so that all

those steps can be reproduced by other researchers. Scientific workflow systems are being developed to provide such

capabilities. Pioneering efforts to automate and document the entire process—from data acquisition and generation

to synthesis and publication—are being undertaken by the DataONE project (http://www.dataone.org/) in the

context of establishing federated data systems [5].

Climate modeling activities like CMIP place new demands on the measurements community to provide obser-

vations and measurement uncertainties useful for assessing model fidelity and for validation during model develop-

ment [7]. The international research community needs agreed-upon standards for model evaluation [8] and bench-

marks for scientific performance of simulation models. Hence, the International Land Model Benchmarking project
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(ILAMB; http://www.ilamb.org/) was recently established to develop benchmarks for terrestrial biogeochem-

istry models that run within Earth System Models (ESMs), which are presently being used to carry out CMIP Phase

5 experiments in support of the IPCC Fifth Assessment Report (AR5), expected to appear in 2013. By adopting the

CF Metadata Convention and advocating for similar standards from the measurements community, model developers

and climate scientists can more easily, quickly, and frequently perform detailed model evaluations and data-model

intercomparisons. Another goal of ILAMB is to create a reusable, open source framework for evaluating cost func-

tions and generating diagnostics for data-model intercomparison projects, eliminating the need for project organizers

to reinvent the architecture each time and allowing such model assessments to be made on a regular basis. By utilizing

only freely available observational data and openly distributing the code for its model evaluation tools, ILAMB seeks

to improve the scientific process by achieving a new standard for scientific openness and transparency [9].

In addition to the data management issues of provenance, curation, metadata creation, and public distribution,

today’s large and complex Earth science data often cannot be synthesized and analyzed using traditional methods

or on single-processor desktop computers. Instead, new methods of analysis must be brought to bear on the prob-

lem and, in many cases, this requires development of new, highly scalable software tools that take advantage of

large distributed-memory parallel computational resources. Data mining, machine learning, and high performance

visualization approaches are increasingly filling this void and can often be deployed on parallel cluster computers

or supercomputers. Examples of these approaches and their implementations are outlined here and described in the

accompanying workshop papers.

3. Data Mining Approaches

A wide variety of data mining, machine learning, and information theoretic techniques are now being applied to

the growing body of Earth science data. Cluster analysis has proven to be useful for segmentation, feature extraction,

network analysis, change detection, model intercomparison, and model-data comparison in a number of Earth science

applications [10]. Block entropy can be used as a classifier for dynamical systems. Spectral methods are frequently

employed for decomposing periodic phenomena. Artificial neural networks and model tree ensembles have been used

to refine models and to empirically up-scale and extrapolate point measurements.

Ecoregions—land areas that are relatively homogeneous with respect to a collection of observable environmen-

tal characteristics—have traditionally been developed by humans using expert judgment. However, stratification of

geographic regions based on high resolution synoptic bioclimatic observational data using cluster analysis has now

become an accepted method for delineating ecoregions [11]. The same method may be used to stratify climate obser-

vational or model data, not only across space, but also through time, resulting in time-evolving ecoregions or climate

regimes [12] that can be used to better inform terrestrial biosphere models. Such clustered climate regimes can be

tracked from present locations into alternative forecasted futures, allowing exploration of changes in size and location

of home ranges for particular species [13], as well as new ecoregion compositions for particular locations [14]. In

the paper included in this DMESS section, Sisneros et al., have integrated a flexible stratification method, similar to

that used in cluster analysis, into a high performance visualization system to show how life zone boundaries are likely

to change in the next century according to a projection from a global climate model. This suggests that scientific

visualization, too often relegated to the final step of data analysis, can be one of the methods for exploration of very

large data, especially in large-scale immersive visualization environments [15]. Querying for specific features in large

geospatial data, like that generated from satellite remote sensing, requires new tools or languages that can exploit high

performance computing resources. One example, a new high throughput data query language, was presented at the

previous workshop [16].

Connecting the representativeness of locations where informative geophysical and ecological measurements are

made (e.g., eddy flux towers) to other locations of corresponding ecoregion types where measurements are difficult,

cost-prohibitive, or impossible to make is one area where multivariate geospatial cluster analysis has been used to

improve analysis and quantify the representation of continental-scale sampling networks. A comprehensive analysis

of network representativeness, indicating which ecoregions are well-represented by sampling, was performed for the

AmeriFlux network of eddy covariance CO2 flux tower sites in the conterminous United States [17, 18]. While such

large-scale sampling networks are rarely designed and built based on such a data-intensive analysis, the same tech-

nique was recently used to establish the 20 sampling domains within the U.S. for the National Ecological Observatory
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Network (NEON), a 30-year nationwide study of climate and ecology [19, 20]. Additionally this geospatial data min-

ing method was previously applied to remotely sensed hyperspectral imagery for detection of brine scar disturbances

across a regional landscape [21]. When further applied across a time series of geospatial data, multivariate geospa-

tiotemporal clustering was useful for characterizing the time-evolving dynamical behavior of Earth system processes.

For example, combining monthly climatology with normalized difference vegetation index (NDVI) data from 17 years

of 8 km2 Advanced Very High Resolution Radiometer (AVHRR) images produced regions of similar phenological be-

havior, called phenoregions. Similar analysis using NDVI from the Moderate Resolution Imaging Spectroradiometer

(MODIS) suggests that spatiotemporal clustering is useful for change detection in satellite imagery and may serve as

a key component in a national-scale early warning system for detection of threats to forest health [22, 23]. This is

highlighted by a paper included here in which Mills et al., present an updated analysis from seven years of MODIS

NDVI, demonstrating the utility of cluster analysis in detecting forest disturbances from mountain pine beetle, wild-

fire, hurricane landfall, and accompanying coastal salt-water intrusion.

With recent emphasis on biofuel development for reducing dependency on oil and reducing carbon emissions from

energy production and consumption, the landscape of many countries is going to change dramatically in the coming

years. In the United States, continuous corn production is becoming a dominant cropping pattern as the practice

of soybean and wheat rotations is reduced to maximize total corn production. It is also expected that more pasture

lands will be converted to switchgrass (Panicum virgatum) in the coming years, which may positively impact climate

change because of its superior carbon balance properties with proper management practice. However, monitoring nat-

ural resources, especially crop biomass over large geographic regions using remote sensing poses several challenges

and opportunities. Existing change detection techniques are not adequate or scalable for continuous monitoring. On

the other hand, characterizing changes requires accurate classification of remote sensing images. Spatiotemporal

data mining, especially the techniques that exploit the subtle multidimensional signals through the joint use of high

temporal resolution (e.g., MODIS) data and moderate- and fine-spatial resolution (e.g., Advanced Wide Field Sensor

or AWiFS) satellite images, has proven to be highly useful for extracting multi-temporal biomass change informa-

tion [24], including crop types [25]. Spatial and spatiotemporal data mining may also be applied to the extraction of

recurrence patterns of climate extremes from model results [26].

Other important Earth Science data mining techniques include those capable of detecting and classifying state

changes in environmental variables, especially when it is necessary to compare time series across many locations,

for example using information theoretic and spectral methods. Also in this DMESS section, Larson et al., present a

paper exploring the use of block entropy as a classifier for dynamical behavior in observed meteorological time series

data. Their symbolic dynamics analysis system shows that the randomness (hμ) and “memory” (E) components of

the system’s information content are viable classifiers for precipitation measured at Australian weather stations. Such

automated and robust classifiers could be particularly useful for benchmarking the variability within model output,

which can be important when assimilating measurements that need to be filtered to be representative on scales that

the model can handle. At the GeoComputation 2009 workshop, Brooks showed how wavelet and Fourier transform

analyses could be used to diagnose changes in periodic cycles (e.g., annual precipitation intensity and frequency)

between multiple model simulations as a way of understanding how changes in regular cycles may feed back onto

other natural systems in global climate models [27].

Artificial neural networks (ANNs) are increasingly applied to model or classify Earth science data. In a paper in-

cluded here, Diersen et al., describe the use of ANN and an Importance-Aided Neural Network (IANN) to the refine-

ment of structural models used to create full-wave tomography images. Employing ANN and IANN for classification

of data wave seismograms reduces the time- and labor-intensive processing steps involved in creating high resolu-

tion images of the Earth’s subsurface. Other notable and recent applications have combined an ANN with a model

tree ensemble (MTE) method to perform global empirical up-scaling of observational data from the FLUXNET eddy

covariance CO2 measurement sites located throughout the world. This effort has produced global spatial estimates

of gross primary production (GPP) [28], a global estimate of the temperature sensitivity of heterotrophic respiration

(Q10) [29], and the global trend in land evapotranspiration [30].

4. High Performance Computing

To realize the promise of new scientific discovery from very large and long time series Earth science data, increas-

ing capacity from high performance computing resources is required. Traditional analysis methods and algorithms are
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insufficient for analyzing and synthesizing such large data sets, and those algorithms rarely scale out onto distributed-

memory parallel computer systems. Therefore, new analysis techniques and scalable algorithms and software tools

must be developed to enable analysis, exploration, and visualization of today’s Earth science data. Fortunately, the

rapidly increasing computational power of state-of-the-art supercomputers provides opportunities for development of

such tools. Often these same supercomputing resources are used to run simulation model experiments, so analysis

and visualization may simply be another step in the scientific workflow process in the same computing environment.

Because of a scientific interest in developing empirical ecoregions based on observed data, Hoffman and Hargrove

developed a parallel k-means clustering algorithm [31] that they implemented on an early Beowulf-style parallel

cluster computer they constructed from surplus personal computers [32]. That code has been continually used and

improved for environmental data analysis on machines ranging from laptops to the largest supercomputers in the

world. Recent improvements to that code, including adoption of a triangle-inequality-based acceleration technique

and “warping” of unassigned/empty cluster centroids, have significantly reduced the time to solution [10], and a new

technique for initial centroid determination has improved the statistical performance of the clustering result. These

enhancements have enabled the cluster analysis of large satellite data sets for identification of forest disturbances. In a

paper included here, Kumar et al., present a fully distributed version of the k-means algorithm that includes several of

the modifications developed by Hoffman et al. [10, 23]. This implementation avoids master-slave parallelism and is

designed and tested for analysis of large data sets using state-of-the-art supercomputers. This implementation scales

to tens of thousands of processors and has been tested on seven years of MODIS NDVI data at a resolution of 250 m2

over the conterminous U.S.
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