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Abstract The identification of pollution sources in aquifers is an important area of
research for hydrologists and governmental agencies. It may be possible to locate the
polluting industry, given the data in terms of pollutant concentration measurements at
observation wells and the aquifer parameters. Traditionally, hydrologists have relied
on the conceptual methods for the identification of groundwater pollution sources.
Recently, artificial neural networks (ANNs) have emerged as an attractive and easy
to implement alternative to solve complex problems efficiently. Some researchers
have used ANNs for the identification of pollution sources in aquifers. A major
problem with most previous studies using ANNs has been the large size of the neural
networks that are needed to model the inverse problem. The breakthrough curves at
an observation well may consist of hundreds of concentration measurements, and
presenting all of them to the input layer of an ANN not only results in huge networks
but also requires large amount of training and testing data sets to develop the ANN
models. In this paper, we present the results of a study aimed at estimating
groundwater pollution source location using ANNs through the use of two different
methods of presenting the breakthrough curves data as inputs to the ANN models. To
simplify the ANN architectures, these methods do not employ the whole
breakthrough curves as the inputs to the ANNs. The feed-forward multi-layer
perceptron type of ANN architecture was employed to develop various ANN models
which were trained using the back-propagation method. The results show that the
ANNs can be very efficient tools for locating pollution sources and that it is possible
to obtain good ANN model performance even with extremely simplified
architectures involving a very few input variables.
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INTRODUCTION

Groundwater is a major source of water in India for agriculture, municipal, and
industrial sectors. The quality of groundwater has traditionally been very good
requiring no or minimal treatment in most cases. However, over the last couple of
decades, the groundwater has been at a high risk of being contaminated by the
harmful chemicals due to many reasons such as rapid industrialization, increased
use of pesticides, and increase in the number of underground petrol storage tanks.
Once an aquifer has been contaminated, it may take a very long time and
considerable expenditure to restore it to an usable state. Due to the large costs of
cleaning operations of contaminated aquifers, it is necessary to identify the source
of the pollution so that suitable punitive measures could be imposed on the
polluting industry/individual/agency to recover some of the costs. Complete
identification of pollution source involves determination of source concentrations,
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duration, and location. The physical processes involved in the movement of water
and contaminants in the aquifers are highly complex, non-linear, and dynamic
processes affected by a wide range of physical variables. The identification of the
pollution sources is much more complex in the sense that it requires an inverse
modeling of the flow and contaminant transport. Over the past few decades,
various investigators have looked at the problem of identification of groundwater
pollution sources using a wide variety of techniques.

The simplest approach is to use forward simulations with assumed source
location and release history and compare the results with the observed data.
However, it is not very efficient due to the infinite number of possible
combinations and some type of optimization method has to be used to obtain the
best solution. Probably the earliest such study was that of Gorelick et al. (1983)
who used forward-time simulations with an optimization model based on linear
programming and multiple regressions. They incorporated the transport model as
constraints in the form of a response matrix. Wagner (1992) considered an inverse
model as a non-linear maximum likelihood estimation problem for simultaneous
model parameter estimation and source characterization. Mahar & Datta (1997,
2000) combined the identification of a pollutant source with the optimal design of a
monitoring network for an efficient identification process. Mahar & Datta (2000)
used a classical nonlinear optimization technique to estimate the magnitude,
location and duration of groundwater pollution sources under transient conditions.
A different approach was proposed by Skaggs & Kabala (1994). They attempted to
reconstruct the history of the plume using Tikhonov Regularization (TR). 1-D
solute transport through a saturated homogeneous medium was studied with a
complex contaminant release history and assuming no prior knowledge of the
release function. Samarskaia (1995) applied the TR with fast Fourier transforms to
a groundwater contamination source reconstruction problem. Liu & Ball (1999)
used modified TR technique to study a contaminant release at Dover Air Force
Base, Delaware, USA. They used field measured concentration profiles in
lowpermeability porous media that underlie the contaminated aquifer. Singh et al.
(2004) used ANNSs for identification of unknown groundwater pc:'ution sources.
The ANN was trained to identify source characteristics based on simulated
contaminant concentration measurement data at specified observation locations in
the aquifer. The performance of ANN models was found to be very effective for
source identification. Singh & Datta (2004) utilized a trained ANN to
simultaneously solve the problems of estimating unknown groundwater pollution
sources and estimating unknown hydro-geologic parameters.

It is clear that a variety of techniques have been investigated by researchers for
pollution source identification. Recently, ANNs have also been employed for this
purpose; however, most of the studies reported earlier have focused on identifying
the source release history at potential locations. In real aquifers, identifying the
location of the pollution source is extremely important for taking punitive
measures. Further, a major problem in many of the earlier studies attempting to use
ANNs for pollution source identification has been the very large and complex
ANN architectures needed to present the whole breakthrough curves to the ANNs.
It may be possible to obtain good performance in identification of pollution source
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location by presenting an ANN with a smaller number of inputs characterizing the
breakthrough curves in some manner. The authors have not encountered any study
attempting to reduce the dimensionality of ANN architectures for the purpose of
identification of pollution source locations.

The objectives of this study are to (a) investigate the use of ANN methodology
to estimate the distance of the pollution source from an observation well where the
measured breakthrough curve is available, and (b) investigate the use of two
methodologies using simplified representation of the breakthrough curves as inputs
to the ANNs to estimate the distance of the pollution source from an observed well.
The paper begins with a brief overview of the ANN technique followed by the
model development before presenting the results and making concluding remarks.

ARTIFICIAL NEURAL NETWORKS

An ANN is a highly inter-connected network of many simple processing units
called "neurons" or "neurodes". Neurons having similar characteristics are grouped
in a single layer. For example, the neurons in an input layer receive input from an
external source, and transmit the same to a neuron in an adjacent layer, which
could either be a hidden layer or an output layer. Each neuron in an ANN is also
capable of comparing an input to a threshold value. The input output data presented
to an ANN are normally scaled between 0 and 1. The ANN stores the information
captured from the input vector as the ‘strengths of the connections’ between the
neurons. The most commonly used ANN in engineering applications is a feed-
forward ANN (see Figure 1). In this figure, each neuron is represented by a circle
and each connection by a line. The ANN shown in Figure 1 consists of three layers:
an input layer consisting of three neurons, a hidden layer also consisting of three
neurons, and an output layer consisting of one neuron. In a feed-forward ANN, the
inputs presented to the neurons in an input layer are propagated in a forward
direction and the output vector is calculated through the use of a non-linear
function called activation function. The activation function should be continuous,
differentiable, and bounded from above and below. Then, knowing the output, the
error at the output layer from the ANN model can be computed. The computed
error is then back propagated through the network and the ‘connection strengths’
are updated using some training mechanism such as ‘generalized delta rule’
(Rumelhart et al., 1986). This process of feed-forward calculations and back-
propagation of error is repeated until an acceptable level of convergence is reached.
This whole process is known as training of the ANN. Once the network has been
trained, it can be used for prediction. A feed-forward ANN with generalized delta
rule as its training mechanism was employed in the present study to develop all
ANN models. More details of an ANN can be found in ASCE Task Committee on
Application of Artificial Neural Networks in Hydrology (2000).
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Input Layer Hidden Layer Output Layer

Fig. 1. Structure of a Feed-forward ANN

MODFEL DEVELOPMENT
Data Generation

The data for the problem of pollution source identification consist of observed
breakthrough curve at observation wells and the source strengths, duration, and
location. Since in the present study, the objective is to estimate the distance of the
pollution source given a breakthrough curve, the pollution source is assumed to be
active for constant duration injecting a conservative pollutant at a constant rate.
The breakthrough curves at different distances were then calculated using the
governing equations for the pollutant transport as follows:

The one-dimensional transport of conservative solutes through a homogeneous
saturated semi-infinite porous media is represented by the advection-dispersion
equation:

x_,dc_ ac
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in which C is the concentration, t is time, D is the dispersion coefficient, x is the
distance and v is the groundwater velocity. Its solution requires one initial and two
boundary conditions which are dictated by the type of problem considered. In this
study, we consider an initially uncontaminated aquifer with a pollutant source of
constant strength releasing the pollutant till certain time and stopping after that.
The initial and boundary conditions are then given by;
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C(x,0)=0 )
C(0,r)=C, for t <T, and 0 otherwise
C(o0,1)=0

in which T, is the duration of release and C, is concentration at source. The
solution of the above equations is obtained by utilizing the solution to a step input
according to Ogata & Banks (1961) as:
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Equations (3) and (4) were employed to generate the breakthrough curves using
the following data: v = 0.1 m/day; D = 0.1 mz/day; Co = 1000 mg/l; and T = 120
days. The time interval of the breakthrough curves was taken as 30-days. A total of
2,000 input-output patterns were generated, of which 1,500 were used for training,
250 were used for validation, and 250 were used for testing. The data were scaled
in the range of 0.1 and 0.9 to avoid saturation during training. A brief description
of various error measured employed in this study for model development is
provided next.

Performance Statistics

Five different standard performance statistics were employed for model
development. These are normalized root mean square error (NRMSE), Nash-
Sutcliffe efficiency (E), coefficient of correlation (R), average absolute relative
error (AARE), and threshold statistics (TS). These can be calculated using the
following equations:
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Where XO is the observed value of the variable, XE is the estimated value of
the variable from a model, XO is the average observed value of the variable, XE is
the average estimated value of the variable, N, is the number of data points
estimated for which the absolute relative error (ARE) is less than x%, N is the total
number of data points predicted, and all the summations run from 1 to N. The value
of x of 1%, 10%, and, 50% were considered in this study to compute threshold
statistics.

The normalized root mean square error (NRMSE) is a relative measure of the
residua! variance from the model. The value of NRMSE close to 0.0 indicates
better performance. The correlation coefficient (R) measures the degree of linear
dependence between two series. It ranges between -1.0 and 1.0 with a higher value
indicating good linear dependence between observed and estimated values. The
coefficient of efficiency (E), proposed by Nash & Sutcliffe (1970), is also one of
the widely employed relative statistic in hydrologic literature. A value of 1.0
represents a perfect prediction while a model with E = 0.0 is no more accurate than
predicting the mean observed value. The ANN models are trained by minimizing
the sum squared error (SSE) at the output layer, which is similar to the global error
statistics such as NRMSE, E, and R. In order to test the robustness of the ANN
model developed, it is important to test the model using some other performance
statistics such as average absolute relative error (AARE) and threshold statistics
(Jain et al., 2001; Jain & Ormsbee, 2002, 2004; Jain & Srinivasulu, 2004; and Jain
& Srinivasulu, 2006). The AARE provides an overall average error in estimating
the variable being modeled, clearly, lower the AARE better is the model
performance. The threshold statistics provides information on the distribution of
the prediction errors, and higher TS values indicate better model performance.

ANN Model Development

The ANN models developed in this study consisted of three layers: an input layer,
a hidden layer, and an output layer. Two different ANN models were developed
that differed in the manner of presenting the breakthrough curve to the input layer
of the ANN. In the first method (called ANN-1 Model), the whole breakthrough
curve was divided into ten parts, and the pollution concentrations at the eleven end
points were computed. This time distribution of the pollutant concentrations was
then modeled as 22-N-1 in ANN-1 model. The second method (called ANN-2
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Model) employed the first, second and third temporal moments of the breakthrough
curves to capture the essential features of the curves using only a few
characteristics. The n™ temporal moment at a given sampling point is defined as

M, = [C(t)rdt (10)
O

The zeroth moment represents the area under the breakthrough curve, which is
indicative of the mass passing through the sampling point for a constant
groundwater velocity. The first moment, normalized with the- zeroth moment,
represents the mean arrival time of the plume:
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The higher order moments are typically computed about the mean arrival time
and are written as
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The second moment therefore represents the spread about the mean and the
third provides an indication of the skewness of the breakthrough curve. Thus, the
structure of the ANN-2 model (3-N-1) was considerably simplified. The output
neuron in both the ANN models represented the distance of the pollution source
from the location where the breakthrough curve was observed.

The main task in the development of the ANN model is the determination of the
optimum number of neurons (N) in the hidden layer. The number of neurons in the
hidden layer is, in fact, responsible for capturing (or mapping) the dynamic and
complex relationship among various input and output variables considered. The
sigmoid activation function was used as the transfer function at both hidden and
output layers. This study employed the popular back-propagation training
algorithm using step-wise learning with momentum factor. The value of learning
coefficient of 0.075 and momentum correction factor of 0.075 was used while
training. The value of N was varied from 1| to 20, and for each N, the back-
propagation algorithm was used to minimize SSE at the output layer. Each of the
ANN architectures was trained for a maximum of 50,000 iterations or when the
SSE reached 0.0005. Three error statistics, namely R, SSE, and AARE were used
to determine the best ANN architecture (or optimal N). Figure 2 and Figure 3 show
the graphs between the number of hidden neurons and different error statistics
during training from ANN-1 and ANN-2 models, respectively. It can be noted from
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the two figures that the correlation coefficient R is almost constant for all the
hidden neurons for both ANN models. The SSE first decreases, and then almost
remains constant when the number of hidden neurons is increased. These two
statistics (R & SSE) therefore do not help much in determining the best number of
hidden neurons to capture the complex relationships inherent in the input and
output data. Therefore, in order to select the best architectures for each ANN
model, ANN architectures having number of hidden neurons equal to 3, 6, 8, and
10 were selected for the ANN-1 model for further analysis. Similarly, ANN
architectures having number of hidden neurons equal to 5, 10, and 14 were selected
for the ANN-2 model for turther analysis. These selections were made based on the
AARE values being minimum for the number of hidden neurons (see Figure 2 and
Figure 3) for the two models, respectively. The analyses for the selection of the
best ANN architectures for each of the models were based on the training results
only. The results in terms of various performance statistics from the selected
models during training, validation, and testing are presented in Table 1, and Table
2 from ANN-1 and ANN-2 models, respectively.
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Fig. 2. Error Statistics v/s number of hidden neurons for ANN-1Model
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Fig. 3. Error Statistics v/s number of hidden neurons for ANN-2 Model
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RESULTS & DISCUSSIONS

Analyzing the results for ANN-1 models from Table 1, it can be noted that the
values of correlation coefficient and Nash-Sutcliffe efficiency in excess of 0.95
were obtained from all the models, which represents excellent performance. The
values of AARE of less than 3% from all models during training, validation, and
testing shows that the ANN-1 model is very efficient in predicting the distance of
the pollution source from the sampling well very accurately, It is to be noted that
the 22-10-1 architecture of the ANN-1 model is deemed to be the best since its
performance in terms of AARE during training and validations data sets is the best
(0.71% and 2.28%, respectively), and its performance during testing is also very
good. The 22-10-1 ANN model performed comparable to the other models in terms
of NRMSE, E, and R statistics. This model also had the best TS statistic for most
ARE levels. The results in the form of a scatter plot from the 22-10-1 ANN model
is shown in Figure 4. The narrow and uniform spread around the ideal line
indicates that it was able to predict the distance of the pollution source very
accurately for all magnitudes.

Table 1. Performance Statistics from ANN-1 Models

Model NRMSE E R AARE TSI
TS10 TS50

During Training

22-03-1 0.0052 0.999919 0.999960 2.58 86.27  97.87  99.53
22-06-1  0.0042 0.999946 0.999974 1.56 89.27  99.07 99.67
22-08-1 0.0036 0.999962 0.999982 1.13 90.93 99.33 +99.73
22-10-1  0.0036 0.999962 0.999982 0.71 91.00  99.07 99.87
During Validation

22-03-1  0.1266 0.951940 0.976004 2.90 60.80  92.80 99.20
22-06-1  0.1264 0.952036 0.976091 2.71 67.60 9720  99.20
22-08-1 0.1265 0.952010 0.976074 2.98 65.60  97.20 99.60
22-10-1  0.1265 0.951993 0.976074 228 67.60  94.80 99.60
During Testing

22-03-1  0.1263 0.951756 0.975920 2.75 61.60 9280 99.20
22-06-1  0.1262 0.951837 0.975972 2.81 66.80 9720 98.40
22-08-1  0.1262 0.951821 0.975957 247 66.40 96.00  99.20
22-10-1  0.1263 0.951790 0.975963 295 67.60 9440  98.80

Analyzing the performance of ANN-2 model from Table 2, it can be noted that
the performance of all the models is very good in terms of most of the error
statistics and deteriorated slightly (as compared to ANN-1 model) in terms of the
other statistics. All the selected ANN-2 models obtained R & E values in excess of
0.99 during training and in excess of 0.90 during validation and testing data sets,
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which can be characterized as very good. However, the AARE values are larger
compared to the ANN-1 models indicating marginally poor performance. The
AARE value close to 5% during training and about 20% during validation and
testing is considered reasonable for practical applications. There was significant
deterioration in TSI statistic meaning that the number of data points estimated
from ANN-2 models having errors less than 1% have gone down considerably.
This is due to the loss of information, as expected, when only three inputs are
provided to the ANN. Based on all the results in Table 2, the 3-5-1 model is found
to be the best among this category. It obtained AARE values of 5.08%, 18.0%, and
15.4% during training, validation, and testing, respectively. The performance of the
3-5-1 model was comparable to the other models in terms of E, NRMSE, and R
statistics also, therefore, it was selected as the best following the principle of
parsimony.

Table 2. Performance Statistics from ANN-2 Models

Model NRMSE E R AARE TS1
TS10 TS50

During Training

03-05-1  0.0096 0.999723 0.999871 5.08 76.73 95.73 9947
03-10-1  0.0096 0.999722 0.999872 5.10 77.13 97.13  99.07
03-14-1  0.0091 0.999750 0.999884 554 79.87  97.07 99.00
During Validation

03-05-1 0.1685 0.914798 0.961237 18.0 05.60 50.00 9840
03-10-1 0.1644 0.918902 0.964239 259 0520  54.00 93.20
03-14-1  0.1774 0.905566 0.960817 18.8 05.60 4520 95.20
During Testing

03-05-1 0.1670 0.915639 0961648 15.4 05.60 50.80 98.40
03-10-1  0.1631 0.919600 0.964529 21.8 05.20 54.80 93.20
03-14-1  0.1753 0.907121 0961131 18.7 04.80 46.00 96.00

Although the performance of the first method was certainly better than the
second one, as expected, it must be emphasized that the second method involves
far simpler ANN architectures involving only three neurons in the input layer as
compared to 22 in the first method. Comparing the performances of the best
models based on the two methodologies (22-10-01 & 3-5-1), it can be observed
that the performance of 22-10-1 ANN model is marginally better than that of the 3-
5-1 ANN model in terms of the most of the error statistics considered in this study.
Therefore, the 3-5-1 ANN model can be used for the purpose of groundwater
pollution source location estimation.
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SUMMARY & CONCLUSION

This paper presents the results of a study aimed at estimating groundwater
pollution source location using ANNs through the use of two different methods of
presenting the breakthrough curves as inputs to the ANN models. The first method
divides the whole breakthrough curve in 10 equal parts, and the second methods
uses first three temporal moments of the breakthrough curves, to be presented to
the ANNSs. The feed-forward multi-layer perceptron type of ANN architecture was
employed to develop various ANN models trained using back-propagation method.
The data for ANN model development were generated using the analytical solution
of the problem of one-dimensional steady flow and transient contaminant transport
in homogeneous aquifer. The training data set was divided into training and
validation to prevent over-training and/or under-training. A wide variety of
standard performance statistics were used to evaluate the performance of various
ANN models.
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Fig. 4. Scatter Plot from 22-10-1 ANN Model

The results obtained in this study indicate the suitability of the ANNs in solving
the complex problem of inverse modeling for groundwater pollution source
identification. The first method that involves presenting the breakthrough curve
using 10 divisions was found to be superior to the second methodology. This is
expected because presenting the breakthrough curve to an ANN using only three
input neurons results is certain amount of loss of important information contained
in the data. However, the performance of the second type of ANN models was
found to be comparable to that of the first type of ANN models in terms of
NRMSE. E, & R but the major differences were found in terms of TS & AARE
statistics. This demonstrates the necessity of using a wide variety of statistical
parameters to evaluate the performance of various ANN models developed on the
same data set.

A limitation of the study presented has been that perfect data obtained from the
analytical solution of the groundwater flow and transport problem were employed
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for ANN model development. In reality, the breakthrough curves obtained from
aquifers contain many type of errors e.g. measurement errors etc. How the ANN
models will be able to perform when presented with the noisy data remains to be
investigated. Also the data employed in the current study come from a
homogeneous aquifer, and it would be interesting to develop ANN models using
actual data for existing aquifers that involve heterogeneity in terms of various flow
and contaminant transport parameters. It is hoped that further research efforts will
focus some of these dlrectlons

REFERENCES

ASCE ‘Fask Committee on Application of Artificial Neural Networks in Hydrology (2000), Artificial
neural tiétworks in-hydrology I: Preliminary concepts, J. ‘Hvdrol. Engg., ASCE, 5 (2), 115-
123.

Gorelick, S.M., Evans, B.E., & Remson, 1. (1983). Identifying sources of groundwater pollution: an
optimization-approach, Water Resour. Res. , 19(3), 779-790.

Jain, A. & Ormsbee, L.E. (2002). Evaluation of Short-Term Water Demand Forecast Modeling
Techniques: Conventional Methods versus Al, J. American Water Works Assoc., 94 (7), 64-
72.

Jain, A. & Ormsbee, L.E. (2004). An Evaluation of the Available Techniques for Estimating Missing
Fecal Coliform Data, J. Amer. Wat. Resour. Assoc., 40(6), 1617-1630.

Jain, A. & Srinivasulu, S. (2004). Development of effective and efficient rainfall-runoff models using
integration of deterministic, real-coded genetic algorithms, and artificial neural network
techniques, Water Resources Research, 40(4), W04302, doi: 10.1029/ 2003WR002355.

Jain, A. & Srinivasulu, S. (2006). Integrated approach to modelling decomposed flow hydrograph
using artificial neural network and conceptual techniques, J. Hydrol., 317(3-4), 291-306.

Jain, A., Varshney, A K., & Joshi, U.C. (2001). Short-Term Water Demand Forecast Modeling at IIT
Kanpur using Artiftcial Neural Networks, Water Resour. Mgmt., 15(5), 299-321.

Liu, C. & Ball, W.P. (1999). Application of inverse methods to contaminant source identification
ftom aquitard diffusion profiles at Dover AFB, Delaware, Water Resour. Res., 35(7), 1975-
1985.

Mahar, P.S. & Datta, B. (1997). Optimal monitoring network and ground-water pollution source
identification, J. Water Resour. Plng. & Mgmt., ASCE 123, 199-207.

Mahar, P.S. & Datta, B. (2000). Identification of pollution sources in transient groundwater systems,
Water Resour. Mgmt. 14(3), 209-227.

Nash, J. E. & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models: |
discussion of principles, J. Hydrol., 10, 282-290.

Ogata, A., & Banks, R.B. (1961). A solution of the differential equation of longitudinal dispersion in
porous media, U.S. Geol. Surv., Prof. Pap. No. 411-A.

Rumelhart, D.E., Hinton, G.E. & Williams, R. J. (1986). Learning representatlons by back-
propagating errors, Nature, 323, 533-536.

Samarskaia, E. (1995). Groundwater contamination modeling and inverse problems of source
reconstruction, SAMS, 18-19, 143-147,

Singh, R. M., & Datta, B. (2004). Groundwater pollution source identification and simultancous
parameter estimation using pattern matching by artificial neural network. Env. Forensics, §
(3), 143-133.

Singh, R.M,, Datta, B., & Jain, A. (2004). Identification of unknown groundwater pollution sources
using artificial neural networks, J. Wat. Resour. Plng. & Mgmt., ASCE 130(6), 506-514.

Skaggs, T.H. & Kabala, Z.J. (1994). Recovering the release history of a groundwater contaminant,
Water Resour. Res. 30, 71-79. No. 1.

Wagner, B.J. (1992). Simultaneous parameter estimation and contaminant source characterization for
coupled groundwater flow and contaminant transport modeling, J. Hydrol., 135, 275-303.



