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Artificial Intelligence for Earth System Predictability: 2021 Workshop Report 

Executive Summary 

In October 2021, the U.S. Department of Energy (DOE) welcomed participants to the Artificial 
Intelligence for Earth System Predictability (AI4ESP) Workshop, hosted by the Office of 
Biological and Environmental Research (BER)—Advanced Scientific Computing Research 
(ASCR). The workshop is part of BER-ASCR’s ambition to more radically and aggressively 
advance prediction capabilities in the climate, Earth, and environmental sciences through the use 
of modern data analytics and artificial intelligence (AI). Advances in these capabilities are 
needed to improve predictions of climate change and extreme events that provide actionable 
information for planning and building resilience to their impacts. 
 
A distinguishing aspect of this workshop was the framing around BER’s “Model-
Experimentation” (ModEx) integrative research process, which involves integrating 
observations, experiments, and measurements performed in the field or laboratory, with model 
research that simulates these same processes. This iterative approach enables models to generate 
hypotheses that inform field and laboratory efforts to collect data, which are subsequently used 
to parameterize, drive, and test model predictions. Hence, this workshop was unique in seeking 
an immense breadth of AI applications to enhance Earth system models, observations, and 
theory, as well as the computational infrastructure and transdisciplinary collaborations that 
enable their seamless integration.  
 
The scientific challenges framing these disciplines have become increasingly complex and 
beyond the reach of traditional approaches. Hence, BER and ASCR encouraged workshop 
attendees to be bold with out-of-the box thinking, even considering a paradigm shift in the 
approach to scientific discovery and enhanced predictability. Sessions were organized around 
nine Earth system predictability science topics and eight cross-cutting artificial 
intelligence/machine learning (AI/ML) topics (see A Community-driven Workshop below). All 
sessions included in-depth discussions of the following: (1) the grand challenges that must be 
tackled; (2) state-of-the-science; (3) opportunities to advance science using radical approaches; 
(4) research priorities; and (5) 2-, 5-, and 10-year goals to frame the community’s engagement. 
This comprehensive report summarizes the major outcomes of the workshop with an overarching 
goal to define priorities that can yield the most impactful science. 
 

A Community-driven Workshop  
A total of 17 topics were addressed at the 2021 AI4ESP workshop sessions. These topics 
emerged from 156 white papers from the community in response to BER-ASCR’s call for 
thought leadership on developing AI methods and applications in BER research areas. The 
workshop sessions emphasized quantifying and improving Earth system predictability, 
particularly related to the integrative water cycle and associated water cycle extremes. 
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Earth System Predictability Sessions 
• Atmospheric Modeling 
• Land Modeling 
• Hydrology 
• Watershed Science 
• Ecohydrology 
• Aerosols and Clouds 
• Coastal Dynamics, Oceans, and Ice 
• Climate Variability and Extremes 
• Human Systems and Dynamics 

Cross-Cut Sessions 
• Data Acquisition to Distribution 
• Neural Networks 
• Surrogate Models and Emulators 
• Knowledge-Informed Machine Learning 
• Knowledge Discovery and Statistical 

Learning 
• Explainable/Interpretable/Trustworthy AI 
• Hybrid Modeling 
• AI Architectures and Co-design 

 

ES.1 AI-enabled Earth System Science: Pressing Need for Paradigm Change 
AI technologies have expanded exponentially over the past decade and are well positioned to 
accelerate predictions of Earth system processes. The current paradigm governing scientific 
discovery is that process understanding derived from measurements underpins our ability to 
create models that make predictions and long-term projections. However, the progress in 
physical understanding often does not transfer to actionable predictions due to the complexities 
associated with chaotic interacting components of Earth systems. Challenges include the wide 
range of relevant scales (microbe-to-global spatial scales, minutes-to-centuries temporal scales), 
the nonlinear interactions of multi-scale processes and human impacts, and the outsized impacts 
of extreme events on the environment. 
 
Scientists and stakeholders are increasingly demanding predictions that have finer resolution, 
larger spatial domains, greater accuracy, and longer time horizons. Some examples include an 
urgent need for more accurate prediction of extreme events and their impacts, enhanced 
understanding of processes and strategies to make natural and human systems more resilient to 
climate change, and more complete characterization of uncertainty and biases in models and data 
to constrain scientific findings. While the increase in supercomputing capacity has allowed finer 
scales to be explicitly resolved in process-based models, achieving high-resolution simulations 
across large spatial domains is still beyond current capabilities for many models, especially when 
large ensemble runs and new process representations are needed to improve accuracies. 
AI technologies—neural networks, classical machine learning models, optimized data 
acquisition and assimilation, computer vision, and unsupervised and reinforcement learning 
techniques—are tools that must be harnessed to accelerate progress in Earth system observations 
and models. The challenges to increase resolution and process fidelity and reduce the uncertainty 
of Earth system predictions require novel approaches that assimilate AI into traditional 
experiments, models, and data acquisition methodologies. This hybridized approach, while 
attractive, leads to new challenges, such as developing massive multi-scale datasets that require 
new AI techniques to understand cause and effect; overcoming huge computational costs where 
intelligent sensitivity analysis and uncertainty quantification must make progress; and requiring 
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new parameterizations of important nonlinear scales that bridge the natural and human 
components in complex systems such as those found in urban regions. 
 
The AI4ESP vision aims to dramatically accelerate Earth system models, observation, and theory 
by taking advantage of rapid progress in machine learning methodologies in conjunction with 
advances in big data infrastructure, analytics, optimized hardware architectures, networking and 
edge computing technologies, and other computational tools that were unavailable even a decade 
ago (Figure ES-1). This vision requires co-design and co-investment in observational capabilities 
and platforms, models and software infrastructure, and computational hardware to develop AI 
approaches specifically aimed at the climate, Earth, and environmental system sciences. Notably, 
this goes beyond AI technologies that to date have benefitted from massive investment in the 
private sector as they are optimized for commercial applications. Although there are 
opportunities to apply commercial AI tools for Earth system predictions, new scientific AI 
methodologies that incorporate process understanding and respect physical laws are required to 
make Earth system models interpretable, trustworthy, and robust. 
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Figure ES-1. Conceptual diagram showing how Artificial Intelligence and Machine Learning (AI/ML) can 
enhance and be informed by the three pillars of Earth sciences—observations, modeling, and theory—as 
well as cross-cutting computational capabilities. The integrated outcomes from modeling, 
experimentation, and theoretical knowledge generation will enhance the scientific understanding and 
predictions of Earth systems processes across multiple spatial scales (Source: Lawrence Berkeley 
National Laboratory). 

ES.2 Background of AI4ESP 
AI4ESP began as a multi-laboratory collaboration within the DOE, which brought the national 
laboratories together to understand the key challenges and opportunities in AI/ML methods. The 
goal is to radically improve predictive capabilities by determining the most impactful AI/ML 
applications that span the continuum from observations to multi-scale modeling and analysis.  
 
Planning for AI4ESP was initiated by scientists from three DOE national labs with leadership-
class computing facilities—Argonne National Laboratory, Lawrence Berkeley National 
Laboratory, and Oak Ridge National Laboratory. However, the planning team rapidly expanded 
to engage scientists from five additional national laboratories: Brookhaven National Laboratory, 
Los Alamos National Laboratory, Lawrence Livermore National Laboratory, Pacific Northwest 
National Laboratory, and Sandia National Laboratories.  
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These scientists recognized the importance of broad participation and reached out to the Earth 
sciences, computing, and AI communities throughout the private and public international 
research enterprise through a white paper call. This outreach resulted in an encouraging response 
of 156 white papers from 640 unique authors across 112 unique institutions. Based on this 
response, AI4ESP leadership brought together a diverse group of approximately 100 people to 
design a workshop that would offer an open, collaborative environment to listen to and share 
ideas for understanding the opportunities for a paradigm shift in incorporating AI as a component 
of Earth system models and observations. This effort resulted in a virtual workshop, spanning 
five non-consecutive weeks in late October through early December of 2021 that engaged 
participants with diverse expertise across Earth and environmental sciences, computational 
sciences, and engineering (see Workshop Participation box). 
 
Workshop Participation  
The 156 white papers were from 640 unique authors across 112 unique institutions. 
AI4ESP leadership brought together 100 researchers to design the virtual workshop, which:  

• Spanned five non-consecutive weeks from October–December 2021.  
• Engaged more than 740 participants from 178 institutions, of which 83% were 

domestic participants and 17% were international.  
 

ES.3  Workshop Outcomes: Three Priorities 
The AI4ESP workshop resulted in multiple overarching themes with recurring and common 
challenges, needs, and opportunities across many sessions. From these, three major categories of 
priorities emerged: (1) Earth science, (2) computational science and methodology, and 
(3) programmatic and cultural changes to achieve a multidisciplinary and unified framework. In 
particular, the workshop emphasized the need to incorporate AI into models, analytics, and data 
generation as a means to accelerate advancement, create new scientific opportunities, and 
revolutionize new approaches to predictive capabilities and capacity. The 2-, 5-, and 10-year 
priorities (Figure ES-2) identified across each of the workshop sessions could provide the basis 
for a roadmap to achieving the AI4ESP vision (Figure ES-3). 
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Figure ES-2. The AI4ESP workshop participants identified grand challenges and 2-, 5-, and 10-year 
research priorities to advance the use of AI/ML in Earth systems science. Several common themes 
emerged across the 17 sessions that fell broadly under the categories of Earth sciences, computational 
sciences, and programmatic and cultural changes to achieve a multidisciplinary framework (Source: 
Lawrence Berkeley National Laboratory). 
 

ES.3.1 Earth Science Priorities 
Some common challenges emerged from the various workshop discussions that involved Earth 
science topics. In general, the discussions all emphasized the central challenge of making 
dramatically improved predictions and observations across a wide range of spatial and temporal 
scales, and doing so with sufficient resolution and accuracy to accomplish this goal, which 
include (1) capturing heterogeneity in the relevant variables and processes, (2) overcoming the 
difficulty associated with observing and predicting extreme events, (3) managing and analyzing 
the immense volumes of data across a variety of ecosystems, and (4) launching a major effort to 
identify robust, interdisciplinary scientific approaches that integrate human activities. 
 
The Earth system priorities focus on opportunities where AI can help address these challenges 
and reduce uncertainties. These included priorities for: 

• Advancing scientific understanding and knowledge discovery 
• Developing approaches for obtaining new measurements at desired scales and resolutions 
• Prioritizing the collection, synthesis, and curation of data most valuable for advancing AI 

in different Earth science domains 
• Creating AI-ready datasets, such as standardized benchmarks, and quality-checked and 

gap-filled data for model training, verification, and validation 
• Incorporating AI/ML into Earth system models (e.g., surrogate models, emulators, and 

hybrid ML-/process-based models) to help address challenges related to scaling and 
process heterogeneity for accurate, high-resolution predictions with reduced bias and 
quantified uncertainties 
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• Improving predictive capabilities of extreme events and ecosystem disturbances 
including compounding events (e.g., coincident heat waves and droughts) and cascading 
impacts, given sparse data and lack of prior event analogs 

• Improving representation of human-driven processes and interactions in models  
• Quantifying the impact of all sources of error and uncertainties (e.g., arising from 

unknown model parameters, noisy data, missing processes, discretization errors in the 
solution of model equations, and approximations in reduced-order models or ML models)  

• Developing a systematic framework, metrics, and workflows for model training, 
calibration and optimization, verification and validation, and intercomparison  

• Employing AI/ML to provide the scientific foundations and identifying critical pieces of 
information to support decision-making at various scales 

• Improving representation of human-driven processes and interactions in models 
• Quantifying the impact of all sources of error and uncertainties (e.g., arising from 

unknown model parameters, noisy data, missing processes, discretization errors in the 
solution of model equations, and approximations in reduced-order models or ML models) 

• Developing a systematic framework, metrics, and workflows for model training, 
calibration and optimization, verification and validation, and intercomparison 

• Employing AI/ML to provide the scientific foundations and identifying critical pieces of 
information to support decision-making at various scales 

 

ES.3.2 Computational Priorities 
Common computational challenges that emerged across the sessions include the development of: 
(1) large, curated datasets for model training; (2) new mathematical approaches tailored for 
sparse data and extreme events; (3) novel approaches that address interpretability and potential 
physical inconsistencies of traditional ML model outcomes, driving the need for hybrid models; 
(4) innovative and consistent approaches to represent model uncertainties and trustworthiness; 
(5) software infrastructure for supporting hybrid model components across major Earth and 
environmental system science codes; and (6) efficient and interoperable frameworks and 
architectures that provide access to data and model resources across organizations. 
The computational priorities identified future developments and advancements in AI and ML 
techniques, algorithms, mathematical frameworks, data management, tools and libraries, and 
hardware architectures, including for: 

• Developing portable and efficient software infrastructure for systematically combining 
traditional process parameterizations with data-driven models for hybrid modeling and 
data assimilation, supporting plug-and-play parameterization swapping and online 
training 

• Advancing fundamental math and algorithms for working with complex systems, sparse 
data, long system memory, and extreme values 
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• Developing methods to extract causal relationships and mechanisms and to offer robust 
interpretability and explainability of the ML model outcomes toward application-specific, 
explainable, and interpretable AI 

• Developing AI-guided data acquisition frameworks that leverage adaptive observational 
capabilities such as edge computing and autonomous instrumentation, and that inform 
optimal data collection strategies 

• Co-designing computational and storage infrastructure for automated ML model 
selection, design and training, integration of process and ML models, model 
intercomparison, and data assimilation 

• Developing AI-assisted data discovery and synthesis, scientific data management 
archives, and tools that provide efficient access to and use of data across organizations 
and computational resources 

 

ES.3.3  A Unified Framework to Incorporate Multidisciplinary Priorities and Cultural Change 
Numerous programmatic and cultural needs were identified across all sessions, which include the 
need for (1) bridging multi-domain and multi-mission demands across different science and 
government communities; (2) having a trained workforce capable of interdisciplinary research 
across Earth and computational sciences; and (3) coordinating data generation, standards, 
synthesis, and model development efforts across different research groups. Development of a 
supporting framework to bridge these community-wide barriers would allow current and future 
activities to efficiently collaborate and accelerate development of AI research and technologies. 
In particular, workshop participants clearly signaled the need to create a radically different 
approach for future AI-enabled Earth system modeling and observational efforts that will enable 
and foster collaborations across disciplines and institutions. Notably, AI4ESP’s focus on BER’s 
ModEx approach, namely, using AI to enhance models, observations, and theory (Figure ES-1), 
makes the priorities identified by the AI4ESP community unique to the DOE scientific mission. 
 
Workshop participants clearly signaled the need to create a radically different approach for 
future AI-enabled Earth system modeling and observational efforts that will enable and foster 
collaborations across disciplines and institutions.  

 
Achieving the AI4ESP vision will require an unprecedented level of coordination across 
scientific disciplines and public, private, government, and scientific communities. Priorities 
identified to address these barriers include: 

• Creating AI research centers tasked to coordinate and collaborate to more rapidly 
advance priorities across the various Earth science topics, where the centers would 
provide the supporting data and computational infrastructure, mathematical capabilities, 
and cross-disciplinary expertise to support community ambitions 
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• Co-designing frameworks or platforms to enable communities with different missions to 
efficiently share applicable results, techniques, data, and codes to decrease unnecessary 
duplication of effort and accelerate the application of AI 

• Determining cross-disciplinary data-sharing standards, and creating shareable benchmark 
and training datasets that bridge organizations 

• Supporting working group activities to investigate major and timely transdisciplinary 
research questions and quickly enhance or test developments such as workshops, 
challenges, and hackathons through a center or facility that is staffed to support 
commonly used data, models, and workflows 

• Developing standards for trustworthy AI, including addressing data biases, ensuring 
fairness in models, and fostering the ethical and responsible development and use of AI 

• Building public-private partnerships that enable use of commercial tools for research 
purposes and vice versa 

• Focusing on new efforts to inspire and motivate the next-generation workforce, including 
training of multidisciplinary scientists, as well as outreach to a broader and more diverse 
set of academic and laboratory institutions 

• Supporting early success stories to support training, inspiration, and strategic program 
design, such as through demonstration projects, infusion of AI into existing funded 
programs, and follow-up “implementation workshops” on key topics to chart roadmaps 

 

ES.4 Beyond the AI4ESP Workshop 
The success stories that are highlighted in this report and outcomes from the workshop 
deliberations clearly point to the potential for AI/ML to accelerate integrated, next-generation 
observations and models that incorporate complex natural and human processes at sufficient 
resolutions to support emerging science challenges, as well as to improve decision-making. 
There was broad consensus that AI can be transformational and help address long-standing grand 
challenges in Earth and environmental sciences, but that significant research and development in 
both AI and domain sciences are needed for this to happen. 
 
Since completion of the workshop, participants have continued both high-level and specific 
topical discussions at conferences, such as the American Geophysical Union (AGU) 2021 Fall 
Meeting and the American Meteorological Society (AMS) 2022 Annual Meeting. Participants 
have also carried forward the information from the AI4ESP workshop to other community 
activities, including the SIAM AI4ESP workshop summary, National Academies Machine 
Learning and Artificial Intelligence to Advance Earth System Science workshop, and an 
upcoming special collection of the American Meteorological Society AI for Earth Systems 
(AIES) journal to promote information distribution from the workshop. Related workshops and 
meetings are expected in the future to capitalize on new collaborations and develop the 
underlying building blocks needed to develop a community-wide framework. 
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ES.5 Report Organization 
The full report is designed to provide additional levels of detail in the following sections. The 
Workshop Summary provides references to past and ongoing activities, examples of AI 
applications involving Earth science, and both opportunities and research priorities identified 
across the 17 sessions. Individual chapter reports follow that dive into each of the Earth science 
domains and the AI/ML session topics. Finally, the appendices contain acronyms (Appendix A), 
the workshop agenda (Appendix B), call for white papers (Appendix C), lists of participants 
(Appendix D), and list of white papers (Appendix E). 
 
 

 
Figure ES-3. Roadmap to the execution of AI4ESP encompassing near- (2-year), mid- (5-year), and long-
term (10-year) activities (Source: Lawrence Berkeley National Laboratory). 
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Workshop Summary 

WS.1 Introduction 
The Earth’s natural resources are stressed due to climate and land use change, extreme events, 
and increased demand from growing populations. Advanced predictive capabilities for Earth 
systems are needed to provide actionable information to decision-makers for sustainably 
managing ecosystems and building resilience to disturbances. Recognizing the urgent need to 
improve the scientific understanding and state-of-the art predictions of the Earth system, the 
U.S. Department of Energy (DOE) prioritized a strategy to explore novel approaches that exploit 
developments in artificial intelligence (AI), edge computing, advanced wireless communications 
(5G and beyond), exascale-class computational architectures, and other emerging technologies. 
As part of this strategy, DOE launched the Artificial Intelligence for Earth System Predictability 
(AI4ESP, https://ai4esp.org/) effort in the fall of 2020, bringing together national laboratories, 
academia, and private sector participants. The Earth and Environmental Systems Science 
Division (EESSD) and Advanced Scientific Computing Research (ASCR) within DOE’s Office 
of Science are jointly committed to exploring the paradigm shift necessary to bring together the 
expertise and capabilities for advancing the use of AI/machine learning (ML) for improving 
Earth system predictability.  
 
Earth system prediction crosses an extremely heterogeneous set of scientific domains and 
spatiotemporal scales. This presents challenges to developing approaches for extracting scientific 
knowledge from data and making predictions that are relevant for a variety of stakeholders. 
Recent computational advancements in AI algorithms, big data analytics, and hardware present 
opportunities to dramatically improve Earth system understanding and prediction. However, 
realizing this potential requires co-design of computational algorithms and tools motivated by 
scientifically driven use cases and knowledge gaps. Hence, the AI4ESP workshop was themed 
around the DOE Biological and Environmental Research (BER) concept of “Model-
Experimentation” ModEx (https://ess.science.energy.gov/modex/) that focuses on coupled 
development of models and observational capabilities in an iterative manner to test scientific 
hypotheses, generate knowledge, and improve predictions (Figure WS-1). Thus, the broad scope 
and scale of this workshop was unprecedented in comparison to prior efforts to identify AI 
opportunities in Earth sciences. Topics discussed spanned the use of AI for measurements, data 
generation, and modeling as well as the computational infrastructure and programmatic support 
needed to enable the adoption of AI across a wide variety of Earth science domains. 
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Figure WS-1. Conceptual diagram showing how Artificial Intelligence and Machine Learning (AI/ML) can 
enhance and be informed by the three pillars of Earth sciences—observations, modeling, and theory—as 
well as cross-cutting computational capabilities. The integrated outcomes from modeling, 
experimentation, and theoretical knowledge generation will enhance the scientific understanding and 
predictions of Earth systems processes across multiple spatial scales (Source: Lawrence Berkeley 
National Laboratory). 
 
A multi-laboratory AI4ESP core team began with an open call for information in December 2020 
relating to the potential of AI/ML to advance Earth system predictability, recognizing the need to 
bridge agencies (e.g., DOE, National Aeronautics and Space Administration [NASA], U.S. 
Department of Commerce/National Oceanic and Atmospheric Administration [DOC/NOAA]), 
institutions (e.g., university, public-private company), and scientific domains. The community 
response from 640 unique authors of 156 white papers from 112 unique institutions validated the 
understanding that the scientific community desires to collaborate in defining the vision and 
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progressing forward. The team and DOE Program Managers engaged many of the authors by 
using the 156 papers to identify emerging opportunities and common themes and to organize a 
workshop that extended over a five-week, non-consecutive period starting on October 25, 
2021.The AI4ESP workshop had 17 workshop sessions on topics related to Earth system 
predictability and AI/ML advances, which were titled by their primary focus and organized by a 
total of 100 session leads. Ultimately, the workshop engaged participants with diverse expertise 
across Earth and environmental sciences, computational sciences, and engineering (see 
Workshop Participation).  
 
Workshop Participation  
The 156 white papers were from 640 unique authors across 112 unique institutions. 
AI4ESP leadership brought together 100 researchers to design the virtual workshop, which:  

● Spanned five non-consecutive weeks from October–December 2021.  
● Engaged more than 740 participants from 178 institutions, of which 83% were 

domestic participants and 17% were international. 	
 
The AI4ESP workshop discussions were related to how AI could improve predictability for the 
different topics and what is needed to support the use of AI for Earth system predictability. Each 
week focused on different topics of Earth system predictability research in addition to other 
cross-cutting themes, where many topics involved co-design with new and/or emerging AI 
research concepts (Appendix B). The workshop was held in a very open style with presentations 
provided through the website, and authors were encouraged to share information and 
continuously develop teams and collaborations throughout the growing community.  
 
Multiple overarching themes emerged throughout the workshop, which were recurring and 
common challenges, needs, and opportunities across many sessions. This summary categorizes 
these into three classes: (1) Earth science, (2) computational science and methodology, and 
(3) programmatic and cultural activities to achieve a multidisciplinary and unified framework 
(Figure WS-2). 
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Figure WS-2. The AI4ESP workshop participants identified grand challenges and 2-, 5-, and 10-year 
research priorities to advance the use of AI/ML in Earth systems science. Several common themes 
emerged across the 17 sessions that fell broadly under the categories of Earth sciences, computational 
sciences, and programmatic and cultural changes to achieve a multidisciplinary framework (Source: 
Lawrence Berkeley National Laboratory). 
 

WS.2 Earth Science Grand Challenges and Opportunities 

WS.2.1 Scaling and Heterogeneity 
Scaling has appeared as a significant challenge and need in most of the Earth science sessions. 
Relevant scales range from microns (e.g., porous media, microbes, aerosols), to hundreds of 
meters (e.g., hillslope hydrobiogeochemistry, cloud physics), to hundreds of kilometers 
(e.g., ecosystems, regional climates and hydrology) to the global scale (e.g., global atmospheric 
and oceanic circulation). Many stakeholders need predictive capabilities at large scales; however, 
the presence of spatial and temporal heterogeneity in complex Earth system processes 
necessitates capturing fine-scale phenomena in models to attain accurate predictions. Ubiquitous 
challenges include the scales at which processes should be represented and aggregated in models, 
inconsistencies between model needs and the resolutions at which data are available, and model 
coupling to bridge scales and representation of subgrid processes. In many domains, models 
work well at small scales but often do not transfer easily to larger scales. Conducting high-
resolution simulations at large scales while retaining fine-scale process representation with 
current models is computationally expensive if not impossible for many domains. Additionally, 
the approaches needed to obtain data at desired scales and resolutions must be identified and 
developed. 
 
Incorporating ML into Earth system models (ESMs) can help address some of the challenges 
related to scaling and lead to development of regional-to-global scale models for predictions that 
work across a diversity of regions. This effort can be pursued in several ways. For example, 
statistical downscaling and upscaling have been an active research area in ML for many years in 
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Earth sciences. Deep learning algorithms are starting to enable hydrobiogeochemical predictions 
at continental scales (see Hydrology, chapter 3). Other strategies for scaling include replacing 
expensive process-based models or model components with faster-running ML-based surrogate 
models (see Ecohydrology, chapter 5) or using multifidelity approaches with high-fidelity 
simulations and fast-running, lower-complexity models. High-fidelity simulations could be 
performed for only selected regions of interest whereas ML could enable translation between 
high- and low-fidelity model outputs (see Watershed Science, chapter 4) or transfer of 
predictions to similar regions (see Hydrology, chapter 3). ML can also be used to develop 
efficient approaches for inverse modeling and uncertainty quantification (see Land Modeling, 
chapter 2). In addition, ML and deep learning methods for subgrid representation are emerging in 
several disciplines, particularly in atmospheric modeling and hydrology (see Atmospheric 
Modeling, chapter 1, and Hydrology, chapter 3). However, there are many gaps such that current 
subgrid parameterization does not sufficiently address uncertainty or does not efficiently 
incorporate multiscale or online data streams. From the ML sessions, there are many potential 
new methods suggested—such as hybrid physics/data-informed modeling, new classes of 
surrogate models, and two-way coupling among multiscale multiphysics models—which can be 
a paradigm shift to address scaling and subgrid representations in the Earth system models.   

WS.2.2 Extremes, Disturbances, and Recovery 
Weather and hydrological extremes such as hurricanes, floods, and droughts are projected to 
increase in a warming world and thus were a focus in many of the whitepapers solicited prior to 
the workshop. Fundamental and societally relevant questions related to extreme events include 
detection, attribution, and characterization; how their distributions are changing due to climate 
change; how they affect diverse natural and urban ecosystems or even trigger regime shifts that 
alter system behavior; how compound events interact to amplify consequences; and how we can 
identify adaptation measures that build system resilience. A primary challenge with modeling 
disturbances and their impacts is the lack of relevant data. Extremes, by definition, are rare 
events, and hence tend to have fewer observations. Moreover, the non-stationary conditions 
expected due to future extremes poses a substantial challenge to using data-driven approaches for 
modeling such disturbances without prior observations. Teasing apart the confounding effects of 
multiple co-occurring disturbances (e.g., due to heatwaves and drought) is also difficult with 
limited observations. Additionally, due to how they are trained, ML algorithms are biased toward 
predictions of mean values and need to be modified to explicitly simulate extremes and their 
impacts. Finally, there are no standardized definitions and data products available for most 
disturbances. For example, across the Earth system scales, there are many ways to define a 
drought or heatwave, often resulting in subjective choices for data selection and preprocessing, 
making it difficult to compare model results. 
 
ML-based anomaly detection and feature identification methods have shown promise for 
identifying extreme events from multimodal data (e.g., time-series and remote sensing). Agnostic 
AI, unaware of manually applied labels of climate modes, along with relaxation of a priori 
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criteria, could potentially lead to the discovery of new modes of variability, climate signals and 
precursors, and sources of predictability (see Climate Variability and Extremes, chapter 8). 
Approaches for modifying ML algorithms to better predict extremes and their impacts 
(e.g., modifying loss functions and using generative adversarial techniques) need to be 
developed. Predicting ecosystem disturbances and probable modes of recovery is critical to 
understanding vulnerability and resilience, but observational data are difficult to obtain and 
standardize (see Land Modeling, chapter 2, and Ecohydrology, chapter 5). AI-enabled 
technologies can be used to obtain automated observations of extreme events and post-
disturbance system recovery (see Hydrology, chapter 3, and Data Acquisition to Distribution, 
chapter 10). ML can also be used to build standardized data products targeting extreme events, 
which are downscaled to appropriate resolutions and bias corrected (see section WS.2.6).  
 

WS.2.3 Human Systems Integration 
Human systems contribute to the uncertainty in climate change prediction and its impact on 
Earth systems (see Human Systems and Dynamics, chapter 9). In addition to the dedicated 
workshop session, human systems were of particular interest in the Land Modeling and 
Hydrology sessions (chapters 2 and 3, respectively), as terrestrial processes have been 
substantially altered by anthropogenic activities. Representation of human systems in Earth 
system models has been largely limited to the physical interface and is in its infancy in 
representing the science of decision-making—the action space. Workshop participants 
emphasized the importance of improving the spatiotemporal representation of human-induced 
processes, understanding multiscale interactions, developing generalizations of localized human 
systems, and identifying critical pieces of information to support decision-making at various 
scales (Figure WS-3). Current AI applications range from coupling integrated assessment 
models, like the Global Change Analysis Model (GCAM), with global Earth system models; 
integrating AI/ML with agent-based models; and developing emulators or less complex surrogate 
models for physical or human systems models to basic statistical and ML implementations (see 
Human Systems and Dynamics, chapter 9). One of the primary challenges with incorporating 
human systems into models is that relevant data are unavailable for various reasons, including 
the proprietary nature of these data, privacy concerns, and insufficient observations of human 
activities that affect the Earth system. Participants identified the need for new observations and 
data products relevant to human systems at fine scales.  
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Figure WS-3. High-level synthesis of grand challenges in Earth-human system dynamics research 
(Sources: Pacific Northwest National Laboratory, Oak Ridge National Laboratory, Sandia National 
Laboratory; see Figure 9-2, chapter 9). 
 
Despite the data limitations, using AI approaches is one of the key pathways to capturing 
anthropogenic activities in Earth system models because of the challenges in modeling human 
behavior in a purely mechanistic way. In this workshop, participants identified potential AI/ML 
targets such as developing data-driven models for representing human subsystems and using 
surrogate models to generate projections for different scenarios, reinforcement learning to drive 
decisions, and emulators to incorporate the outcomes of human actions into Earth system 
models. These would provide opportunities to advance and accelerate inclusion of complex 
human processes and dynamics in models; capture complex feedbacks among all components; 
and build ethically responsible decision-relevant models. The overarching goal is to use AI/ML 
technologies to develop fully coupled human-Earth system models and new platforms that 
integrate human systems science (see Human Systems and Dynamics, chapter 9). 
 

WS.2.4 Model Improvements Combining Process Knowledge with ML 
Hybrid AI/ML was another topic with multiple      dedicated sessions (chapters 12, 13, 16) that 
also garnered significant discussion across Earth science sessions. Because of the availability of 
growing volumes of observational data and in situ data, the Earth system modeling community is 
increasingly adopting data-driven approaches for high resolution weather and climate 
simulations. While DOE supercomputers have traditionally been employed for process-based 
simulations across different science domains, the computational expense and challenges to 
mathematically representing key processes impose limits on model predictions and Earth system 
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model projections. Combining ML-based process representations with traditional ordinary and 
partial differential equation representations offers new opportunities to improve model 
predictions, speed computational performance, and advance understanding of the complex Earth 
system. 
 
Participants identified the need to develop a multifidelity framework of data-informed or custom-
built model-informed surrogates using ML techniques such as Gaussian process regression, 
dynamic mode decomposition, random forest, and neural networks (NNs) as these techniques 
have shown promising results in addressing this problem. Emerging techniques, such as physics-
informed NNs, have great potential to couple process-based simulation capabilities and state-of-
the-art ML and improve our understanding of physical processes that are missing or poorly 
represented by current ESM parametrizations. In particular, two-way coupling (or online 
integration)—running physics simulations and AI/ML algorithms simultaneously and 
concurrently—is identified as a difficult but potential game changer. Furthermore, using 
explainable and interpretable NNs to replace parametrizations, could improve predictive 
understanding, accuracy, and uncertainty estimates of model outcomes. However, advances in 
hybrid modeling will remain challenging without making progress in domain-informed data 
processing methods and restructuring ESMs on modern architectures (e.g., most of the DOE 
codes are built on FORTRAN and thus not often supported by the modern AI/ML architecture).  
 

WS.2.5 Uncertainty Quantification and Model Calibration  
Uncertainty quantification (UQ) and parameter estimation (PE) have been active research areas 
for ML or general statistical methods for the last several decades. Although UQ and PE 
approaches have been established for relatively straightforward physical systems, there are still 
significant challenges to using them in complex multiphysics coupled systems. In many 
instances, computational resources are optimized for running one large simulation, or technique, 
rather than for determining UQ. At the same time, identifying a comprehensive UQ that 
propagates errors from heterogenous raw field data and experimental data to integrated data 
products and ultimately model simulations is quite challenging. Advancing the use of AI/ML in 
model calibration would also require addressing other challenges, including the lack of sufficient 
data and data quality, and multiple sources of uncertainty associated with data and model 
experimental setup (Atmospheric Modeling, chapter 1). Notably, UQ becomes particularly 
complex for hybrid models, which are sensitive to structural errors and parameter choices in 
process models, as well as affected by choices of input features, training data, and 
hyperparameters in ML models. Quantifying uncertainties caused by human activities and their 
impacts on the Earth system is an additional challenge. 
 
To improve Earth system predictability, developing a systematic framework and workflow to 
advance UQ from observations to simulations is critical. During the workshop, various emerging 
ML methods were suggested to exploit modern computing including hybrid AI/ML approaches 
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coupling physics-based simulations and data, as well as multifidelity approaches, which couple 
the results from model runs with different resolutions of complexity. For example, surrogate 
models (or emulators) were often raised as effective ways to speed up sensitivity analysis and 
allow for more efficient model parameter calibration. ML approaches were proposed for the 
auto-calibration of models, wherein multiple optimal parameter settings could be obtained 
instead of a single hand-tuned result that would enable parametric uncertainty to be included in 
model outcomes (Atmospheric Modeling, chapter 1). Such auto-calibration could leverage 
emerging AutoML frameworks that utilize advanced optimization algorithms for ML 
architecture design and hyperparameter choice. Other approaches include ML-based 
parametrization of ESMs, where dynamic parameters are learned from appropriate sets of 
statistical covariates, which have been used in hydrology and atmospheric modeling 
(Atmospheric Modeling, chapter 1; Land Modeling, chapter 2; Hydrology, chapter 3). 
 

WS.2.6 Knowledge Discovery and Hypothesis Generation 
Several sessions identified opportunities for using data-driven analytical approaches and ML 
models to make new scientific discoveries from large datasets, as well as generate testable 
hypotheses. For example, AI/ML approaches can be used to identify patterns in data; classify 
landscapes or regimes with similar behavior; for detection and attribution of extreme events and 
compound disturbances; and discovery of unknown relationships or mechanisms hidden in big 
complex data. In addition, ML and hybrid models (including surrogates of process models) can 
be used to generate new hypotheses that can be tested with a combination of new observations 
and further model development in the classic ModEx approach. 
 
To advance scientific understanding, it is not sufficient to improve prediction accuracy only but 
to determine “how” and “why” models make predictions. More approaches that investigate the 
underlying mechanics of how deep learning models make predictions are needed. Ultimately, the 
goal is to be able to extract the maximum amount of information from the data as possible. 
Toward this end, some of the more exciting approaches attempt to discover governing equations 
using data-driven methods; however, these require significant research to become applicable for 
predictions in complex systems (see Hydrology, chapter 3; Knowledge-Informed ML, 
chapter 13). Additionally, information theory and causal inference approaches that infer causality 
from data, in tandem with ML, can be used to determine system responses to different driving 
factors, extract causal relationships and mechanisms, and offer robust interpretability and 
explainability of ML model outcomes. It was noted by the workshop participants that applying 
large-scale causal inference within the Earth system communities remains in the development 
stage, and there is no single algorithm that detects complex causal inference robustly.  
 
Other techniques such as natural language processing (NLP) and computer vision tools may help 
to extract valuable knowledge from published literature (Knowledge-Informed ML, chapter 13). 
It is difficult for researchers to master all available information across the Earth sciences and 
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AI/ML domains given the growth in volumes of publications and different ways of knowledge 
representations (e.g., text, tables, figures, datasets, codes). Meta-analysis and reviews across the 
literature in Earth sciences have proven to be useful in extracting generalizable insights across 
studies, and automation of such synthesis can not only accelerate scientific discovery but help 
generate hypotheses and identify future research directions. 
 
Finally, several sessions pointed to the need for different types of integrated data products for 
model development, benchmarking, validation, and ultimately knowledge extraction 
(section WS.2.7). 
 

WS.2.7 Data: New Observations and Data Products 
Although the interest in AI/ML has been spurred due to the rapid increase in Earth observations 
over the past two decades, the amount of data available is sparse and insufficient to capture the 
range, dimensions, complexity, and heterogeneity of several Earth system processes. The lack of 
data is identified as a significant challenge across many of the domains, and it affects both 
process-based and ML models. Observational data are required for model input, training, 
validation, benchmarking, parameter calibration, and process representation. Many data gaps 
were identified, both in terms of volumes of data collected, missing variables needed for accurate 
modeling, and regional coverage (see Human Systems and Dynamics, chapter 9; Hydrology, 
chapter 3; Aerosols and Clouds, chapter 6; and other chapters). For example, many currently 
available datasets are based on a single field campaign or a small set of process model 
simulations and do not scale beyond the measurement domain. Large-scale monitoring networks 
are often focused on a few variables of interest, and other co-located observations—needed to 
quantify processes and their interactions—are lacking. Sampling bias is a concern, and it results 
in underrepresented regions in current data products (e.g., mountainous areas are challenging to 
observe due to complex terrain). Data involving human systems and extreme events are 
extremely limited, and in some cases proprietary data may not be publicly available (e.g., see 
Human Systems and Dynamics, chapter 9; Climate Variability and Extremes, chapter 8). Sensor 
maintenance and data quality assurance and control (QA/QC) were identified as significant 
bottlenecks to deploying instrumentation at large scales. Another challenge is that data collected 
by a myriad of entities ranging from federal and state agencies, local governments, industrial 
partners, and academics are distributed across different databases in non-standard ways, making 
it difficult to discover, access, and integrate data. 
 
Several sessions identified major data gaps and the need for more observations that have much 
greater spatiotemporal coverage and resolution than is possible with current infrastructure. A 
short-term need is for community efforts (e.g., workshops) to prioritize the collection, synthesis, 
and curation of data most valuable for advancing the use of AI in different Earth science 
domains. Some domains called out the need for data infrastructure to house stand-alone or 
federated datasets. There was universal consensus that new value-added data products were 
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essential to make progress in each of the domains. These would include AI-ready datasets such 
as standardized benchmarks, quality-checked and gap-filled data for model training,      products 
that synthesize and harmonize different types of observations to desired spatiotemporal 
resolutions, and ensembles of high-resolution simulation outputs that could be used to create 
hybrid models. Other needs include for data and metadata standards that enable interoperability 
between different systems and for tools that enable data synthesis and assimilation into models.  
  
Advances in low-cost sensing, edge computing, 5G networks, and high-resolution remote 
sensing (e.g., through cubesats, drones) paired with ML-based classification and regression can 
be used to acquire and create new data products. ML-enabled technologies can expand our 
observational footprints; identify optimal sampling strategies; drive data collection when and 
where it is needed; quality-check data in near real time; and create imputed data products to 
make better use of coarse, sparse, and indirectly related information. For example, ML or hybrid 
model output could be used to determine optimum new sensor placement and drive autonomous 
“self-guiding” measurements. Natural language processing can enable advanced search and 
harmonization tools to create curated AI-ready datasets and to automate analysis through data 
mining.  

WS.2.8 Applications for Informing Decision-Making 
Enhancing model applications through AI/ML for decision-making was discussed in several of 
the domain science sessions. Example applications that were discussed included end-to-end tools 
that seamlessly integrate ML algorithms (e.g., neural networks) and process-based simulations to 
enable actionable predictive insights for stakeholders at relevant scales. AI/ML technologies are 
already changing the operational forecasting landscape and have the potential to improve state-
of-the-art Earth system models to generate timely predictions at large spatial scales for use by 
practitioners and decision-makers in a manner that is currently not feasible.   
 
Participants across sessions identified areas where improvements in AI/ML could assist with 
decision-making. These include but are not limited to: (1) identification, observation, and 
prediction of extreme events or other disturbances and their impacts to urban and natural 
systems; (2) interactions between human decision-making and changes in socio-ecological 
systems over time in response to environmental change and extreme events; (3) transferability of 
models to different local and regional settings to provide predictions at decision-relevant scales; 
(4) appropriate assessment of uncertainties in model predictions; and (5) the building of 
confidence and trust in AI/ML systems so that decision-makers, practitioners, and other end-
users feel comfortable in employing these systems in practice. The importance of having 
trustworthy, explainable AI and understanding how ML and hybrid models make predictions was 
repeatedly emphasized across most of the sessions. Some noted the need to incorporate 
stakeholder engagement to determine different end-user needs into the development process for 
AI/ML systems. The Human Systems and Dynamics session (chapter 9) noted that  
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[t]he communication of uncertainty extends from technical evaluations, accomplished in part 
by statistical and ML techniques, to dissemination of these analyses to policymakers and the 
interested public. Doing the latter in an iterative process might be needed to share questions, 
insight, data, and research outcomes, while following high ethical standards around data 
privacy.  

 

WS.3 Computational Science and Methodological Challenges 
In addition to applying existing state-of-the-art AI/ML techniques to science in the Earth system 
predictability space, AI4ESP challenges new research and developments into AI. This subsection 
summarizes the computational science and methodological challenges and opportunities facing 
AI4ESP.  
 

WS.3.1 Knowledge-informed ML and Hybrid Models 
Participants in most sessions called for the development of new algorithms, tools, and 
mathematical frameworks that systematically combine traditional physics with data-driven 
models. These are needed for various reasons, including for generating physically consistent, 
interpretable predictions that are extensible under non-stationary conditions, enabling data-driven 
models to work with sparse datasets that are typical in Earth sciences, having data-driven 
representations of processes that are not adequately represented in current models 
(e.g., preferential flow, human activities), and improving the computational speed of process-
based models. Furthermore, there is an opportunity to develop new methods for integration and 
performance analysis of ML models with complex domain constraints to avoid conservativeness 
or loss of expressivity of the ML model.       
 
Hybrid models of various types were proposed during this workshop including embedding ML 
models in physics-models, using process model outputs to train and optimize ML algorithms (as 
emulators or surrogates), and fundamentally altering ML model architectures to incorporate 
physics. 
  
Hybrid, ML, and reduced-order models have a strong potential to reduce the cost of running 
components of Earth system models (Surrogate Models and Emulators, chapter 12). Further 
advances in surrogates using ML techniques are needed to improve the predictive understanding, 
accuracy, and uncertainty estimates of model outcomes. To date, most surrogate models are 
surrogates of a single information source, usually an expensive computer model. If used for 
uncertainty quantification, they are designed to treat only a single source of uncertainty, usually 
model parametric uncertainty. The workshop participants envision future surrogates to be 
capable of making projections about the real Earth system by combining information from 
hierarchies of models and data across multiple modalities, as well as incorporating different 
sources of uncertainties. 
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In parallel with this development, it is critical that algorithms are developed that explicitly 
quantify the impact of all sources of error and uncertainties (e.g., arising from unknown model 
parameters, noisy data, missing physics, discretization errors in the solution of model equations, 
and approximations in reduced-order models or ML models). It has been acknowledged that 
hybrid models are often calibrated and tuned in a highly manual way, and there is no systematic 
approach for dealing with the out-of-distribution, tuning, and calibrating of the hybrid models to 
reduce waste of thousands of compute core-hours and the sheer time required for tuning the 
simulation (see Hybrid Modeling, chapter 16). There is a need for development of ML 
techniques that will allow uncertainty to propagate through the hybrid-models to better 
understand the final variability of the predictions and for methods that can inform about the 
sources of uncertainty in the model chain. 
 
There is also a need to develop ML models that can quickly adapt to the change in the data. 
Developing models with data assimilation and continual learning capabilities will significantly 
improve rapid training without the situation of losing learning from the past and will enable fast 
adaptation to the new information from the newly collected data.  
 

WS.3.2  Fundamental Math and Algorithmic Advances 
Participants emphasized a growing need for additional advances in mathematics and computer 
science, such as for: (1) faster, scalable algorithms for mathematical optimization (including 
constrained optimization solvers); (2) improved numerical solvers for differential equations and 
numerical analysis (adaptivity; stability); (3) advanced model reduction for infinite dimensional 
systems; (4) improved stochastic gradient descent (SGD) and more research and development 
(R&D) involving scalable randomized algorithms; (5) the discovery of new physics/mathematics 
(e.g., governing equations) that govern the physical phenomenon, as well as (6) advances in 
software development, workflow design, and data management (see Knowledge-Informed 
Machine Learning, chapter 13).  
 
One of the concerns from Earth system domains is that ML training is challenged by very small 
training set sizes (e.g., limited number of ensembles, short durations of simulation or 
observation) to provide many independent data points. Correspondingly, the AI4ESP community 
identified a need to advance ML approaches that work in the low data or data-sparse regime. In 
addition, the need for algorithmic advances were called out specifically for predictions of 
extreme events. Earth system models can be significantly improved by addressing data 
challenges related to non-Gaussian (i.e., multimodal or heavy-tailed) data distributions of 
extremes and lack of relevant observations (also discussed in section WS.2.6). Thus, future 
developments and advancements in ML techniques that do not rely on Gaussian assumptions 
have the potential to play an important role in improving our understanding and prediction ability 
of extremes. Furthermore, there is a need to improve existing and develop new ML algorithms 
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that can inform data collection strategies (e.g., what additional measurements are needed, 
optimal sampling frequencies, and spatial distributions). For scalability, nonlinear dimension 
reduction methods are also needed (see Neural Networks, chapter 11). Preliminary work shows 
promise; however, advancements must be made to further develop these computational tools. 
 

WS.3.3  Trustworthiness: Explainability, Interpretability, and Physics-based AI  
Applied AI, which efforts in AI4ESP fall within, must be understandable, robust, and 
reproducible. For example, if a component of a microphysical scheme was replaced by an AI-
driven surrogate, it would need to be explainable and improvable with new measurements. AI 
architectures, which have largely been developed primarily for classification and prediction on 
images and time series based on frequency components (convolutions), need to be more 
physically based (Figure WS-4). Current explainable AI techniques, like layer-wise relevance 
propagation (heatmaps, or attention maps), will have additional interpretability if the network 
layers have physical and not just spatial meaning. This would also mean that data-driven AI 
model development, the developing of surrogate models based purely on data observed from the 
past, would not only provide predictions but could drive knowledge discovery as scientists could 
probe why a certain prediction was made and the answer would not be just based on the 
propagation of a particular spatial structure through a long-short-term memory (LSTM) network. 
A need for new hybrid ML algorithms that will help to identify new and existing processes was 
also identified (see Hybrid Modeling, chapter 16). 
 
 

 
Figure WS-4. Combining physically based models with machine learning models enables identification of 
processes and patterns that can inform future model development and new observational campaigns. 
Such hybrid models provide transferability across space and time scales (Source: figure courtesy of 
Naomi Tague, UC Santa Barbara; see Figure 5-2, chapter 5).  
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The Earth system predictability (ESP) community often expresses concerns regarding the lack of 
robustness and reproducibility of AI/ML models, which can slow the progress of the field and 
significantly reduce researchers’ efforts to accelerate new development and discovery. Currently, 
there are no community-wide guidelines, standard metrics, and computing infrastructure for 
ensuring and quantifying the robustness and reproducibility of AI/ML (see 
Explainable/Interpretable/Trustworthy AI, chapter 15). Establishing reproducibility standards for 
AI-based ESP research and developing community-wide guidelines and recommended practices 
will promote robust and reproducible AI/ML in Earth system predictability.  
  
Numerous and sometimes conflicting definitions of explainable and interpretable AI make 
implementation of AI and ML methods even more difficult. Reaching a consensus on definitions 
of AI and ML is essential for making progress in this area, which involves formalizing AI 
explainable/interpretable methods in a rigorous framework that quantifies why a particular 
explanation is better than another.  
 

WS.3.4  Data Acquisition, Edge Computing, and ModEx 
As mentioned previously, Earth system observations are sparse and insufficient to capture the 
heterogeneity of relevant processes across scales. Our knowledge of Earth system processes 
often relies on instrumentation deployed or operated for monitoring or research purposes, 
sometimes in a sub-optimal manner due to logistical constraints, with insufficient data to guide 
sensor placement, and constrained by available funding and space or timing of events. Currently, 
the ModEx cycle takes so long to realize results between data collection, model refinement, 
identification of knowledge gaps, and redeployment that the state of the science has moved on 
during the process.  
 
To accelerate advancement across ModEx, the workshop and this report identify the need for 
developing an AI-guided data acquisition framework, which will require exploration of optimal 
sampling strategies based on existing datasets and model projections; the leveraging of AI such 
as reinforcement learning to develop adaptive, agile data collection that can operate in 
autonomous modes; and development of emulators of complex processes to help define 
observational needs for ESMs (Figure WS-5). In the longer term, developing observing system 
simulation experiment (OSSE)-type strategies that bridge process models and AI approaches can 
help determine optimal sampling design for large, complex measurement networks and 
campaigns. Instruments and data collection methodologies need to be adapted for the science 
question being asked and the phenomena present. In the framework of AI, this means inference 
at the edge, across distributed sensor networks, and with linkages to training and modeling at 
high-performance computing (HPC with a continuum of computation (enabled by 5G and other 
technologies). This objective requires large scale heterogeneous cyberinfrastructure with an open 
community codes co-designed by Earth system scientists and computer science and AI 
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researchers. Such cyberinfrastructure and specific efforts do not yet exist, and DOE offices 
(e.g., ASCR, BER) are well positioned to collaborate across agencies to bring it into existence.  
 

 
Figure WS-5. Data-model and model-data pipelines that include data management tools, software 
workflows to enable data discovery and integration, scaling and transformation of data for model needs, 
and testbeds to enable co-located big datasets that can be fed into models on HPC facilities. Examples of 
technologies that can be used in modeling testbeds include Jupyter notebooks (http://jupyter.org), Docker 
containers (http://docker.com), and tools that enable seamless execution of ML/hybrid models on HPC 
and cloud computing centers (Source: Lawrence Berkeley National Laboratory; see Hydrology, 
chapter 3).  
    

WS.3.5  AI Architecture, Infrastructure, and Co-design 
Co-design and implementation of an integrated data and computational infrastructure are 
essential for supporting AI/ML in Earth system science, which involves leveraging existing data 
centers, computational centers, and software infrastructure. Large-scale computing systems, such 
as DOE’s Leadership Computing Facility (LCF) systems for high-performance computing and 
AI, can provide a foundation for advanced system concepts that range from centralized, large-
scale modeling and training to edge computing inferencing and federated learning (see AI 
Architectures and Co-design, chapter 17). Capitalizing on current and future capabilities, 
including exascale and quantum computing, will require a significant investment both in 
foundational technology systems and co-design programs. This investment would enable Earth 
system scientists, mathematicians, AI/ML experts, computer scientists, and hardware engineers 
to collaborate on creating a radically different approach to future Earth system modeling efforts 
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and AI-enabled integration with measurement and observation data. Among identified AI4ESP 
opportunities are development of (1) a new generation of proxy applications and benchmarks for 
both modeling and observation capabilities; (2) AI-assisted, physics-based models; and (3) 
AI/ML for adaptive data assimilation, observations, and edge sensor control. Furthermore, there 
is a need to co-design a collection of AI-ready datasets and improve the modularity of models, as 
well as for a framework for which to accelerate the progression of these. Long-term priorities of 
AI-at-scale opportunities for the envisioned concepts (i.e., HPC+Cloud+Edge) must be supported 
with near-term priorities for secure storage, authentication, provenance, and development of 
federated learning that integrates streaming analytics and AI at edge sensors with HPC modeling 
(see AI Architectures and Co-Design, chapter 17).  
  
The research community currently has access to HPC capabilities at large computing centers, 
like DOE’s Argonne Leadership Computing Facility (ALCF), National Energy Research 
Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory, and Oak 
Ridge Leadership Computing Facility (OLCF). The next generation of computing architectures is 
likely to be custom-designed to better support deep learning capabilities that will be required to 
propel ever-larger ML models. In addition, the community has access to large collections of 
Earth system and environmental data at data centers like DOE’s Atmospheric Radiation 
Measurement (ARM) Data Center (ADC), Environmental Systems Science Data Infrastructure 
for a Virtual Ecosystem (ESS-DIVE), Earth System Grid Federation (ESGF), NASA’s 
Distributed Active Archive Centers (DAACs), and many others. These data centers operate as 
stand-alone resources and usually require users to download data to their own computational 
resources or move data to the computational resources provided. This process of downloading, 
pre-processing, and integrating the data and then performing simulations and analysis is tedious 
and often unnecessary given recent technological developments. When developing and 
deploying AI/ML methods, researchers will experience the increased difficulty of this workflow 
because high-speed access to vastly larger data collections will be required for training ML 
models, potentially incorporating such training as part of the simulation itself. Thus, data-to-ML 
pipelines (model-observations integration) were suggested as a critical need. A domain-specific 
example of such a pipeline exists in the DOE’s KBase project, which links to well-curated 
datasets and provides an application programming interface (API) to extract data within ML 
codes.  
 
Advancements called for by the AI4ESP community require integrated computing capabilities 
(designed for both traditional and AI/ML workloads) and data infrastructure that eliminates, or 
greatly lessens the burden of, the challenges of finding, acquiring, downloading, and integrating 
data. Benchmark AI/ML data—including datasets created from model-data integrated, 
synthesized, and combined data products—should be created on an on-demand basis, based on 
scientific needs, and accessible from any large computing environment, no matter where those 
data reside or are archived. This standard could be accomplished through APIs and data transport 
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services, like Globus (https://globus.org/), that hide the details of data movement and exploit 
high-bandwidth networks to deliver data as needed for simulation and analysis, combined with 
data synthesis and integration tools that are easy for scientists to use. A model-data integration 
center that could provide such integrated storage and computing resources for the growing Earth 
system science community would help accelerate the science identified in this report. This 
capability could be stand-alone or integrated within a broader AI research center (section WS.4); 
provide data hosting services, compute-near-the-data infrastructure, and “AI/ML as a service” 
capabilities; and sponsor training activities and multidisciplinary working groups focused on new 
or advanced research topics. Such a center could lower the barrier-to-entry for scientists to use 
advanced ML capabilities while enabling research with tools not otherwise easily accessible or 
usable. 
 

WS.4  Programmatic Structure: Culture Change 
The AI4ESP workshop was a demonstration of the scientific community reaching across agency, 
institution, public-private, and mission-specific boundaries to express the need for large-scale 
change. The specifics of how diversity, equality, and inclusion should improve are not the focus 
of this report; however, the community supports and is engaged in the advancement of these 
important factors across the scope of AI4ESP. The needed advancements described in this report 
require progressive steps to remove barriers to necessary collaborations. These advancements are 
beyond “grassroots effort” capabilities and require infrastructure investment and leadership 
direction. 
 
Modernizing scientific culture efforts, typically isolated and stovepiped due to funding sources 
and heavy workload fatigue, are necessary to uniting the Earth system community to efficiently 
advance research and provide meaningfully improved results for stakeholders, including to: 

- Support the existing workforce in staying current and leveraging hardware, software, AI, 
and domain science advancements  

- Support the future workforce in learning and entering collaborative environments at the 
cutting edge 

- Support diverse missions within a framework of accelerating testing and advancement for 
the community-based co-design, standardization, and open architectures 

The need for a paradigm change is repeated from other perspectives, such as the National 
Academies ML and AI to Advance Earth System Science workshop report (National Academies 
of Sciences 2022) and is required to lead in Earth system predictability. Co-design, effective 
collaboration, infrastructure investment, and workforce development are all necessary to achieve 
this change.  
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WS.4.1  Support of Existing Workforce 
The separate advancements in AI, hardware, software, models, simulators, and domain science 
processes make it increasingly difficult to stay current in the combined areas required to 
strategically advance Earth system predictability. Domain experts may have limited access to 
advanced ML techniques, and AI experts have limited knowledge of the science, both of which 
are necessary to solve known issues of Earth system predictions. In addition, tools 
(e.g., software, interfaces) that allow domain science expertise to learn from and utilize hybrid 
models and ML techniques quickly expand the validation and advancement of both techniques 
and critical stakeholder projections. Investment in this area allows for dedicated support, 
improving the access and sharing of both positive and negative results, learning/training, 
dedicated efforts of co-design, standardization enabling advanced data assimilation, and hybrid 
modeling.  
 

WS.4.2 Support for the Future Workforce 
Open engagement with academia creates pathways to bringing a new workforce in at the cutting-
edge to accelerate advancements. Building on the inclusion of academic researchers and 
educators in the platform supporting the existing workforce will allow for their projection of 
skills needed for future employment. This engagement can define and address the gap between 
traditional education and the training needed to prepare the future workforce. Training programs, 
workshops, webinar series, virtual and in-person hackathons for more rigorous training and 
engagement of graduate students, postdoctoral scholars, and early career scientists are urgently 
needed to keep domain scientists updated on ML research and necessary analytic tools that are 
relevant to Earth system prediction problems. Investment in these opportunities will accelerate 
the advancement of Earth system predictability through a prepared, inclusive future workforce. 
 

WS.4.3  Support for Framework Development 
Establishing partnerships between national laboratories, universities, industry, and the private 
sector was also identified as one of the priorities that will help facilitate open communication 
between AI and domain scientists. An interoperable framework is needed to enable the 
community to build specific AI methodologies for application in Earth system predictability. 
Benchmarking datasets must be curated, created, and managed to quickly advance with 
knowledge discovery. Cross-domain and architecture standards for observations, data 
assimilation, and hybrid modeling must be achieved for UQ inclusion and propagation through 
the ModEx environment, as well as to achieve collaborations resulting in explainable results and 
stakeholder information. This collaborative framework can serve as the backbone for the 
community’s accelerated scientific advancement with mission-specific utilization forked off, 
eliminating the need for agency-level reorganization. 
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WS.5  Integrated Research and Infrastructure Centers 
All of the above opportunities could be significantly accelerated through the development of an 
integrated AI4ESP research center that advances scientific understanding and predictions by 
connecting domain scientists with modelers, experimentalists, and computational and AI/data 
science experts. Through this center, the workforce can learn and communicate across the 
complex breadth of AI and ESP research, efficiently share results, catalyze standardization and 
co-design, and support the framework required for game-changing activities, all of which 
eliminate stovepiped barriers to advancement. This would drive effective multilateral 
communication and cross-culture networks and support collaborations across multidisciplinary 
research for domain scientists to learn advanced ML techniques, as well as for AI/ML experts to 
better understand the physics and principles associated with Earth system predictions. Such a 
center will provide computational and storage infrastructure, the necessary benchmark data, a 
wide variety of models at different scales, software tools for analysis and visualization, and 
model-data integration. It will also enable the ModEx approach by development of an easy-to-
use data assimilation network, which would bring together new AI/ML capabilities with existing 
investments (e.g., ARM, DAAC, ESS-DIVE, Geo Data Portal, ILAMB, LTER, NGEE, 
OneStop). Coordination of data, modeling, and AI advances can also take place in these centers, 
accelerating knowledge-informed learning from AI. It can also lead to new scientific discoveries; 
improve modeling capabilities that leverage the combination of process models, hybrid 
approaches, or pure AI algorithms as appropriate; and produce explainable results. The center 
can also work to harmonize global datasets with consistent terminology and techniques to bridge 
gaps in spatial and temporal observations. To accomplish all of the above, the center would need 
to leverage additional resources (e.g., funding support, convening of workshops) toward 
collaborative projects among ML experts and domain scientists to tackle the critical Earth system 
prediction problems. 
  

WS.6  Conclusions and Next Steps  
To summarize, the DOE’s workshop on AI for Earth system predictability covered an extremely 
wide range of scientific and computational domains and identified several approaches to move 
the field forward. To effectively leverage AI, significant cultural change and widespread 
collaboration are necessary. Many institutions across the world are moving towards 
interdisciplinary domain and computational research seeking to integrate machine learning into 
Earth sciences.   
 
Achieving the AI4ESP vision will require an unprecedented level of coordination across 
scientific disciplines and public, private, government, and scientific communities. Priorities 
identified to address these barriers include (Figure WS-6): 

● Creating AI research centers tasked to coordinate and collaborate to more rapidly 
advance priorities across the various Earth science topics, where the centers would 
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provide the supporting data and computational infrastructure, mathematical capabilities, 
and cross-disciplinary expertise to support community ambitions. 

● Co-designing frameworks or platforms to enable communities with different missions to 
efficiently share applicable results, techniques, data, and codes to decrease unnecessary 
duplication of effort and accelerate the application of AI. 

● Determining cross-disciplinary data-sharing standards and creating shareable benchmark 
and training datasets that bridge organizations. 

● Supporting working group activities to investigate major and timely transdisciplinary 
research questions and quickly enhance or test developments such as workshops, 
challenges, and hackathons through a center or facility that is staffed to support 
commonly used data, models, and workflows. 

● Developing standards for trustworthy AI, including addressing data biases, ensuring 
fairness in models, and fostering the ethical and responsible development and use of AI. 

● Building public-private partnerships that enable use of commercial tools for research 
purposes and vice versa. 

● Focusing on new efforts to inspire and motivate the next-generation workforce, including 
training of multidisciplinary scientists, as well as outreach to a broader and more diverse 
set of academic and laboratory institutions. 

● Supporting early success stories to support training, inspiration, and strategic program 
design, such as through demonstration projects, infusion of AI into existing funded 
programs, and follow-up “implementation workshops” on key topics to chart roadmaps. 

 

 
Figure WS-6. Roadmap to the execution of AI4ESP including near-, mid-, and long-term activities 
(Source: Lawrence Berkeley National Laboratory). 
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Since the workshop, AI4ESP participants have continued discussions and advancement of 
information through collaborations and workshops, such as the National Academies Machine 
Learning and Artificial Intelligence to Advance Earth System Science workshop and the open 
AMS AI4ESP: Challenges and Opportunities for Advancements special collection call for 
papers.  
  
The AI4ESP workshop participants volunteered their service by participating and developing this 
information to provide the community’s perspective. The collective intent is to support leaders 
and decision-makers of the grand challenges and present opportunities available to research 
priorities. Organizers and participants, actively engaged across the AI and ESP communities, are 
eagerly seeking opportunities to bring together the breadth of knowledge and expertise necessary 
to tackle the scientific hurdles to improve prediction through effective development and 
application of AI.  
      
This report is intended to provide DOE with a high-level, yet forward-looking workshop report 
to inform its planning and investment agenda, while furthering the development of a community 
of researchers with common interests in AI and Earth system science with bold innovative 
thinking. More detailed information related to the sessions is provided in the 17 chapters of this 
report. 
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1  Atmospheric Modeling 

Authors: Ruby Leung (PNNL), Andrew Bradley (SNL), Noah Brenowitz (AI2), Chris 
Bretherton (AI2/Univ. of Washington), Peter Caldwell (LLNL), Scott Collis (Argonne), Greg 
Elsaesser (Columbia Univ./NASA-Goddard), Chris Fletcher (Univ. of Waterloo), Ann Fridlind 
(NASA-Goddard), Yangang Liu (BNL), Amy McGovern (Univ. of Oklahoma), David Mechem 
(Univ. of Kansas), Andy Salinger (SNL), Istvan Szunyogh (Texas A&M), Paul Ullrich (UC-
Davis), Marcus van Lier-Walqui (Columbia Univ./NASA-Goddard) 
 
Representing a wide range of atmospheric processes that operate across spatiotemporal scales 
spanning many orders of magnitude, atmospheric models are a key component of climate and 
Earth system models (ESMs), which are fundamental tools for answering critical questions about 
the future climate. With typical grid spacings of 25–100 km, atmospheric models used in ESMs 
must divide processes into resolved and subgrid, with the latter represented by subgrid physics 
parameterizations. These parameterizations include many assumptions, such as fractional cloud 
cover, convective mass flux closures, and orographic drag associated with subgrid-scale 
processes. Despite decades of research, systematic errors in subgrid parameterizations and 
limited/subjective model calibration have contributed to substantial biases in atmospheric 
models. Such deficiencies in atmospheric models are a major source of the large uncertainties in 
multimodel projections of the future climate, particularly at regional scales that matter the most 
for addressing climate impacts and adaptation. 
 
By more explicitly representing subgrid processes, cloud-resolving models (CRMs) with 1-km or 
finer resolution may avoid the use of some subgrid parameterizations or use simpler ones; 
however, they are and will remain too expensive for Earth system modeling at multidecadal to 
century timescales for the next decade. Nevertheless, CRMs may provide important global 
reference data for employing artificial intelligence and machine learning (AI/ML) to improve 
modeling of subgrid physics. Doing so could improve the fidelity and predictive skill of ESMs 
with computationally affordable grid spacings of 25 km and larger. More generally, AI/ML 
could help us develop and train atmospheric models to be optimally skillful from weather to 
climate timescales by improving modeling of subgrid physics and guiding/automating model 
calibration. By creating “differentiable” models with smooth relationships between inputs and 
outputs, ML will better enable sensitivity analysis, physical interpretation, parameter calibration, 
and data assimilation. Parallel to/in conjunction with ML-enabled model improvements, ML may 
also facilitate understanding of the atmosphere and climate systems (along with relevant 
applications), with the goal to provide more skillful predictions and credible projections, backed 
by physical explanations and interpretations, to support decision-making.  
 
In sum, to advance atmospheric modeling, AI/ML offers the potential to substantially improve 
model skill by improving modeling of subgrid physics and guiding/automating model 
calibration. AI/ML also plays a critical role in enhancing model applications for decision-
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making. Each of these endeavors represents a grand challenge for atmospheric modeling that 
encompasses many conceptual and technical challenges. In what follows, we discuss these grand 
challenges, summarize the associated state-of-the-science, and highlight research opportunities 
and priorities to address the grand challenges. Crosscutting challenges related to uncertainty, use 
of observations, AI/ML methods, generalizability, infrastructure, and trustworthiness are briefly 
discussed in the context of each individual grand challenge.  
 

1.1  Grand Challenges 
 

1.1.1 Improving Modeling of Subgrid Physics for Atmospheric Modeling across Scales 
 
The grand challenge of improving modeling of subgrid physics in atmospheric models centers on 
correcting biases in model simulations/predictions relative to observations/high-resolution 
models. For example, there is a gap in our ability to predict precipitation, including its regional 
and local statistics (i.e., precipitation intensity, duration, and frequency). Precipitation extremes, 
in particular, are poorly predicted and have outsized socio-economic impacts. Specific examples 
of challenges include using ML parameterizations to represent boundary layer processes, shallow 
and deep convection, cloud microphysics and aerosol-cloud interactions, all of which contribute 
to the diverse climate sensitivity and transient climate response in multimodel ensembles. 
Complementing the development of ML parameterizations, recent efforts to model the 
discrepancy or residual between low-resolution simulations and cloud-resolving simulations 
using AI/ML have shown some promise in correcting for biases in low-resolution atmospheric 
models (Bretherton et al. 2021) (Figure 1-1). As the correction acts as an ML column 
parameterization, this bias correction approach is analogous to the use of ML parameterizations 
for hybrid modeling that combines ML models of subgrid processes with conventional 
atmospheric models. Ideally, efforts directed at developing ML-derived parameterizations should 
account for: (1) uncertainty quantification (UQ); (2) knowledge transfer across scales; 
(3) ensuring that the domain of the training data is sufficient to span a broad range of relevant 
climate regimes for generalization; (4) creating and curating high-quality data; and (5) enabling 
physical understanding and interpretability of the ML-parameterization results, with the goal of 
creating efficient, generalizable, and robust hybrid models. Notably, many of the issues and 
approaches associated with AI/ML used in parameterizations are also common to data 
assimilation (DA), with parameter estimation being one example. Bringing ML and DA into a 
closer relationship could reap big rewards, particularly as applied to estimation of parameters in 
physically based atmospheric and Earth system models. 
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1.1.2 Transforming Climate Modeling through AI/ML-guided/automated Model Calibration 
 
Climate model tuning is among the most labor-intensive and challenging parts of the model 
development process, often taking years to complete and requiring many thousands of simulated 
years. Tuning is typically performed by hand using optimization criteria that are poorly defined 
and subjective (Hourdin et al. 2017; Schmidt et al. 2017). Moving to AI-based calibration could 
transform climate modeling by: (1) increasing objectivity and reproducibility of the model 
development process; (2) improving model skill relative to observational targets with well-
defined uncertainties; (3) permitting rigorous quantification of parametric uncertainty in model 
predictions, such as climate sensitivity and extreme precipitation change; (4) making it possible 
to tune very-high-resolution models (e.g., by leveraging information from cheaper simulations); 
(5) exposing the actual impact of each model change by enabling full retuning after each major 
model change; and (6) identifying the observational deficiencies that contribute most to 
predictive uncertainty, for example, by comparing ensembles which either include or zero out 
uncertainty in particular parameters. Auto-calibration is a particularly attractive AI grand 
challenge because, unlike most climate applications, it does not involve extrapolation beyond the 
available data and reference observations. 
 

 
Figure 1-1. Using a corrective ML method in which the coarse model state is nudged to the reference 
state, with the nudging tendencies machine learned, shows promise. Upper panel: root-mean-square 
deviation (RMSE) of precipitation is reduced from 2.14 mm/day (left) to 1.65 mm/day (right) with ML-
correction trained using observations (Watt-Meyer et al. 2021). Lower panel: Similar reduction in 
precipitation RMSE from 3.66 mm/day (left) to 2.56 mm/day (right) is also achieved with ML-correction 
trained using fine grid model output (Source: Bretherton et al. 2021; figure used with permission). 
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1.1.3 Enhancing Atmospheric Model Applications through AI/ML for Decision-Making 
 
Either used as stand-alone models or in hybrid models, AI/ML has the potential to deliver salient 
information and data to practitioners and decision-makers. However, significant developments 
are needed to deliver on this promise, including in these areas:  

(1) Identification and seamless prediction of extreme events or other outliers represent key 
areas where AI/ML systems hold significant promise. However, the capacity of AI/ML 
systems to produce out-of-sample prediction is poorly understood, particularly as these 
systems tend to emphasize the mean. There is a need to improve/adopt ML methodologies 
for systematically reducing climate drift and bias while accurately simulating the weather 
that leads to extreme events.  
(2) New developments in AI/ML are needed to better represent complex relationships that 
emerge in the atmosphere and coupled systems including human impacts. Inevitably, 
decisions that are made based on climate data need to be contextualized within the scope of 
the coupled human-Earth system. Comprehensive AI/ML systems that incorporate impacts 
from multiple sectors may enable researchers to better identify optimal decisions in a given 
weather or climate context.  
(3) Supervised, self-supervised, and unsupervised deep learning can be used in regime 
classification, model evaluation, and data-driven discovery, such as discovery of unknown 
relationships hidden in big complex data, in models, and observations.  
(4) There is an outstanding need for building confidence and trust in AI/ML systems, so that 
decision-makers, practitioners, and other end-users feel comfortable in employing these 
systems in practice. Explainability and interpretability are essential components in the 
exchange between scientists and end-users to gain confidence that AI/ML systems are 
capturing relevant processes and interactions. How trust differs for different end-user needs 
should be incorporated into the development process for AI/ML systems.  
 

1.2 State-of-the-Science 
 

1.2.1 Modeling of Subgrid Physics  
 
A number of state-of-the-art approaches for using AI/ML to improve modeling of subgrid 
physics are in current use. These include ML-only methods, hybrid ML/physics approaches, and 
emulators derived from perturbed physics ensembles. A growing number of efforts exist to 
replace or supplement column parameterizations with ML models that are either more accurate 
(being trained using higher-resolution simulations) or more computationally efficient (replacing 
complex physics code with a speedy surrogate) (e.g., Gentine et al. 2018; Brenowitz and 
Bretherton 2018, 2019; Brenowitz and Beucler et al. 2020; Brenowitz and Henn et al. 2020; 
McGibbon and Bretherton 2019; Wang et al. 2021; Bretherton et al. 2021; O’Gorman and Dwyer 
2018). While some ML parameterizations are monolithic (e.g., Bretherton et al. 2021), there is an 
attempt to create separate ML models, for example, one for each conventional process. The latter 
is motivated either by an attempt to mimic conventional divisions among processes 
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(e.g., convection and cloud microphysics are conventionally represented by different physics 
parameterizations) or for reasons of efficiency. For example, in Yuval and O’Gorman (2020), 
one ML column model predicts subgrid vertical advection, cloud microphysics, sedimentation, 
precipitation, and radiative heating, while a second predicts turbulent diffusivity and corrections 
to the surface fluxes. Wang et al. (2021) use four ML models for efficient training. Multiple 
efforts find that online use of an ML-based parameterization is not always robust 
(e.g., Brenowitz and Beucler et al. 2020; Brenowitz and Henn et al. 2020), and there is a related 
issue of preserving physical properties such as conservation in ML models. Closing the gap 
between offline and online ML model performance is a general challenge for hybrid modeling. 
Blending Bayesian and DA methods results in a natural fit for many ML approaches, but this 
approach is currently underutilized. Overall, developing ML parameterizations for hybrid 
modeling remains a significant challenge. 
 

1.2.2 Model Calibration 
 
Although automated calibration has been studied for years (e.g., Jackson et al. 2008; Lee et al. 
2011; Zhang et al. 2015; Liu et al. 2021), most modeling centers still tune by hand, except for 
recent exceptions. Impediments to widespread adoption of automated calibration include: 
(1) ambiguity about what aspects of model skill to optimize (e.g., variables, mean vs. variance, 
or transient evolution); (2) difficult-to-use workflows (e.g., hard-coded parameter values, 
inflexibility in job submission process); (3) lack of clarity about the best techniques to use 
(e.g., emulation, optimization, Gaussian processes, convolutional neural networks [CNNs], etc.); 
(4) communication disconnect between those responsible for creating new models and those 
engaged in auto-calibration research; (5) lack of well-defined observational targets (including 
observational uncertainty bounds); and (6) the need for multidimensional cost functions for 
optimization. Auto-calibration typically occurs in three stages: (1) identify the most important 
uncertain parameters in the model and conduct a perturbed physics ensemble (PPE) to sample 
them; (2) create an emulator which predicts the model output variables included in the 
optimization as a function of the input parameter settings; and (3) apply an optimization 
algorithm to the emulator to find one or more sets of best parameter settings. Identifying the best 
approach to emulation and optimization are active research topics. 
 

1.2.3 Model Applications 
 
Many AI/ML technologies are now being investigated to tackle the challenges for enhancing 
model applications. Examples include these: (1) Many uses of AI/ML are being explored to 
improve forecasts (Figure 1-2), track/classify features in observations/simulations, evaluate 
models, discover new knowledge, and catch long/nonlinear dependence. (2) Digital twins are 
under development that aim to seamlessly integrate observations, modeling experiments, and 
model data to support decision-making (e.g., Bauer, Stevens, and Hazeleger 2021). This 
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technology requires use of AI/ML to improve realism and efficiency of the digital 
representations of atmosphere and/or other Earth system processes and integration of high-
performance computing, along with associated computational challenges to enable extreme-scale 
computing and real-time exploitation of observation data. (3) There are ongoing efforts to 
develop catalogs beyond data repositories to advance ML applications in Earth system science. 
For example, ML model catalogs (https://mlhub.earth/models) have been developed to provide a 
library of existing ML models that users can easily find and put into practice. (4) Adversarial 
models are being used to discover model limitations and identify unphysical behaviors of ML 
models. (5) Knowledge graphs have been used to better understand what the ML systems have 
learned. (6) Extreme ensembling and stacked learning are used to combine predictions from 
individual ML models to boost prediction skill. (7) To provide confidence in the knowledge and 
predictions advanced by AI/ML, explainable and interpretable AI is critically important as it 
helps to characterize model accuracy, fairness, transparency, and outcomes.  
 

 
Figure 1-2. A hybrid model using the Combined Hybrid-Parallel Prediction (CHyPP) technique on the 
Simplified Parameterization, primitive Equation Dynamics (SPEEDY) atmospheric general circulation 
model is trained using ERA5 reanalysis data. One hundred 21-day forecasts have been verified and 
compared with the benchmarks (SPEEDY, ML only, and SPEEDY-LLR). The hybrid model state is well 
balanced throughout the forecasts and produces more realistic surface pressure tendencies than the 
benchmarks. The ML component of the hybrid model is based on parallel reservoir computing in local 
subdomains (Source: Arcomano et al. 2022; figure used with permission). 

1.3 Experimental, Data, and Modeling Opportunities 
 

1.3.1 Modeling Subgrid Physics 
 
Current ML-derived parameterizations do not sufficiently address uncertainty. Characterizing 
uncertainty should be front and center in parameterization development, ideally with such 
uncertainty being characterized by type (structural, parametric, initial/boundary condition, etc.). 
Developing a better representation of uncertainty could employ a Bayesian approach and would 
have a number of advantages such as the ability to generate meaningful physics ensembles. An 
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ML-derived parameterization should transfer knowledge learned across scales. Ideally, an ML-
derived parameterization should be scale-aware and include scale-dependent uncertainty 
estimates. 
 
Progress is currently hampered by lack of sufficient data suitable for developing 
parameterizations, either in the form of observations or reference model output, for ML training. 
Training on datasets that insufficiently span the parameter space can result in extrapolation 
errors. These extrapolation errors become even more likely when using ML-derived 
parameterizations developed for the present climate and then extrapolated to future, high-CO2 
environments. Training should also include edge cases, such as high-latitude processes, that are 
particularly hard for ML to learn accurately because they do not occur everywhere and all the 
time. These are well-understood points, but too often training datasets do not sufficiently train a 
parameterization for all situations it may encounter. Additionally, a vast quantity of data at the 
weather scale is routinely collected, for example, by the ARM observatories or NWS radar 
network, but little of it is used to inform parameterizations via systematic inference. Instead, 
parameterizations are typically improved in global simulations using satellite climatologies, or 
via synthetically generated “reference model” data, which may have their own structural and 
parametric uncertainties and biases. ML techniques should be investigated that can make 
observational insights from the weather scale available to improve parameterizations in climate 
and weather models. Such techniques need to consider potential challenges presented by 
observation data such as sparse space/time distribution and coverage and how well budgets of 
mass, energy, and water are closed in observations from different sources. 
 
ML-derived parameterizations should strive to enforce physical constraints such as water 
conservation, Clausius-Clapeyron relation, and causality that human designers deliberately build 
into parameterizations to improve generality. ML models developed without physical 
(conservation law) constraints should still provide physically consistent results. An ML-derived 
parameterization trained on model output that is physically inconsistent may induce unphysical 
behavior in an ESM based on conservation laws. 
 
It is important to recognize that meaningful parameterizations can still be formulated even if the 
governing physical laws are not apparent or observable, especially for less well-understood 
processes and/or processes that are not governed only by physical processes. Hence, ML 
approaches may diverge significantly from physically based parameterizations, highlighting the 
need to interpret such differences for credible use of ML parameterizations. In the case of the 
more physical aspects of these systems, DA approaches with forward modeling may help 
constrain parameterizations using data that are available. 
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1.3.2 Model Calibration 
 
The most exciting opportunity enabled by auto-calibration is the ability to derive multiple 
optimal parameter settings instead of the single “best” tuning provided by hand-tuning. With 
multiple tunings, parametric uncertainty could be easily included in any analysis or prediction 
made using a model. More ambitiously, a likelihood function covering all parameter choices 
could be established. Establishing the uncertainty in the predictions we make is essential for 
climate information to be useful to the public, so this capability should be prioritized. 
 
Making training/testing datasets publicly available would accelerate auto-calibration research by 
avoiding the expensive and slow step of creating PPEs. Archives of observational datasets with 
well-defined uncertainty bounds would also be a major advance in model-data fusion for climate 
research. Making these collections of datasets publicly available would expand the group of 
researchers able to contribute to this effort. Having common datasets across research groups 
would also enable more rigorous cross comparison of the skill of proposed techniques, making it 
easier to identify the best approaches and simultaneously identify data gaps for future observing 
system design. Similarly, while choice of cost function will probably always need to be 
determined by guess-and-check approaches and will differ between modeling centers, having 
standardized cost functions for comparing methodologies would be useful. Creation of these 
public datasets and cost functions could be done very rapidly. Infrastructure to support 
dissemination of large PPEs would be needed. 
 
Auto-calibration also opens the door for leveraging cheaper simulations in the tuning of very 
expensive model configurations. Cheaper configurations definitely contain information relevant 
to their more expensive cousins, but not all of their behavior is relevant. AI can easily separate 
the useful versus irrelevant information from these simulations (e.g., Anderson and Lucas 2018). 
Cheaper simulations could be lower-resolution global runs, but they could also be single-column 
runs, limited-area cloud-resolving simulations, or global simulations of very short duration. 
 
Besides the aforementioned opportunities, advancing use of AI/ML in model calibration would 
also require addressing common challenges, including the lack of sufficient data and data quality 
and the multiple sources of uncertainty associated with data and model experimental setup 
(e.g., initial/boundary conditions, simulation length) used in auto-calibration. 
 

1.3.3 Model Applications 
 
To tackle the grand challenges described above, we have identified three outstanding 
opportunities that should be tackled. First, there is a need to entrain decision-makers, 
practitioners, and other end-users in the development process to learn where their needs for 
systems or datasets are presently unmet or where AI/ML can more rapidly or accurately deliver 
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information. There are significant benefits to both scientists and stakeholders when a co-
production model is pursued. For instance, researchers may be able to identify unique or 
previously unknown datasets, or may learn about the interactions, drivers, or thresholds that exist 
in decision networks. Similarly, end-users can learn about recent developments relevant to their 
needs and consequently can gain a better understanding of what is achievable with existing 
technology. The co-production model would also build trust in AI systems by allowing end-users 
to learn more about how these systems are designed and operate and to provide feedback to 
researchers on specific connections that need to be captured in these systems. 
 
Second, to meet the data needs for ML, there is a clear and outstanding need for datasets with 
complete and consistent provenance, metadata, availability, and quality control. Observational 
uncertainty should be incorporated to avoid overconfidence. Tools should be available to both 
researchers and the general public to search and extract/slice data that are useful for AI studies. 
To limit the need for transferring large datasets, these capabilities should be available “in the 
cloud.” Third, we need to build trust from the climate research community by showing that 
models that use AI/ML provide results that are consistent with the laws of physics. It should be 
demonstrated that AI/ML can be used, not only for prediction by a “black box,” but also to 
answer questions of “why.” 
 

1.4  Research Priorities 
 

1.4.1 Near-term Goals 
 

1.4.1.1 Modeling Subgrid Physics 
Near-term goals in this area include efforts to:  

● Ensure that new ML-derived parameterizations are physically consistent (i.e., bound by 
conservation laws). 

● Better understand the domain of the training dataset used for parameterization 
development.  

● Discover the characteristics of ML-based parameterizations, which can lead to 
instabilities when incorporated in the atmospheric model, despite being good data fits. 

● Augment cloud-resolving simulations with coarsening to account for topography and land 
surface types, careful selection of variables to support multiple ML model inputs/outputs 
(I/Os), and I/O modules to assemble training set members. 

● Archive training data in standard formats and create a central repository of training data 
to be made available to all researchers. Training data should include not only cloud-
resolving simulations and high-quality reanalysis data, but also integration of a wide 
range of observations such as data collected by DOE ARM for different climatic regimes, 
satellite data covering broad areas, routinely collected meteorological data and forecasts, 
and aircraft measurements collected by field campaigns/intensive observation periods 
(IOPs) or routine flights. 
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● Gain interdisciplinary knowledge from new teams that span atmospheric scientists to data 
scientists.  

● Gather low-hanging fruit of training improvements to parameterizations-based high-
resolution or observational data. 

● Build infrastructure for datasets, software, testing, validation, and training workflows. 
● Develop “super-high” resolution models such as direct numerical simulations (DNSs) to 

fill in critical gaps in physical understanding and measurements for generating synthetic 
data. 

 

1.4.1.2 Model Calibration 
Near-term goals in this area include efforts to: 

● Make one or more perturbed physics ensembles for auto-calibration publicly available. 
● Establish observational dataset characteristics needed for observational targets 

(e.g., minimum uncertainty characterization). 
● Identify a suite of standard cost functions that researchers can implement to compare 

methodologies. 
● Create or identify easy-to-use workflows for performing auto-calibration. 
● Quantify uncertainty in observations used in model calibration, for example, based on 

discrepancies across multiple, independent datasets.  
 

1.4.1.3 Model Applications 
Near-term goals in this area include efforts to: 

● Jointly develop standards for AI relevant datasets that enable their distribution and utility. 
● Develop a searchable catalog of AI4ESP-relevant datasets that conforms to FAIR 

principles: findability, accessibility, interoperability, and reuse of digital assets. 
● Develop a catalog of AI models that is searchable by problem or discipline. 
● Develop a resource for tracking lessons learned, necessitated by the rapid developments 

being made in AI/ML. 
● Support more widespread pursuit of open-source development practices, ensure 

comprehensive and complete documentation of models, and leverage modern 
development practices to ensure that high-quality and error-free codes are distributed to 
end-users. 

 

1.4.2 5-year Goals 
 

1.4.2.1 Modeling Subgrid Physics 
Mid-term goals in this area include efforts to: 

● Emphasize rudimentary uncertainty estimates in ML-derived parameterizations. 
● Strive for physical understanding and interpretability. 
● Use ML to discover physically salient features in observational data.  



 

55 
 

● Replace select parameterizations with ML-based parameterizations, particularly where 
the current parameterizations are themselves heuristic curve fits or where large efficiency 
gains can be made by ML-trained surrogates. 

● Design a user-friendly ML system and workflow on DOE computing resources for 
improving or replacing the physical parameterizations of a 50-km DOE AGCM that runs 
end-to-end within a day. 

● Experiment with different ML architectures and training methodologies to optimize the 
system, including ML methodologies for minimizing mean-state bias. 

● Devise methods for the creation of ML-based parameterizations that automatically 
maintain the stability of the coupled atmospheric model at the same time steps as physics-
based parameterizations. 

● Test hybrid models of atmosphere coupled to other components for a fundamentally more 
accurate low-resolution, full-Earth simulator. Coupling hybrid models may not differ 
substantially from coupling conventional ones, since the coupling boundaries are defined 
by the resolved rather than subgrid models. 

 

1.4.2.2 Model Calibration 
Mid-term goals in this area include efforts to: 

● Systematically test auto-calibration techniques in order to clarify best-practice 
approaches. 

● Develop multifidelity methods for using cheaper simulations to tune higher-resolution 
configurations. 

● Establish a community repository for observational datasets, with uncertainty 
characteristics adequately derived from more sophisticated methods, for auto-calibration. 

● Develop collaborations with several modeling centers to use auto-calibration for their 
next model release, paying careful attention to the cost functions being used and the 
commonalities and differences, to determine if best practices for cost function design are 
being established. 

● Construct multiple sets of optimal tunings for auto-tuned models and explore the 
resulting parametric uncertainty in model predictions. 

 

1.4.2.3 Model Applications 
Mid-term goals in this area include efforts to: 

● Establish an operational and heavily utilized data and model service, recognizing a 
continuing need to invest in maintaining these systems, and ensuring that they are 
modernized and streamlined for user needs. 

● Support greater availability, usability, and documentation of models that have 
demonstrable credibility for practitioner applications. 

● Build/apply multiphysics and multiscale AI/ML to address the inherent multiphysics-
multiscale atmospheric phenomena. 
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1.4.3  10-year Goals 
 

1.4.3.1  Modeling Subgrid Physics 
Long-term goals in this area include efforts to: 

● Provide more sophisticated uncertainty estimates. 
● Focus on addressing scale-aware, ML-derived parameterizations. 
● Develop AI systems to automate the selection of parameterizations and resolutions to 

balance accuracy and computational costs. For some applications, full ML models may 
replace the current models. 

● Evaluate robust use of hybrid atmospheric models in coupled Earth system models. 
● Work with the applications community to adapt prototypes of hybrid models to their 

needs (e.g., by adding aerosols, chemistry, automatic ML downscaling, uncertainty 
estimation, observational simulators, etc.) and demonstrate to their satisfaction that the 
ML is improving the model based on metrics relevant to their objectives. 

● Work with the IPCC ESM community to cross-fertilize ML best practices for 
atmospheric modeling. 

 

1.4.3.2  Model Calibration 
Long-term goals in this area include efforts to: 

● Use auto-calibration at each step of model development to decide whether each new 
development effort truly improves the model. 

● Develop a full Bayesian approach to auto-calibration calculating likelihood functions of 
potential tunings so the uncertainties in the tunings can be propagated through to 
uncertainties in predictions. 

● Exploit the auto-calibration process across multiple climate models to design Earth-
observing systems which will maximally reduce uncertainties in model predictions. 

1.4.3.3  Model Applications 
Long-term goals in this area include efforts to: 

● Develop workflows that allow data from models and observations to be available in the 
cloud as they are produced. 

● Provide on-demand services to run AI models on this data as the data are produced, 
providing targeted value products or analysis for associated researchers and communities. 

● Provide AI models that are widely accepted, trusted, and used throughout the community. 
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2  Land Modeling 

Authors: Beth Drewniak (Argonne), Charlie Koven (LBNL), Dan Ricciuto (ORNL), William 
Riley (LBNL), Pamela Weisenhorn (Argonne), Xiaojuan Yang (ORNL), Qing Zhu (LBNL) 
 

2.1  Grand Challenges 
 
Many of the grand challenges in land modeling are related to processes that are not fully 
understood or lack quality measurements. These challenges are compounded since we cannot 
capture small-scale features and dynamics of the land surface with the coarse grid structure of 
Earth system models. There are many examples of patterns we do not understand in nature that 
affect the ability of models to predict behavior. Our discussion during the Land Modeling session 
focused on ways we can resolve small features across a wide range of scales, including processes 
in models that lack quantity and quality measurements, and how we might leverage AI/ML 
techniques to enhance our current modeling efforts. We highlight some of the grand challenges 
below that have historically been and continue to be difficult to overcome in land modeling. 
 

2.1.1  Uncertainty Quantification 
 
The difficulty quantifying uncertainty was highlighted in multiple sessions during the workshop 
and cannot be underestimated. Uncertainty quantification is desired across a variety of areas 
including uncertainty in Earth system models (parametric and structural), uncertainty in ML 
models, uncertainty in data (including data bias), and uncertainty in parametric bounds. 
Furthermore, understanding how uncertainty propagates is of concern. Addressing UQ in models 
requires a large number of model ensembles, which are typically limited by computational 
resources. We need methods to increase ensembles either through increased throughput or using 
surrogates and emulators that run faster than the traditional model. Improvements in retrievals of 
remote sensed data (e.g., plant traits) can also help with UQ by improving our understanding of 
parametric uncertainty and can help guide process representation in models. Finally, the role of 
urbanization on historical and future land use/cover and the impact from changes in land use, 
land cover, and management practices play a considerable role in uncertainty. Improving our 
predictions of these human behaviors and decision-making will be critical to improving our 
Earth system predictions. 
 

2.1.2  Scaling 
 
Land surface modeling covers a variety of different spatial and temporal scales that are difficult 
to bridge, for example, spanning from microns (e.g., microbes) to hundreds of kilometers 
(e.g., ecosystems) and processes that occur from seconds (e.g., gross primary productivity 
[GPP]) to hundreds of years (e.g., soil carbon turnover). In addition, data must be extrapolated 
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from site measurements to the globe and account for changes in parameters across a variety of 
environments and ecosystems. Similarly, data collected at different temporal frequencies across 
experiments, remote sensing, and satellites must be integrated into a uniform framework. 
Identifying and generalizing trends across ecosystems that have different biogeochemistry 
responses and including fine-scale events such as hot spots and hot moments or land use and land 
cover change in these extrapolations are challenges. As such, models need subgrid scales, 
including subgrid parameterizations, to capture the full complexity within a grid. Although 
models have higher confidence simulating short-term processes and fluxes, emergent behavior 
leading to long-term dynamics is more difficult to capture. Finally, understanding slow 
processes, acclimation, and legacy is equally important. We need a change in culture that 
connects modelers with experimentalists. Understanding challenges, limitations, and the needs of 
each group would help design the next generation of science development. 
 

2.1.3  Extreme Events and Disturbance 
 
Observations of extreme events are limited. Systematic observation of extreme events and 
disturbance is difficult, because these events are by definition relatively rare. Thus, long records 
with high spatial resolution and large observing areas are needed to robustly train ML models. 
As a result, a key challenge is to build the datasets needed to characterize disturbances and their 
effects on terrestrial ecosystems. While some types of extremes, such as wildfire, are directly 
observable from remote sensing, others, such as drought-driven tree mortality or forest 
blowdowns, must be inferred by detecting temporal discontinuities in ecosystem variables. 
Because of the high resolution needed to detect such discontinuities from satellite observations, 
the data stream has historically been too enormous to process at global scales. Therefore, ML 
techniques for pattern recognition to categorize disturbance could be useful; see, for example, the 
detection of forest fires using a neural network trained on spatial data (Angayarkkani and 
Radhakrishnan 2010). As a result of the lack of training data, predicting extreme events and their 
effects on ecosystem structure and function remains a grand challenge. One solution is using 
space-for-time substitutions. Space-for-time substitution allows the calculation of a temporal 
trend from spatially variable data. This technique is useful when long-term observations are not 
available and relies on the assumption that spatial and temporal variability are equivalent. It has 
been widely used in ecology to study biodiversity (Blois et al. 2013), nutrient cycling 
(Frauendorf et al. 2020), and genetics (Wogan and Wang 2018), to name a few. A suitable 
application of space-for-time substitution is understanding recovery from disturbance, which 
requires long-term observational records that may not be available. Instead, data from multiple 
sites with varying time since disturbance can be used to recreate a recovery timeline. 
Alternatively, we need to identify proxies that can be used from nontraditional data sources 
(e.g., cell phones, WiFi camera networks). For example, cell phone signals can be used to gauge 
rainfall and improve weather forecast models (Messer, Zinevich, and Alpert 2006). WiFi 
networks can provide information that links people, objects, and places. This would allow ML to 
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take good observations to inform data-poor extreme events or use process models in lieu of 
observations. Another approach is to use ML for adaptive sampling during a disturbance event to 
enhance current observations or determine where to optimally place sensors. Building a database 
for these types of observations is needed, but the challenge is still dealing with outlier predictions 
and extrapolating out-of-sample. Finally, we also need to understand impacts by relating drivers 
to consequences, for example, by combining multiple different datasets: on extreme event 
occurrence such as wildfire, on ecosystem structure such as lidar or canopy coverage, and on 
ecosystem function such as evapotranspiration or productivity, all at scales that resolve 
disturbance processes and for sufficiently long time periods to build statistical models.  
 

2.1.4  Data Challenges 
 
Limitations on available observational data represent a significant challenge for land models. 
Observational data are used and needed for model input, benchmarking, parameter calibration, 
and process representation. But given the distributed nature of measurements, questions remain 
about how much data is really available and what is unknown. Modelers need to map the 
unmeasured, which can be done by identifying and using proxies. There are challenges 
integrating historical data, particularly when the data are not digital. We also need to bridge gaps 
in spatial and temporal scales caused by data sparsity and scarcity. Observational data are 
collected across spatial scales ranging from the centimeter scale to hundreds of kilometers 
(e.g., satellite data) and across temporal scales ranging from a single measurement (snapshot) to 
continuous (e.g., flux towers). Adding to this challenge is the explosive growth in data collected 
across multiple disciplines that need to be stored and mined for information. Finding ways to 
integrate long-term observations, remote sensing retrievals, nutrient cycles under management 
schemes, policy impacts, and relationships between plant traits requires uniform ways to access 
data. This calls for the creation of a database with consistency in terminology and collection 
frequency that can be used for data mining. The database can help identify and deal with the lack 
of training data and guide connections to theory. 
 

2.1.5  Capturing Heterogeneity 
 
The coarse nature of the ESM grid prohibits capturing small-scale variability and heterogeneity. 
Therefore, models cannot predict the impact of land surface heterogeneity in land–atmosphere 
interactions. Increasing grid resolution can allow models to simulate more detail and new 
processes but comes at a computational expense. And the question still remains: is the average of 
the grid truly representative of the grid? One primary example where improvements in capturing 
heterogeneity would benefit is understanding the role of urbanization and decision-making on 
hydrological processes. Other examples are small-scale topographic variability (i.e., wetland 
hummocks and depressions) or permafrost’s dynamic contributions to biogeochemical cycles. 
Heterogeneity is not limited to spatial features; models generally assume steady state when 
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ecosystems are often in non-steady states. Knowledge of long-term trends and interannual 
variability are important and require improvements to temporal variability.  
 

2.1.6  Building ML into ESMs 
 
As we expand our experience with AI/ML, we need to find ways to integrate ML approaches 
into models. There is an opportunity to develop and substitute emulators and hybrid models for 
important or computationally expensive processes. This requires shifting our current approaches 
for model development to use a modular framework that is user friendly and utilizes computing 
language that can transfer across platforms. ESMs should be built to allow processes to be 
replaced or swapped for alternate representations. These new models should include transferable 
AI techniques that can be used across ESMs and/or across a range of climate/ecosystems. The 
methods should include explainable AI when biophysical rules and mechanistic understanding 
can be incorporated or pure ML when we lack theory. An example is growth and allocation of 
carbon where ML can provide an optimization approach using data from fluxes, tree rings, and 
satellite biomass. Another example could be leveraging rich aboveground datasets to inform 
belowground processes that are data limited. Some of the challenges are in understanding what 
these models might look like and what programming languages should be used and identifying 
which elements of the land model might be appropriate targets to benefit most from ML 
approaches.  
 

2.2  State-of-the-Science 
 

2.2.1  Model-Data Integration to Improve Predictive Skill 

 
Quantifying uncertainty in land models and improving their predictive skill through model-data 
calibration require a large number of ensemble simulations, which are limited by computational 
resources. The number of required simulations rises exponentially as more uncertain parameters 
are considered, and land models often contain more than 100 such parameters. ML approaches 
are therefore critically important to improve the efficiency of these processes, especially as land 
models become more complex in terms of process representation and spatial resolution. Global 
sensitivity analysis (GSA) may be used to identify key parameters and processes for further 
investigation using a limited number of ensemble members at representative locations 
(e.g., Massoud 2019; Ricciuto, Sargsyan, and Thornton 2018). Model parameter calibration 
using methods like Markov Chain Monte Carlo (MCMC) is considerably more demanding 
because of the large number of simulations and serial iterations that quickly lead to infeasible 
integration times.   
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An increasingly popular use of ML in ESMs is the development of advanced emulation or 
surrogate modeling approaches to predict responses over parameter space and to enable 
constraining these predictions using observations. Surrogate models, which may take a number 
of different forms including polynomial functions or artificial neural networks (ANNs), may be 
fit using a relatively small number of model ensemble members, and then used to predict output 
quantities of interest (QoIs) at different points in the parameter space with a computational cost 
that is orders of magnitude smaller than the original model. Using surrogates therefore decreases 
the time required to generate the much larger number of ensembles needed for GSA and 
calibration. There are several examples where surrogate models have led to improved model 
predictions at individual sites or collections of sites (Sinha et al. 2021; Lu and Ricciuto 2019). 
Constructing surrogate models becomes considerably more cumbersome at regional to global 
scales because of the large number of QoIs contained in gridded outputs. However, a recent 
example using E3SM demonstrated the value of surrogate modeling to improve the wildfire 
model using a deep neural network approach (Zhu et al. 2022). A second example applied 
machine-learning surrogate modeling to reduce uncertainties in surface energy budget 
partitioning in the E3SM and CMIP6 models (Yuan, Zhu, Riley, et al. 2022). Land model 
outputs tend to have high spatial and temporal correlations, allowing application of AI-enabled 
dimension reduction approaches to reduce the number of required surrogate models to a more 
manageable number (Lu and Ricciuto 2019). Using these approaches, calibration can be 
performed with gridded observations (e.g., satellite measurements, ground based, fluxnet) 
guiding the process and can provide uncertainty quantification of the parameters; see an example 
for hydrological parameters in Ray et al. (2015). 
 
In addition to quantifying model parameter uncertainty, it is also possible to use ML approaches 
to quantify model structural uncertainty using error-embedding approaches (Sargsyan, Huan, and 
Najm 2018), or by explicitly including multiple model forms in an uncertainty quantification 
framework (e.g., LeBauer et al. 2013; Walker et al. 2018). ML techniques such as ANNs have 
been used to correct biases in temperature, precipitation (Moghim and Bras 2017), and fluxes of 
land surface models (see Abramowitz et al. 2007). Causal network inference approaches have 
also been applied to assess and reduce uncertainty in global models, for example, to estimate 
precipitation dynamics over California throughout the 21st century (Li et al. 2022). Causality-
guided machine learning approaches can also be used to improve estimates of CH4 fluxes from 
site-level observations and to build extrapolatable models that can be integrated with land 
models (e.g., Yuan, Zhu, Fa, et al. 2022). Finally, interpretable machine learning approaches are 
being developed to extend current land-modeling approaches, for example, to improve estimates 
of wildfire and better interpret dependencies of fires on climate, fuel, and other forcings (Li et al. 
2022). These methods have the potential to provide insight on the error sources and suggest 
improvements to the way processes are represented in models. 
 



 

64 
 

2.2.2  Addressing Observational Gaps 
 
Large quantities of quality data are needed for model benchmarking, understanding relationships 
between variables, and developing representation of important processes in models. One 
example of AI applications in addressing data gaps is through the increasing development and 
use of low-cost sensors to expand our ability to collect data, where ML has been used to 
determine optimum new sensor placement and automate analysis through data mining to inform 
decision-making. The precision agriculture industry has a strong history of leveraging AI 
techniques to aid with decision-making, monitoring the health and resource needs of crops, and 
optimizing productivity. Some examples include using low-cost sensors with AI methods to 
evaluate land sustainability (Vincent et al. 2019), irrigation, and pesticides (Talaviya et al. 2020). 
Robotic sensors are used in the air and on the ground to gather real-time data on crop conditions 
in combination with satellite, weather, and soil data (Linaza et al. 2021). A second application of 
ML has been to bridge gaps across spatial and temporal scales. For example, FluxCom uses 
several ML methods (e.g., tree based, kernel methods, regression splines, and neural networks) 
to upscale eddy covariance for in situ to global-scale data. In addition, Radiant MLHub is a 
cloud-based open access resource for geospatial training data and ML techniques. Applications 
provided include agriculture, urban building footprints, wildfire, floods, and more. Finally, ML 
techniques are combined with physics to partition fluxes to extract data such as 
evapotranspiration (ET), sensible heat (SH), latent heat (LH), and GPP from other remotely 
sensed hydrological measurements (Pal and Sharma 2021). Combining an artificial neural 
network with physics led to the development of the first hybrid model to estimate ET globally 
(Zhao et al. 2019). The next step for land surface data is to expand data mining for discovery 
similar to the success in material sciences (see Bock et al. 2019 for review). Data mining can be 
carried out with Coupled Model Intercomparison Project (CMIP) model output, 
biogeochemistry, digital trace of humans for the urban footprint, population growth, and land use 
land cover change. 
 

2.3  Experimental, Data, and Modeling Opportunities 
 

2.3.1  Data 
 
There are three opportunities where AI/ML can benefit data. First, AI techniques can aid with the 
unification and standardization of data sources collected across space, time, and disciplines. 
Second, AI methods can augment these datasets through gap filling and fusing multiple 
observations and data streams to build an improved dataset. This can include informing the 
deployment and optimization of sensor placement and measurements for both observational 
networks and experimental platforms. Finally, AI can be used to explore the data and identify 
correlations, causations, and relationships to inform process models. 
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Unification and Standardization: Observational data are critical to improving our understanding 
and model representation of land surface properties and dynamics, ultimately for better 
prediction of the Earth system. The rapid growth over the last few decades of remote sensing 
products, automatic ground sensor measurements, and observational and experimental facilities 
have led to the growing volumes and varieties of available data for land ecosystems. We need to 
understand what data we have and identify what data are still missing/needed. This can be 
achieved by standardizing, harmonizing, and integrating the diverse data and should include 
historical data from the published literature to generate a more complete and uniform digitized 
dataset that can be searched and indexed and that contains available geospatial and metadata. 
Classification and creation of labels should be an integral component of data processing and can 
be performed using AI/ML techniques. For example, ML can assist in processing labor-intensive 
data, such as digitizing soil surveys and smoothing soil classifications. These soil classifications 
were previously determined independently at regional scales with few data points extrapolated 
across large regions, which often resulted in sharp unnatural gradients of soil characteristics. 
This process can be accelerated through the use of a natural language to clarify and standardize 
confusing terminology used differently between scientific fields. 
 
Data Augmentation Strategies: Data sources for land modeling are varied and include satellite 
and remote sensing data, automated sensors, and manual measurements on samples collected at 
specific points in space and time. Manual point measurements are often challenging and 
expensive to collect, resulting in considerable sparsity in the resultant datasets. This issue is most 
pronounced within the subsurface where few automated sensors can accommodate long-term 
field deployments. Opportunities to directly address the challenge of data sparsity within the land 
domain include the development of improved field-hardy sensors, use of nontraditional data 
collection approaches (e.g., citizen science), and improved methods and access to historical 
datasets. ML can be used to identify optimal deployment of sensor networks to fill in data gaps, 
inform decisions for experimental design, and assist in determining temporal frequency of data 
collection to aid in the detection of emergent properties. ML can be used to enhance data 
collection networks to be adaptive and respond to changes in environmental conditions 
(e.g., onset of drought, flood events, or hot spot/hot moment detection). Furthermore, ML can 
substitute space for time when data are sparse or lack sufficient time series. ML can use proxies 
as alternate data sources, extend time series, or classify events.  
 
Data Exploration and Mining: ML is not limited to processing data. ML can be used for data 
assimilation and data–model integration, which requires quality data (not just quantity) and 
demonstrates the need to reduce observation bias. AI/ML should be used to improve land 
use/cover characterization and projection, which are large sources of uncertainty in models. 
Biogeophysical and socioeconomic data can be integrated with machine learning approaches to 
both generate historical reconstructions of and project future global land use/cover. Another 
opportunity should focus on training AI/ML models with remotely sensed products and site-level 
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measurements. When combined with physical-based models, we can extrapolate site 
observations to the global scale to inform ESMs. ML trained on observations can be used to 
explore emergent behavior and outlier events, represent heterogeneity, and develop new theories. 
Long-term datasets collected at sites from ARM, National Ecological Observatory Network 
(NEON), Next-Generation Ecosystem Experiments (NGEE)-Arctic, NGEE-Tropics, Long-Term 
Ecological Research (LTER), and other projects can be used in generating these models. In 
addition, partnerships should be developed to share public/private data.  
 

2.3.2  Representing Processes in Models 
 
As AI/ML techniques advance, there are opportunities to improve the representation of processes 
in models that can reduce model bias and parameter uncertainty. Domain scientists, modelers, 
and computational experts should work together to identify which processes might benefit most 
from AI and how to replace them. Opportunities to communicate and learn via workshops, 
seminars, and cross-discipline funding opportunities can facilitate these connections. For 
example, deciding on whether to employ a hybrid or surrogate model to replace a certain process 
might require the following: an understanding of the drivers of the computational cost of the 
process, uncertainty related to parameter values and ranges required, knowledge and theory (or 
lack thereof) of the process, and whether there are observations to train the AI model and 
benchmark the model output. Priority should go to replacing processes that are most expensive, 
most uncertain, and least understood. Some early case studies could focus on integrating 
anthropogenic processes such as human decision-making related to land management, land use 
land cover change, crop and bioenergy productivity, and urban development. Another area of 
research we should explore is understanding memory and how processes across spatial and 
temporal scales can influence the legacy of an ecosystem. For example, understanding the extent 
and duration that GPP anomalies persist after a stress event (such as drought) can improve Earth 
system predictability. Methods focusing on explainable AI should also be prioritized, which can 
help grow confidence in ML-generated models and outputs. Synthetic data should be generated 
to test ML methods and models before they are integrated into larger ESMs. Of course, focusing 
on developing transferable AI methods will allow ESMs to share newly developed hybrid 
models, test them, and swap different representations of similar processes. 
 

2.3.3  Advancements in AI 
 
The above opportunities would not be possible without advancements in AI. This calls for the 
creation of a center to enable model-data integration, develop an easy-to-use data assimilation 
network, and bring together AI/ML, ModEx, ILAMB, ESSDIVE, ARM, NEON, NGEE, NOAA, 
USGS, LTER, and ESMs. We are still in the early stages of understanding the full possibilities of 
AI, and since applications for Earth system modeling can span a wide array of activities, a 
variety of methods and techniques employing AI/ML will be needed. Coordination of data, 
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modeling, and AI advances will accelerate knowledge-informed learning from AI. It will also 
lead to discovery of when to value physics and process models, or when hybrid approaches or 
pure ML should be used.  
 

2.4  Research Priorities 

2.4.1  Data Preparation Strategy 
 
AI/ML models can learn high-dimensional relationships between input variables (e.g., climate 
forcings) and output variables of interest (e.g., plant productivity, soil carbon flux). The high 
dimensionality (and often nonlinearity) of problems requires (1) a large amount of data 
samplings for training purposes, and (2) diverse data observed under different circumstances 
(normal, extreme, control, manipulated conditions) in order to achieve stable and smooth 
predictive relationships. One of the research challenges is a lack of datasets for those terrestrial 
ecosystem processes, including water, energy, carbon and nutrient cycles, and disturbances. 
Therefore, the research priority is to tackle the data scarcity in many innovative ways. 
 
First, data synthesis research is needed to systematically survey available datasets that measured 
different aspects of the ecosystem processes ranging from in situ observations to large-scale 
remote sensing products, from high-frequency sampling (e.g., eddy covariance data) to long-term 
sparse samples (e.g., tree rings), and from more easily measurable near-surface processes to 
measurements of soil dynamics (e.g., microbial processes). And, more importantly, the data 
survey will give us a better understanding of which type of datasets are not available yet but 
critically important for training data-driven AI/ML land models, so that future data collection 
efforts could be more strategically targeted on those specific datasets.  
 
Second, synthetic datasets can be extremely useful for pre-training AI/ML models and reduce the 
requirements for real measurements in order to obtain a stable predictive model. Synthetic 
datasets could be generated from modeling studies, such as model intercomparison projects or an 
individual land model. Particularly for disturbance events, the observations are sparse by nature. 
In that case, the AI/ML models pre-trained on synthetic datasets will become more reliant. For 
example, a transfer learning approach was adopted to develop the ML module of wildfire 
processes within E3SM (Zhu et al. 2022). The ML wildfire module was first pre-trained with 
E3SM process-based, model-generated outputs of burned area and then fine-tuned with the 
Global Fire Emissions Database (GFED) burned area product (Randerson et al. 2017) at global 
scale. The ML wildfire model was proven to be 90% more accurate than the process-based 
model and with two orders of magnitude reduction in model parameterization time. Studies that 
aim to generate, standardize, and archive synthetic datasets, as well as analyses and applications 
of the synthetic datasets to improve ML models, need to be prioritized for land modeling.  
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Third, data augmentation techniques are promising in terms of generating “new” datasets using 
real but sparse data samples. For example, spatial datasets (satellite images) could be augmented 
with simple mathematical operations (cropping, flipping, rotation, etc.), which create new 
versions of the spatial datasets and artificially increase the volume of a training dataset. 
Furthermore, super-resolution techniques could improve the quality of existing data and generate 
high-resolution representation of the observed processes.  
 

2.4.2  Development of ML Models That Are Appropriate for Earth System Predictions 
 
Earth system predictions have traditionally relied on process-based models (e.g., CMIP6) that 
simulate energy, water, carbon, and nutrient cycles among land, atmosphere, ocean, sea/land ice, 
and human components. However, the models’ predictability is often limited by (1) incomplete 
knowledge of relevant processes, (2) highly uncertain model parameters, (3) coarse spatial 
resolutions, and (4) expensive computational cost for large simulation experiments. Recent 
advances in ML provide great potential for overcoming many aspects of these limitations. The 
intensive integration between ML and process-based modeling will be critical for the 
improvement of Earth system predictions. We have identified the following research areas as 
high priorities for the integration of ML and process-based modeling for better Earth system 
predictions.  
 
Benchmarking and bias correction: First, ML models can automatically learn useful patterns and 
relationships from observational data, without having complete knowledge of the processes 
(Hengl et al. 2017). The identified patterns and derived correlative or causal (both linear or 
nonlinear) relationships could in turn serve as prior knowledge to further improve the theory and 
mathematical structures of process-based models. These patterns and data-derived relationships 
can also be used for model benchmarking, helping identify model deficiencies and bias and 
ultimately leading to future model development. Furthermore, having some prior knowledge 
(both quantitative or qualitative) will favor the ML model and help it derive more robust patterns 
or relationships (Kashinath et al. 2021).  
 
Parameterization: Many of the parameters in land models are very uncertain, which could be due 
to scarcity of observational data, measurement errors, and simplification of process 
representations. ML can help improve the coarse-scale parameterizations in land models through 
optimizing parameters using observation data or detailed and high-resolution models. ML can 
also help make these parameters in ESMs more dynamic by allowing these parameters to be 
learned from appropriate sets of statistical covariates, rather than from fixed values for each plant 
function type (Reichstein et al. 2019). This ML-based parameterization has been used in 
hydrology and atmospheric modeling (Beck et al. 2016; Schirber et al. 2013; Gentine et al. 2018)  
and could help improve parametrizations in land surface models in ESMs. 
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Surrogate modeling: Land surface models are getting increasingly complicated in terms of 
processes and spatial and temporal resolutions. The high computational cost of running these 
models on the global scale has become a big technical challenge, hindering our capability for 
further model development, calibration, and uncertainty quantification. Emulation of the full 
model or surrogate modeling can greatly reduce the computation cost while maintaining the 
accuracy of model outputs. Surrogate modeling can help speed up sensitivity analysis and allow 
for more efficient model parameter calibration. Surrogate modeling therefore has gained traction 
in the land surface community in recent years (Sinha et al. 2021; Lu and Ricciuto 2019; Zhu et 
al. 2022). Further development of ML algorithms and more efficient surrogate modeling will be 
critical for future land model parameterization and uncertainty quantification. 
 
Hybrid modeling: Some of the processes in land models are very computationally expensive. 
These processes can be replaced by a machine learning model if sufficient observations are 
available for model training. Hybrid modeling, combining physical modeling and ML, can be 
computationally efficient while maintaining the strengths of physical modeling. Some of the 
processes that are represented in a more empirical way can also be replaced with ML models if 
enough observational data exist.  
 

2.4.3  Bridging ML Experts and Domain Scientists 
 
Knowledge gaps exist among ML experts and Earth system domain scientists, and these have 
significantly hindered the development and applications of ML techniques to improve Earth 
system predictability. Therefore, we urgent need to bridge the gaps to: (1) educate domain 
scientists to learn the advantages and limitations of ML techniques; (2) facilitate ML experts to 
better understand the physics and principles associated with Earth system predictions; and 
(3) foster close collaborations between ML experts and Earth system domain scientists. 
 
Nowadays, Earth system scientists not only need to be adept at the traditional process-based 
modeling tools but also ought to be trained in the advanced data science and ML techniques. 
Enabling domain scientists to perform ML-based research has tremendous benefits as domain 
scientists often have deep understanding of the major issues associated with poor Earth system 
predictability and where the largest prediction uncertainty is coming from. However, domain 
experts may have limited access to advanced ML techniques that can help break through the 
known issues of Earth system predictions. Oftentimes, domain scientists tend to apply simple 
off-the-shelf algorithms (e.g., random forest) that are far away from the state-of-the-art ML 
techniques; meanwhile, the ML research domain has been fast evolving, new ML tools emerge 
quickly, and existing ML tools also iterate and improve. In addition, there are often steep 
learning curves for domain scientists in terms of learning ML techniques, including using 
different programming languages (e.g., python versus Fortran) and different mathematical 
representations (e.g., physical processes versus data-based rules), as well as in the diversity of 
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ML modeling techniques. Training programs, workshops, and discussions are urgently needed to 
keep domain scientists updated on the-state-of-the-art ML research and necessary analytic tools 
that are relevant to Earth system prediction problems. Also, creating useful tools (e.g., software, 
interfaces) that lower the bar for domain scientists to learn and use ML models is highly 
desirable. 
 
Collaboration among domain scientists, modelers, experimentalists, computational experts, and 
ML experts should be encouraged to maximize the benefits of AI/ML related to improving Earth 
system predictability. That should involve two-way communications and discussions that both 
help domain scientists to learn advanced ML techniques as well as facilitate ML experts to better 
understand the physics and principles associated with Earth system predictions. Creating such a 
collaborative and supportive research environment will need more resources (e.g., funding 
support, workshops) and allocation toward collaborative projects among ML experts and domain 
scientists to tackle the critical Earth system prediction problems. 
 

2.5  Short-term (<5 years), 5-year, and 10-year Goals 

2.5.1  Short-term Goals (<5 years) 

2.5.1.1  Data Collection and Organization 

Short-term goals in this area include efforts to:  
● Start a data collection process to build a standardized data repository that connects 

disciplines and data sources that span the full breadth of space and time.  
● Build the repository with consistent terminology and clear geospatial and metadata 

starting with currently available data and growing over time.  
● Identify potential datasets (including nontraditional data sources) to build a 

comprehensive database for exploration. Examples include soil samples and surveys, 
microbial analysis and sequences, precision agriculture soil conditions and productivity, 
eddy covariance data (AmeriFlux, FLUXNET), and long-term experiments (LTER, 
ARM, NGEE, FACE, and NEON). Data should also include remote sensing data from 
satellites; ground observations from field measurements (long and short term); point and 
regional data; historical data from surveys; value-added products; proxy data such as 
human digital trace; and modeling output from ESMs, empirical models, or hybrid 
models.  

● Include partnerships between private and public sectors for sharing data.  
● Build trust that assures data privacy and ease of use while encouraging a wide variety of 

users to participate in uploading and using data. 

2.5.1.2  Partnerships and Workforce Development 

Short-term goals in this area include efforts to: 
● Connect disciplines that normally work separately, including computational experts, 

domain experts, and experimentalists.  
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● Establish partnerships between entities, including national laboratories, universities, 
industry, and the private sector.  

● Increase AI education through training and hiring practices to ensure that students, 
postdocs, and scientists experience a variety of AI methods and techniques.  

● Establish partnerships between public and private industry and facilitate open 
communication between AI and domain scientists.  

2.5.1.3  Establish Future Directions of AI 
 
Regarding short-term goals in this area, we are in the early stages of understanding what is 
possible with AI/ML, so the focus should be on developing a roadmap for the future of AI. We 
can start to build a foundation of understanding what AI techniques work and which ones fail. 
On the modeling side, effort should focus on building models with more modularity to allow 
transferable AI for different processes. We should select a few ideal processes to use as test cases 
for AI, and identify which processes are better suited as process or mechanistic approaches. Fire 
processes make an ideal first case study, and many aspects of fire can be explored with AI 
including fire prediction, impacts to the hydrological cycle, and feedbacks to biogeochemistry. 

2.5.2 Mid-term Goals (5 years) 

2.5.2.1  Data Exploration  

Regarding mid-term goals in this area, we need to establish methods to mine and explore the 
database efforts underway to help discover gaps in both observed data and knowledge of 
processes, scalability, and emergent properties. Initial data exploration will serve to find and 
bridge gaps in the spatial and temporal frequency of data collection, ensure that data 
classification is consistent across science domains, and address data scarcity. This process can 
lead to discoveries in experimental design, such as placement of new sensors, automation 
techniques for data collection, and/or changes in measurement frequency. Mining data can detect 
proxies to in turn detect extreme events, disturbance, or legacy or understand the role of human 
behavior and decision-making on the land use and land cover changes. Furthermore, we can 
determine the scale of observations (spatial and temporal) needed to capture large-scale or long-
term processes, for example, what frequency of soil organic carbon (SOC) measurements are 
needed to predict carbon storage processes.  
 

2.5.2.2  Data Preparation 
 
Regarding mid-term goals in this area, new and emerging datasets should be integrated such that 
data are AI ready. Data should be identified for use including data for AI training, data for AI 
testing, data for model assimilation, and data for model benchmarking. We will need to generate 
synthetic data that can be used for testing ML models. This will be particularly important for 
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extreme and rare events such as fire, floods, drought, and disturbance, and can also be used for 
land use land cover change prediction. 

2.5.2.3  Establish Test Cases for AI Methods 
 
During this stage, implementing a variety of AI techniques should be completed, which will 
increase confidence through experience for a range of land processes. The approaches should be 
used to reduce model and parameter uncertainty and identify gaps in knowledge (examples of 
early test cases). We also need to invest in new AI methodologies such as the capability of 
inverting prediction intervals to obtain confidence intervals. Conformal prediction and risk-
controlling prediction sets now permit accurate UQ with virtually any black-box AI architecture; 
however, we cannot yet invert the resulting prediction intervals to obtain confidence intervals on 
relevant parameters. Solving this problem will transform data science with seismic impacts on 
the statistical and modeling communities. 
 

2.5.2.4  AI Integration in Models 
 
Furthermore, we need to begin to explore how to integrate AI into models and develop hybrid 
modeling approaches using transferable AI methods. These models have been developed for a 
variety of land processes including crop yields, evapotranspiration, soil moisture, momentum, 
and heat fluxes (Pal and Sharma 2021). However, scaling these ML models from site to global 
scales requires additional remote sensed data. Also, these methods should be expanded to other 
components of the land model, such as human decision and behavior, land use land cover 
change, allocation, and streamflow. Finally, we must investigate when domain knowledge should 
be integrated with AI and when pure AI is sufficient to represent processes.  
 

2.5.3  Long-term Goals (10 years) 
 
Overall, an infrastructure in the form of an institute should be established for long-term support. 
This structure will contribute to the development of a shared community effort to further the 
advancement of AI. An institute provides a means for communication and network building 
between science domains and AI experts. The institution will also work to harmonize global 
datasets with consistent terminology and techniques to bridge gaps in spatial and temporal 
observations. As experience grows, we will demonstrate successful AI/ML techniques including 
scaling and emulators, understand processes, and generate new hypotheses about ecosystems’ 
behaviors and responses. Finally, these ML models will be integrated with confidence into a 
variety of ESMs with transferable AI.  
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3  Hydrology 

Authors: Charuleka Varadharajan (LBNL), Scott L. Painter (ORNL), Jitendra Kumar (ORNL), 
Chaopeng Shen (Penn State Univ.), Dan Lu (ORNL), David Moulton (LANL), Xingyuan Chen 
(PNNL), Mohammed Ombadi (LBNL), Dapeng Feng (Penn State Univ.), Soumendra Bhanja 
(ORNL), Helen Weierbach (LBNL), Wenping Tsai (Penn State Univ.), Jared Willard (Univ. of 
Minnesota/LBNL), Wei Zhi (Penn State Univ.), Alexander Sun (UT Austin) 
 

3.1  Introduction 
 
As an Earth science discipline, hydrology is concerned with “understanding the movement of 
water at all scales and environments and its interaction with climate and life on Earth” (National 
Research Council 2012). The DOE’s interests in hydrology revolve around the Earth system and 
integrated water cycle considering topics such as coupling between the water and carbon cycles, 
decadal projections accounting for environmental change, extreme water cycle events, and 
combining models and observations to advance fundamental process understanding 
(U.S. Department of Energy Office of Science 2018). In understanding the potential role of ML 
and AI in hydrologic science, it is important to make the distinction between hydrology as an 
operations-focused engineering endeavor versus a fundamental yet application-inspired Earth 
science discipline. From an operations perspective, hydrology has traditionally focused on 
applications like flood resilience and protection of water supply for human and agricultural uses 
and energy production. While significant effort has been made on incorporating AI and ML 
(AI/ML) in an operational context, less progress has been made on its use to advance hydrologic 
science as a component of the broader Earth system, the focus of this workshop report. 
 

3.2  Grand Challenges 
 
Building on earlier synthesis reports (National Research Council 2012; Blöschl et al. 2019), we 
identify several persistent grand challenges in hydrology that may benefit from AI/ML. Several 
of these challenges also present exciting research opportunities and priorities for DOE, which are 
described in subsequent sections of this chapter. Figure 3-1 depicts the opportunities using ML 
as they relate to the grand challenges.  
 

3.2.1  Exogenous Change 
 
Regardless of whether the perspective is local, regional, or global, the hydrologic system is 
strongly influenced by exogenous variables such as climate forcing, land use and land cover, and 
water management practices, which are themselves subject to significant change. Understanding 
exogenous change and its effect on the hydrologic system is a central challenge in hydrology as a 
terrestrial science. Among the many fundamental questions related to exogenous change are the 
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following: Where is the regional hydrologic cycle expected to intensify in a warming climate and 
what are the consequences of that intensification? Have abrupt transitions (tipping points) 
occurred or will they occur? What are the consequences of land-cover and land-use change on 
groundwater recharge and other water fluxes? 
 

 
Figure 3-1. Machine learning (ML), statistics, and information theory have been used in various 
hydrological applications for decades, and recent advances have started to blend ML with process 
models. The use of ML in data collection, curation, and models can help address grand challenges in 
hydrology such as scaling, integrated modeling that includes the effects of human activities, and 
identifying the effects of extreme events on the hydrologic system (Source: Lawrence Berkeley National 
Laboratory. Figure adapted with permission from Xu and Liang 2021 © 2021 Wiley Periodicals LLC). 
 
ML-based tools have significant potential as components in broader strategies by addressing 
such questions. As described further in section 3.3, feature extraction and detection techniques 
can be used to identify the exogenous change and hydrologic responses. Causal inference 
methods can be used to identify whether these external factors drive changes in the hydrologic 
system (Runge et al. 2019). Finally, regression analysis using data-driven or hybrid models can 
be used to understand and simulate the magnitude and duration of impacts resulting from the 
exogenous change on the hydrologic system. Current examples of the use of ML to address these 
challenges include change detection in land-cover/land-use patterns (Shi et al. 2020), early 
warning signs for tipping points (Bury et al. 2021), and attribution of climate impacts (Callaghan 
et al. 2021).   
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3.2.2  Spatial-temporal Variability and Scaling 
 
Heterogeneity is ubiquitous in hydrologic systems across all scales, but typically not well 
characterized at the relevant scales of interest. Additionally, a long-standing fundamental 
challenge exist in understanding the relationship of heterogeneity in properties or hydrologic 
state variables and spatial variability in evaporation and surface and subsurface fluxes of water 
and waterborne material likes carbon, nutrients, sediments, and contaminants. Underlying this 
broad challenge are questions about the nature and distribution of flowpaths, the relationship 
between fine-scale processes and catchment-scale behavior, and the existence of catchment-scale 
theories. In addition to being of fundamental interest, these questions have practical implications 
about, for example, prediction in unmonitored basins (PUBS). Regional- to continental-scale 
predictions of river flow and water quality (e.g., temperature, salinity, nutrients, and 
contaminants) is one example of how spatial variability has hindered scaling. The treatment of 
flow and biogeochemistry in current models is limited to smaller scales, and bridging to larger 
regional scales is computationally challenging given the diversity of processes involved and 
complexity of the reactions to be represented at desired resolutions (Steefel 2019; Steefel et al. 
2021). The hydrologic system is also subject to significant temporal variability, which can 
interact with spatial variability to determine emergent behavior at catchment scales. A 
particularly challenging aspect of temporal variability and its effect is hydroclimatic extreme 
events (floods, droughts, heat waves). Fundamental and societally relevant questions related to 
extreme events include detection, attribution, and characterization; how their distributions are 
changing due to global warming; how land-use and land-cover modulate their impacts; and how 
multiple extreme events interact (i.e., compounding events) to amplify consequences or trigger 
regime shifts that alter system behavior.  
 
Machine learning offers significant potential to advance our understanding of transferability and 
spatial-temporal scaling in the terrestrial hydrologic system. For example, the long-standing 
challenge of runoff PUBS (Sivapalan 2003) has typically been approached using statistical 
methods for extrapolating observations from well-monitored catchments, including similarity-
based, regression-based, and signature-based regionalization techniques (Guo et al. 2021). New 
ML approaches including deep learning models (e.g., long short-term memory [LSTM] and its 
variants) and transfer learning have the potential to address the PUBs challenge, not just for 
runoff but for several other variables with long-term datasets. Supervised and unsupervised 
classification methods have the capacity to uncover previously unknown patterns of catchment 
similarity, particularly when used with new datasets that include human activities. The inclusion 
of ML into Earth system models can address another hydrological grand challenge, that is, the 
development of continental-scale models for hydrobiogeochemical predictions that work across a 
diversity of catchment types, at decision-relevant spatial and temporal resolutions. AI/ML for 
detection and prediction of extreme events is challenged by lack of training data but is a 
promising research topic that can benefit from new ML techniques (chapter 8, Climate 
Variability and Extremes). 
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3.2.3  Integrated Modeling 
 
Hydrologists have traditionally confronted the enormous process and spatial complexity of 
hydrologic systems by splitting into component subsystems (e.g., groundwater, surface water, 
ecosystems) that can be more easily understood and modeled. Such a reductionist approach is 
clearly necessary for scientific progress, but leaves significant scientific uncertainties associated 
with the resulting spatial and discipline interfaces. Developing holistic syntheses generally and 
integrated models specifically that span those interfaces has been a long-term challenge. Modern 
software and high-performance computing have resulted in powerful physics-based integrated 
models (Maxwell, Condon, and Kollet 2015; Painter et al. 2016) that couple surface water, 
shallow groundwater, and land surface processes. However, using those integrated models at 
societally relevant scales while still honoring process understanding developed at much finer 
scales remains a difficult challenge. Calibration and uncertainty quantification of these models is 
computationally expensive, potentially requiring hundreds of thousands of forward model 
simulations. 
 
ML has considerable potential to help with the challenge of integrated modeling by improving 
process models, for example, by providing accurate surrogate models for component subsystems, 
data-driven representations for subsystems with immature or uncertain process representations, 
or more efficient approaches for inverse modeling and uncertainty quantification. In particular, 
ML-based surrogate modeling approaches can speed up model run times and reduce 
computational costs (Willard et al. 2020). Conversely, process models can improve ML models 
by incorporating finer-scale process knowledge into data-driven models implemented at coarser 
scales, providing training data particularly in situations with sparse data, enabling more robust 
predictions under non-stationary conditions, and improving the explainability of black box 
models. The dichotomy of “process-first” and “AI-first” approaches for integrating mechanistic 
and ML codes was a persistent theme in the workshop, and opportunities for both paths are 
described below. 
 

3.2.4  Measurements and Data 
 
Hydrology is a data-limited science. Long-term monitoring networks, integrated field 
observatories, and satellites that make use of advances in remote sensing, unmanned aerial 
vehicles (UAVs), wireless networked sensors, hydrogeophysical techniques, and other 
technologies are producing large amounts of data. However, most of those data are either sparse, 
or at the wrong scale to be most useful, or at best indirectly related to quantities of interest, 
hydrologic state variables, and fluxes. Water fluxes and constituents in particular are difficult to 
measure over large areas and difficult to measure in the subsurface at any scale. Sensor 
technologies to collect high-resolution data are limited to a few variables, and their cost as well 
as the lack of automated quality assurance methods limits the extent to which these can be 
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deployed (Kruse 2018). The challenges of data sparsity are exacerbated by the fact that many 
observations are currently spread across multiple databases that lack interoperable standards. A 
bottleneck for applying ML to real-world datasets is being able to discover and integrate data 
located across numerous databases, which are stored in different formats and units.  
 
AI/ML has the potential to enable autonomous technologies that collect measurements over 
much greater spatial areas than is currently possible with higher spatial and temporal resolution. 
Advances in edge computing, 5G networks, and ML-based classification and regression can be 
used to optimally design sensor networks, drive data collection when and where it is needed, 
quality-check data in near real-time, and create imputed data products. Natural language 
processing (NLP) can enable advanced search and harmonization to create curated, AI-ready 
datasets. The long-standing approach to address the problem of unobserved variables is to 
combine proxy data – observations that are indirectly related to quantities of interest – with 
sparse, high-quality data. ML is well suited to that problem of data fusion, particularly for 
multimodal data (Gao et al. 2020), and offers the potential to make better use of coarse, sparse, 
and indirectly related information. 
 

3.2.5  Interfaces with Human Systems 
 
In the age of the Anthropocene, human actions are responsible for major changes in the water 
cycle driving regime shifts across hydrologic systems (Abbott et al. 2019; Gleeson et al. 2020). 
Traditionally, hydrologists have represented the effect of human activities through scenario-
based analyses that represent human activities as external forcings to the hydrologic system. This 
approach is problematic for long-term projections because it neglects bi-directional interactions 
between the human and hydrologic systems. Developing a predictive understanding of the 
“human-water system in a holistic sense” (Blair and Buytaert 2016), accounting for bi-
directional interactions is the subject of socio-hydrology (Sivapalan, Savenije, and Blöschl 2012; 
di Baldassarre et al. 2013; Elshafei et al. 2014) and an important challenge for hydrologic 
science.  
 
Data-driven approaches are central to this emerging field (Mount et al. 2016), for example, by 
using surrogate approaches to generate projections for different scenarios, employing 
reinforcement learning to drive decisions, and using data from observed variables to implicitly 
incorporate the outcomes of human actions into hydrological models. ML applications in this 
space are also described in chapter 9, Human Systems and Dynamics. 
 

3.3  State-of-the-Science 
 
There has been a long history of using ML in hydrologic sciences. Several recent reviews 
comprehensively capture the state-of-the-art scientific ML, deep learning, and knowledge-guided 
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ML that have been used in numerous hydrologic studies (Shen 2018; Sun and Scanlon 2019; 
Shen and Lawson 2021; Xu and Liang 2021; Varadharajan et al. 2022). These studies have used 
ML for a variety of hydrologic applications ranging from precipitation estimation and forecasting 
(e.g., estimation of rainfall from radars, creation of high-resolution precipitation products), 
rainfall-runoff modeling (e.g., streamflow predictions), quantification of ecohydrological fluxes 
(e.g., evapotranspiration), estimation of subsurface storage and flow (e.g., groundwater, soil 
moisture), water quality predictions (e.g., of stream temperature and chemical properties), 
determining impacts of hydrological events on human systems (e.g., urban flooding), and studies 
of complex interrelated hydrologic systems (e.g., surface-groundwater interactions and terrestrial 
aquatic interfaces). These studies have used a variety of ML methods including (1) classical 
models such as support vector machines, ensemble-tree approaches (random forests, XGBoost), 
artificial neural networks (ANNs), and hierarchical clustering; (2) deep learning models such as 
convolutional neural networks (CNNs), several variants of long- and short-term memory 
networks (LSTMs), multilayer perceptrons (MLPs), and generative adversarial networks 
(GANs); and (3) physics-constrained ML that couple process models (e.g., for stream flow and 
temperature) with machine learning in various ways. A brief summary of some hydrological ML 
applications is presented in Table 3-1. This is not meant to be a comprehensive list and covers 
only a sampling of topics to illustrate recent advances in ML for hydrology. Additional studies 
are described in the context of research opportunities in section 3.4. 
 
Table 3-1. Synthesis of recent advances in AI for hydrology. 

Topic Example AI Application(s) and Related Work(s) 

Regional to 
continental 
modeling  

● Streamflow and temperature forecasts using LSTM and its variants (Kratzert et al. 
2018; Feng, Fang, and Shen 2020; Rahmani et al. 2020), graph neural networks 
(Zhao et al. 2020; Jia et al. 2021; Sun and Tang 2020) 

PUBS ● Streamflow and temperature predictions using LSTM and its variants (Kratzert et al. 
2019; Rahmani et al. 2021; Li et al. 2022), ensemble classical ML approaches 
(Weierbach et al. 2022) 

Data Acquisition ● ML-assisted UAV for soil moisture (Araya et al. 2021) 
● CNNs for river stage estimates from camera imagery (vanden Boomen, Yu, and Liao 

2021) 
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Table 3-1. (Cont.) 
Topic Example AI Application(s) and Related Work(s) 

Variable/ 
Parameter 
Estimation 

● CNNs, conditional GANS for precipitation estimation from remote sensing 
(Hayatbini et al. 2019; Sadeghi et al. 2019), Resnet CNN for precipitation estimation 
from radar measurements (Chen and Chandrasekar 2021) 

● Physics-informed neural networks for subsurface parameter estimation (Tartakovsky 
et al. 2020)  

● Global 30-min evapotranspiration estimates using random forest (Bodesheim et al. 
2018) 

● Estimation of subsurface properties from streamflow using DNNs and integrated 
hydrology models (Cromwell et al. 2021) 

Downscaling and 
Imputation 

● Attention-based CNNs for precipitation downscaling (Sun and Tang 2020), random 
forest for imputation of missing precipitation data (Mital et al. 2020) 

● LSTM for Soil Moisture Active Passive (SMAP) soil moisture estimates (Fang et al. 
2017) 

Hybrid/Surrogate 
Modeling 

● Short-term forecasts of water temperature pre-training hybrid-LSTM with a process 
model (Read et al. 2019; Jia et al. 2021; Zwart et al. 2021), model outputs as inputs 
to LSTM (Konapala et al. 2020) 

● Differentiable parameter learning coupling a neural-network-based parameterization 
scheme to a process-based model (Tsai et al. 2020)  

● Streamflow predictions using hybrid unsupervised ML non-negative matrix 
factorization with k-means cluster (Fleming, Vesselinov, and Goodbody 2021) 

● Neural network model symmetry (Daw et al. 2020) 

Knowledge 
Discovery/Feature 
Detection 

● Surface-groundwater fluxes using CNN and other methods (Moghaddam et al. 2022)  
● River network classification using CNN with different optimizers (Donadio et al. 

2021) 
● Landscape attributes affecting streamflow using LSTM with watershed attributes 

(Kratzert et al. 2019) 
● Numerous works using random forest/XGBoost feature importance to identify 

primary factors influencing the variable of interest 

Hydrological 
Extremes Detection 
and Impacts 

● Flood detection using ANN, support vector machines (SVMs), MLP, random forest, 
fuzzy inference systems, wavelet NN, and ensembles (Mosavi, Ozturk, and Chau 
2018); conditional density networks (Cannon 2012); LSTM (Frame et al. 2021); and 
modified training datasets or loss functions (Fleming et al. 2015; Xie et al. 2021) 

● Harmful algal bloom detection (HABNet) with CNN+ (LSTM/RF/SVR) and remote 
sensing inputs (P. R. Hill et al. 2020) 

Information theory 
and causal analysis 

● Information entropy for identifying hydrologic similarity (Loritz et al. 2018) 
● Ecohydrologic responses to precipitation using temporal information partitioning 

networks (Goodwell et al. 2018) 
● Causal inference PC algorithm for estimating drivers of evapotranspiration (Ombadi 

et al. 2020) 

Uncertainty 
Quantification 

● Bayesian LSTM for UQ (Dan Lu, Konapala, et al. 2021) 
● Permutation feature importance on groundwater-level forecasts for MLP with 

surrogate model-based hyperparameter optimization (Sahu et al. 2020) 
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Table 3-1. (Cont.) 
Topic Example AI Application(s) and Related Work(s) 

Data Products ● Meteorological products: Daymet (Thornton et al. 2021), PRISM (PRISM Climate 
Group 2019), NLDAS (Xia et al. 2012), reanalysis 
(https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5), PERSIANN 
(https://chrsdata.eng.uci.edu/) 

● Rivers and watershed products: CAMELS (Addor et al. 2017), GAGES-II (Falcone 
et al. 2010), StreamCat (R. A. Hill et al. 2016) 

● Evapotranspiration: FLUXNET (Pastorello et al. 2020) 

Hydrology 
Workflows and 
Tools 

● Data Integration: CUAHSI HIS (Horsburgh et al. 2015), BASIN-3D data broker 
(Varadharajan et al. 2022) 

● Model-data integration: Watershed workflow for ATS model 
(https://github.com/ecoon/watershed-workflow/)  

 

3.4  Experimental, Data, and Modeling Opportunities 
 
We provide selected examples of opportunities for transformative scientific advances in different 
fields of hydrology using AI/ML that were identified through this workshop. This is not intended 
to be an exhaustive list. Instead, these examples illustrate the types of opportunities identified for 
a few major themes: experiments and data collection; data curation, fusion and imputation; data-
driven and hybrid modeling; knowledge discovery and transferability; and model-data co-
development.  
 

3.4.1  Experiments and Data Collection 
 
Data-driven models and particularly deep learning models need large amounts of high-resolution 
data. New and continued data acquisition of important variables is essential to advance the use of 
AI/ML for hydrology. There are numerous opportunities to use ML to improve data collection by 
either direct or proxy measurements. These include approaches to collect new measurements of 
variables of interest (e.g., nutrients) across heterogeneous landscapes at much greater scales and 
resolutions through the use of automated ML-assisted technologies such as next-generation 
sensor networks, camera and video imagery processed using mature computer vision methods, 
autonomous UAV (Song et al. 2017; Araya et al. 2021), mobile aquatic drones (Matos and 
Postolache 2016), and robotics (e.g., Figure 3-2). Classification methods that combine different 
data layers can be used to determine optimal measurement strategies and sampling network 
design (Wainwright et al. 2022). Other ML approaches (e.g., active or reinforcement learning) 
combined with edge computing could be used to guide autonomous instrumentation in near real-
time to collect optimal observations that capture processes of interest, such as during an 
anomalous event or across the spatial gradients encountered at interfaces or ecological control 
points (i.e., hot spots). Surrogate ML models serving as “soft sensors or electronic noses” can 
also be used to make predictions of variables that are difficult to measure directly using proxy 
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measurements of easily observable variables (Paepae, Bokoro, and Kyamakya 2021). Finally, 
ML approaches can be used to automate quality assurance and quality control (QA/QC) of data 
streams in near real time moving beyond current semi-automated statistical and rule-based 
methods. Studies using statistical, ML-based anomaly and change-point detection algorithms for 
hydrological measurements are mostly bespoke demonstration applications for small-scale 
datasets, and there is potential to scale existing methods to larger datasets from sensor networks 
or explore the use of newer algorithms such as hierarchical temporal memory networks (Wu, 
Zeng, and Yan 2018; Cho et al. 2020). Quality-checking frameworks that incorporate outlier 
detection and imputation algorithms are being applied for other fields such as electric grid 
monitoring and have potential for use in Earth sciences as well (Stewart et al. 2017). 
 

 
Figure 3-2. New ML-assisted technologies can generate high-resolution data at greater spatiotemporal 
scales. Examples shown include high spatial-resolution soil moisture measurements collected using 
(a) ML-driven unoccupied aircraft (Araya et al. 2021), and (b) a robot equipped with a cosmic-ray sensor 
(Source: Reproduced from Araya et al. 2021 and Pulido Fentanes et al. 2020 under Creative Commons 
CC BY 4.0). 
 

3.4.2  Curation, Synthesis, and Imputation to Improve Data Products 

 
Research in AI/ML was revolutionized by the introduction of large benchmark databases such as 
ImageNet (Deng et al. 2009) and MNIST (Deng 2012). Classic examples of curated data 
products that have accelerated ML in hydrology include CAMELS (Addor et al. 2017) and 
FLUXNET (Pastorello et al. 2020), and several new products are emerging such as ResOpsUs 
(Steyeart et al. 2022), TWSA (Adusumilli et al. 2019). Efforts to make data publicly available in 
open repositories with sufficient metadata to enable reuse are important and relevant for ML. 
Additionally, benchmark hydrological and related datasets – that is, curated, high-quality, ready-
to-use data products – for ML model inputs and evaluation need to be developed and maintained 
to include the latest available data (Crystal-Ornelas et al. 2021). Federated databases or data 
discovery and synthesis tools (e.g., Varadharajan et al. 2022) can make it easier to identify 
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relevant databases, to enable more uniform access and intercomparisons of data across providers, 
and to extract information from multiple data sources that have traditionally been analyzed 
separately. Infrastructure to integrate datasets across data sources located in heterogeneous 
environments (cloud, high-performance file systems, databases etc.) and transformed into a 
uniform format would accelerate data model integration. For example, natural language 
processing methods could be applied to discover datasets and enable semantic harmonization. In 
addition, ML holds great potential to improve model inputs or evaluation datasets. For example, 
several gridded climate forcing datasets (Table 3-1) have proven to be valuable for spinning up 
ML and physical model simulations. However, these have different variables, spatial resolutions, 
and uncertainties, making it difficult to merge or compare across products. Furthermore, the 
meteorological products are not sufficiently accurate for high-altitude regions with complex 
terrain (Lundquist et al. 2019; Feldman et al. 2021). Machine learning methods can be used for 
imputation of sparse observations or for downscaling gridded products to create new higher-
resolution datasets (Sun and Tang 2020; Risser, Rhoades, and Mahesh 2021; Mittal et al. 2020). 
Finally, ML can be used for data synthesis to extract the maximum amount of information from 
conventional or nontraditional data sources (e.g., cell phone towers; Overeem, Leijnse, and 
Uijlenhoet 2013). Information retrieval from remote sensing datasets is an example where ML 
has added significant value (Table 3-1). Additionally, deep learning applied to data fusion of 
multimodal (e.g., geospatial, remote sensing, and time-series) datasets (Gao et al. 2020)—such as 
high spatial-resolution satellite imaging available from cubesats such as Planet Labs 
(www.planet.com) with high-temporal time-series from long-term, ground-based sensor 
networks—can generate products with unprecedented spatiotemporal resolution. 
 

3.4.3  Data-driven Models for Prediction 
 
Machine learning has great potential to improve understanding and representation of hydrologic 
subsystems that lack mature and reliable process descriptions. Examples where data-driven 
models can improve or even provide an alternative to process-based representation include 
preferential flow in unsaturated soils, evapotranspiration, and human influences on the water 
cycle. Many of the ML methods that have been used in operations-focused applications could be 
applied directly to this task. For example, recent implementations of data-driven models 
demonstrate their potential for predictions of hydrological variables at basin to continental scales 
including in dammed and unmonitored basins (Table 3-1). Attention-based transformers 
(Vaswani et al. 2017) have superseded LSTM architectures for NLP but have not been broadly 
applied for time-series modeling (Pouchard et al. 2021). While such models are useful for 
operational purposes, their use in Earth system modeling is yet unexplored and requires 
additional considerations. In particular, it is important that the AI/ML methods be interpretable, 
able to accommodate constraints derived from fundamental process understanding, and robust to 
non-stationarity in exogenous variables. Preferential flow is a representative example of how ML 
could be used to develop data-driven representations that could be used alone or as components 
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in integrated hydrological models (Sprenger et al. 2021). The preferential flow of water in 
localized pathways that bypasses significant fractions of the soil porous medium is a widely 
observed phenomenon in soils that significantly affects response to precipitation events. 
Preferential flow can be the result of macropores (cracks, biopores) or unstable “fingering” in 
coarse soil. Despite its known importance, capturing the effect of macropore preferential flow in 
catchment-scale models has proved to be challenging. In a recent review, Jarvis, Koestel, and 
Larsbo (2016) note that empirical process understanding developed from high temporal and 
spatial monitoring at catchment scales has advanced significantly and is now outpacing the 
ability to represent the process in models. These new datasets and sources of data are ripe for ML 
applications. Indeed, some initial steps have been made in that direction. For example, Koestel 
and Jorda (2014) applied random forest regression to a meta-dataset to identify soil properties 
and environmental conditions that trigger preferential flow. It is envisioned to go beyond that 
analysis of controlling variables to build ML-based, data-driven representations of preferential 
flow that can be used as components in catchment-scale integrated hydrological models. Success 
would address one of the most persistent challenges in catchment hydrology – how to tractably 
represent the effects of preferential flow. 
 

3.4.4  Integration with Process-based Models  
 
Several opportunities exist to more deeply integrate machine learning into hydrological models 
such as the use of surrogate models for accelerating simulations, subgrid parameterizations for 
use in larger models, use of hybrid ML-process models to improve robustness and accuracy, and 
integrated model hierarchies (Collins 2021; Painter, Coon, and Lu 2021; Steefel et al. 2021) 
(Figure 3-3). Advances in software design and high-performance computing have renewed 
interest in models that are “as physically based as possible” (Bierkens 2015), following the 
Freeze and Harlan (1969) blueprint for integrated models. That class of fully resolved physics-
oriented models, which includes ATS (Painter et al. 2016; Coon et al. 2019; Coon et al. 2020) 
and PARFLOW (Maxwell, Condon, and Kollet 2015), combine 3D representations of variably 
saturated subsurface flow, 2D representations of overland flow, and land surface processes. Such 
virtual watersheds are “widely considered to be the gold standard in hydrologic modeling” 
(Fleming and Gupta 2020). Applying this class of models at basin or continental scales remains a 
significant computational challenge, and applications at river basin to continental scales are 
relatively rare. Similar computational demands will be encountered as the global land surface 
modeling community increases spatial resolution, which will require better representation of 
hydrologic processes like lateral subsurface flow (Bierkens 2015). Machine learning has 
significant potential to significantly accelerate those computationally demanding models.  
 
An appealing strategy for accelerating physics-oriented watershed-to-basin models is to not 
repeat calculations for subdomains with similar climate forcings and physiographic properties. 
This strategy based on hydrologic similarity is well suited for ML (see next section), which in 
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the short term could be implemented by first building surrogate models from simulations on 
smaller domains, then combining them in larger-scale simulations. Longer term, it is envisioned 
that this strategy could be implemented dynamically, using AI/ML to replace subdomains of a 
fully resolved simulation with surrogate models on-the-fly, switching back to fully resolved 
simulations if needed (Painter, Coon, and Lu 2021). That approach would require significant 
research and development at the nexus of ML, algorithm design, process-oriented modeling, and 
software design. The resulting capability would be truly transformative, making it possible to 
routinely apply fully resolved, physics-oriented models at river basin scales and enabling, for the 
first time, calibration, sensitivity, and scenario analyses and UQ for virtual watersheds.  
 

 
Figure 3-3. Traditionally river-prediction models have either been mechanistic, process-based codes or 
data-driven models that use ML or other statistical algorithms. There is significant potential to combine 
these approaches to create a new class of physically informed machine learning models that incorporate 
process information and physical consistencies for more accurate and scalable hydrological predictions 
(Source: Reproduced from Fleming and Gupta 2020, “The physics of river prediction,” Physics Today, 
73(7), pp. 46–52. doi:10.1063/PT.3.4523, with the permission of AIP Publishing). 
 
Building a fast-to-evaluate surrogate model needs training data from the high-fidelity hydrologic 
model simulations; however, generating such simulation data at large scales is computationally 
demanding. ML methods can also address this problem, for example, using dimension reduction 
and Bayesian optimization techniques to simplify and optimize the neural network structure (Lu 
and Ricciuto 2019) and Bayesian neural networks (Lu, Ricciuto, et al. 2021) to build accurate 
surrogates with a small amount of training data. Another strategy is a direct and fundamental 
coupling between ML and process-based modeling in a differentiable manner such as in the 
differentiable parameter learning framework proposed by Tsai et al. (2020). This framework can 
be extended to learn better process descriptions and improve hydrologic model performance with 
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the addition of data until it eventually reaches the performance of a purely data-driven model. It 
is important to use ML as a fixed, restricted set of model architectures, but to also leverage it as a 
collection of useful, fundamental techniques and philosophies. Other directions to explore 
include the use of physics-informed neural networks (Raissi, Perdikaris, and Karniadakis 2019) 
for forward modeling, inference of parameters, or constitutive relationships under a limited‐data 
regime (Shen and Lawson 2021).  
 

3.4.5  Data-driven Models for Knowledge Discovery  
 
A topic that is ripe for ML applications is their use to derive insights from data to inform process 
understanding, generate hypotheses, and inform model improvements. For example, the concept 
of similarity mentioned above has been long studied in hydrology. A variety of AI/ML methods 
are available (see, for example, Table 4 of Sun and Scanlon 2019) to classify the landscape into 
subdomains that are expected to have similar hydrologic responses (semantic segmentation) and 
to build surrogate models for subdomains that are not modeled explicitly. (Meta) transfer 
learning methods are being explored to translate models built for well-observed locations to data-
sparse or unmonitored sites, exploiting the power of the meta-learning model to determine 
similarities between sites (Willard et al. 2020). Although a suite of methods has been used for 
identification of hydrologic events including extremes and compound disturbances (Table 3-1), 
there is considerable room for improvement to use ML in this realm, particularly given 
considerations of non-stationary conditions in a future climate (chapter 8). ML can also be used 
to identify ecosystem control points (Bernhardt et al. 2017) and extreme spatial gradients that 
occur along transitions (e.g., terrestrial-aquatic interfaces, urban-natural boundaries) that may 
have an outsized impact on hydrologic functioning. Methods to treat rivers as connected 
networks, such as graph neural networks, and other network analysis methods should be 
considered. Additionally, methods adapted for sparse datasets such as few-shot or one-shot 
learning (Wang et al. 2020) need to be explored further given that hydrological studies are 
almost always data limited. There is a long history of using information theoretic approaches and 
causal inference in hydrology to extract information on relationships between variables (Kumar 
and Gupta 2020), and using such approaches in tandem with ML can be applied to determine 
system responses to different driving factors. Explainable ML tools like Shapley additive 
explanations (SHAP; Štrumbelj and Kononenko 2014), local interpretable model-agnostic 
explanation (LIME; Ribeiro, Singh, and Guestrin 2016), and interpretable LSTM models have 
significant potential to provide insight into the predictions generated by ML models (Lu, 
Ricciuto, and Liu 2022). Notably, more approaches that investigate how deep learning models 
make accurate predictions of hydrological processes (e.g., Lees et al. 2021) are needed, and can 
also provide insights into how these models learn and generalize behavior across diverse 
catchments. Ultimately, the goal is to be able to extract the maximum amount of information 
from the data as is possible (Nearing et al. 2021). Toward this end, some of the more exciting 
approaches attempt to discover governing equations using data-driven methods (e.g., Champion 
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et al. 2019), although these require significant research to become applicable for predictions in 
complex hydrological systems. 
 

3.4.6  Model-data Co-design  
 
Most long-term monitoring networks have been designed and optimized to serve different 
stakeholder needs, which can result in a disconnect between observational data being acquired 
and data needed for modeling. Arguably the best way to improve model predictions is to acquire 
relevant data when and where needed for reducing model uncertainties in an iterative model-data 
design strategy. An example of this approach is Observing System Simulation Experiments 
(OSSEs) that aim to identify how many and what types of observations are needed to reach a 
desired model performance metric without actual observations being available (Masutani et al. 
2010; Zeng et al. 2020). However, OSSEs are limited in their design and could be improved to 
expand beyond using process-based models to also include ML models, which may value a 
different set of observations. Other ML techniques in conjunction with OSSEs such as 
reinforcement learning methods can inform data collection (Hardin et al. 2021; Varadharajan 
et al. 2021), and such approaches should be considered in designing future observations. Edge 
computing for near-real time sampling decisions and connectivity with high performance 
computing centers with 5G or other high-speed networking can accelerate the transfer of 
information between field instrumentation and models. Fast training and adaptive learning 
methods that allow continuous integration or assimilation of data into ML models (Rao et al. 
2021) are needed for successful model-data co-design strategies. This requires not only QA/QC 
but also automated approaches to gap-filling, data harmonization across diverse sensor streams, 
and new ways to represent complex data (e.g., probabilistic graph models) in ML models. 
Software pipelines that enable seamless assimilation of data from sensors into models and 
integration of model output into observational strategies are needed (Cholia, Varadharajan, and 
Pastorello 2021). Finally, uncertainty quantification (UQ) arising from sampling error, 
measurement noise, differences in spatiotemporal scales between data and models, and various 
types of structural and operational model errors must be taken into consideration. Frameworks 
for determining total uncertainties in ML or hybrid-ML models based on techniques such as 
Bayesian approaches or ensembles are needed (e.g., Psaros et al. 2022). The UQ can also be used 
to guide additional data collection in field (or lab measurements) and to advance model 
development. 
 

3.5  Research Priorities 
 
The workshop participants identified several priority activities that could accelerate the 
integration of AI/ML into hydrologic science for data, modeling, and capability development. 
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3.5.1  Data: Enhanced Observations and Improved Products 
 
Data on hydrological processes and their drivers across a diverse range of ecosystems are the 
foundation for both ML-related research and process-based modeling. Participants in this 
workshop identified gaps in several data types, including: (1) precipitation and snowpack 
estimates in high-altitude and high-latitude regions where complex topography and partitioning 
between rain and snow pose significant challenges; (2) subsurface datasets such as groundwater 
levels, soil moisture and other vadose zone measurements, infiltration rates, soil and rock 
properties, etc., which are difficult to obtain and upscale; (3) water quality observations, a 
majority of which are collected using manually intensive sampling and lab characterization; 
(4) datasets at interfaces with steep gradients (e.g., terrestrial-aquatic boundaries and urban-
natural divides) wherein fine spatial resolution is required to capture highly heterogeneous 
processes; (5) human activities such as water use, groundwater withdrawals, etc., which may not 
be publicly available; and (6) observations during extreme events, which are rare by definition 
and also tend to result in poor measurements or data gaps due to sensor failure. Data gaps were 
also identified with respect to the volume of data collectively generated, given that current 
hydrology ML models utilize large-sample, long-term datasets available from networks such as 
Fluxnet (Pastorello et al. 2020), USGS stream gage and water quality measurements, the Natural 
Resources Conservation Service’s SNOTEL (snow telemetry), widely deployed weather stations, 
or remote sensing.  
 
Here we identify three key research priorities related to (1) observations to address data gaps, 
(2) ML-assisted measurements, and (3) model-ready data products. 
 
Addressing Data Gaps across a Wide Range of Ecosystems: Several of the identified data gaps 
are pertinent to DOE interests and could be prime targets for new data collection efforts. To date, 
data obtained from intensive field investigations at testbed sites have been heavily used to 
parametrize and validate process models. However, existing datasets and more broadly this 
approach to data collection may not be sufficient to capture processes across diverse catchment 
types or used directly for ML-based predictions at larger spatial scales. Future measurement 
strategies need to balance the depth of data obtained from measurements of smaller-scale process 
investigations with the breadth of data obtained through large-sample measurements in regional- 
and national-scale efforts (Gupta et al. 2014). Long-term measurements and curated data 
products such as those from the DOE’s Ameriflux network and ARM atmospheric observatories 
are considered of high value for ML research. Other priorities include conducting long-term, 
integrated measurements to address some of the data gaps identified, and developing strategies to 
use data collected from smaller-scale intensive field investigations in large-scale ML models. 
 
ML-Assisted Automated Measurement Technologies: Priority research areas include developing 
new approaches to increase the spatiotemporal coverage and resolution of hydrological 
observations, including the use of autonomous, ML-guided observational technologies 
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(e.g., reinforcement learning), edge computing, and advances in 5G and wireless networking. 
Another priority research area that expands on the current DOE ModEx (model-experiment 
strategy) is the iterative co-design and integration of models and observations. This would result 
in a “self-guiding” capability to assimilate multiscale streaming of diverse data into models, and 
in turn, use of the models to guide field observations in near-real time for optimal data collection 
and resource utilization.  
 
Model-Ready Data Products: Priority topics include: expanding standardized benchmark 
datasets for methods testing and development, such as curated datasets with key hydrologic 
variables like runoff, soil moisture, and groundwater levels; dedicated and automated QA/QC 
and gap-filling capabilities or products that handle the complex problems encountered in diverse 
measurements across a range of ecosystems; and data imputation and synthesis to generate high-
resolution, gridded, model-ready products for a range of hydrologic and driver variables that are 
harmonized in variable nomenclature as well as spatiotemporal resolutions and scales. In 
particular, gridded data products like soil properties, soil thicknesses, and depth to bedrock are 
based on statistical relationships between the quantity of interest and readily observable co-
varying properties, and can be improved using ML. Similarly, gridded evapotranspiration data 
products, derived from satellite observations and sparse ground-based observations, are needed 
for model evaluation. In addition, standardized climate forcing from downscaled ESM 
projections—while correcting for bias and underrepresented extreme events—is envisioned for 
use in integrated hydroterrestrial models to assess local impacts.  
 

3.5.2  Integrated Hydroterrestrial Modeling 
 
There were diverging views among the workshop participants on the relative importance of data-
driven and process-based methods, with some arguing for a predominant role for data science 
and others arguing for combining traditional process-based models with ML. That divergence of 
opinion is likely due to differences in the classes of applications under consideration. Although 
there have been a number of recent papers showing superior performance of ML models over 
process models for hydrologic forecasting, short-term prediction is less likely to benefit from 
incorporating detailed process understanding than, say, efforts to understand consequences of 
climate change over decadal scales. Indeed, the data to support a purely data-driven approach to 
understanding decadal-scale change in a non-stationary climate does not exist in general. 
Although a space-for-time approach can sometimes be used to support a purely data-driven 
approach, that strategy breaks down for the many locations that are expected to experience future 
conditions with no current-day analog. Moreover, many hydrological processes cannot be 
observed well; direct observation of large-scale water flux is largely limited to stream discharges, 
and subsurface fluxes of water are difficult to observe at any scale. Those data limitations and 
the need to account for non-stationarity and potential threshold (tipping point) behaviors mean 
that process-based models will continue to be important for hydrologic science even as the role 
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of ML increases. A key priority then is to have approaches that allow data-driven and process-
oriented approaches to be combined. A variety of such approaches have already been explored, 
but it is important to test those and other emerging ML algorithms in real-world conditions and 
not just theoretical or proof-of-concept cases. Overall, the consensus from this workshop was 
that the coupling of mechanistic and ML codes into an integrated Earth system modeling 
framework is necessary to advance DOE priorities and is a potent target for future research 
regardless of whether the path chosen is “process-first” or “AI-first.” For this, it will be 
desirable to transcend the dichotomy between the two approaches and investigate how data-
driven models and process models can complement and leverage each other for hydrological 
predictions at decision-relevant scales.  
 
Here we identify five research priorities focused on (1) accelerating high-resolution regional-to-
continental scale process-informed models that are applicable across pristine and human-
impacted watersheds, (2) improving subgrid parameterizations of hydrologic processes in large-
scale models, (3) representing hydrological changes caused by extreme events and non-stationary 
conditions under future climate scenarios, (4) using AI/ML for knowledge discovery, and 
(5) improving model interpretability and uncertainty quantification. 
 
Accelerating High-resolution Regional-to-Continental Scale Process-informed Models: Priority 
activities for accelerating process-informed hydrological models include the following: use ML 
methods to improve the accuracy of surrogate models with high-dimensional inputs 
(e.g., meteorological forcings or inflows from upstream catchments) and to reduce the number of 
forward runs required to train such surrogates; pursue tighter integration of surrogate models into 
large-scale simulations to enable on-the-fly construction of surrogate models and on-demand 
switching between process-resolving and ML models; advance AI/ML methods for partitioning 
of large regions into subregions with similar hydrological response; and advance use and 
development of data-driven model architectures and foundational ML methods for large-scale 
predictions with sparse data. A particular focus should be understanding and predictions of 
hydrological (sub)systems that are heavily empirical and lack reliable process descriptions 
(e.g., human-impacted catchments, subsurface with preferential flow pathways).  
 
Subgrid Parameterizations: Important activities for improving parameterizations of hydrological 
processes in large-scale hydrology models include the following: ML-based representations of 
runoff and inundation fraction in permafrost landscapes for use in ESMs, ML-based models for 
lateral subsurface flow and surface flow within ESM grid cells, and representation of subgrid 
depression storage in regional-scale hydrology models. These subgrid parameterizations could be 
developed as surrogates for expensive process-based models or directly from data. 
 
Extreme Events and Non-stationarity: Priority activities for representing extreme events include 
the following: improve AI/ML-based approaches to post-process ESM projections to better 



 

94 
 

represent extreme events (tail distribution correction and downscaling); using ML to improve 
detection and attribution of extreme events; improving the ability to learn from small sample 
sizes; and exploring methods to extrapolate model projections that account for non-stationarity 
under future climate scenarios. A particular challenge is to consider the cascading impacts of 
compound events (e.g., alternating flood and drought conditions). Other priorities include 
modeling the impacts of extreme events on natural and urban systems. 
 
AI/ML for Knowledge Discovery: ML can help improve understanding of the processes 
governing feedback between natural systems and human actions, which will contribute to 
improvements in modeling capabilities. Besides identification of subregions of hydrological 
similarity identified previously, other important topics include using ML and other data-driven 
methods (e.g., causal inference and information theory) to identify relationships between driving 
variables and hydrologic responses, considering river networks and order in determining 
hydrologic functioning, and exploring the importance of interfaces with spatial gradients or 
ecosystem control points on hydrologic behavior. 
 
Building Interpretable Models with Uncertainty Quantification: The priority areas described 
above use ML-based surrogate models or ML-based component models. Quantifying uncertainty 
in those models and constructing them to be interpretable are common priority topics. 
Uncertainty quantification is important to help identify when conditions (climatic or land use) 
are encountered that would render the model inaccurate, and what data we should collect to 
improve model accuracy. Additionally, a priority is to improve the interpretability and 
explainability of ML models, and particularly understand the mechanisms by which classical 
ML/deep learning models learn to make accurate predictions. 
 

3.5.3  Capability Development 
 
There are several barriers to realizing the full potential of AI/ML in the hydrologic sciences, and 
actions to resolve these can be identified. Software tools that allow process-based models and 
ML to be combined exist only at a coarse-grained level. Modular tools that allow for such 
integration at a finer granularity would greatly facilitate numerical experimentation and allow for 
more rapid progress in hybridizing process-based and ML approaches. High-quality training and 
input data are clearly an issue. Combining ML with indirectly related information (proxy data) is 
a promising approach. However, much of the existing data is siloed in isolated data systems, 
making it difficult to combine them to extract the maximum amount of information. Data-broker 
tools to facilitate the discovery, extraction, and fusion of siloed data would be valuable, as would 
the development of standardized benchmark datasets. Cyberinfrastructure advancements are 
needed that bring together the community’s data, model, and analytical capabilities (Figure 3-4). 
Other important needs noted by several participants were workforce development efforts to 
cross-train staff in hydrologic science and in computational AI/ML methods, and the need for 
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future opportunities to spur collaborative engagement between domain and computational 
scientists. 
 
Here we identify four priority research areas to develop capabilities for (1) modeling, (2) model-
data integration, (3) data management and synthesis, and (4) workforce development. 
 

 
Figure 3-4. Data-model and model-data pipelines that include data management tools, software 
workflows to enable data discovery and integration, scaling and transformation of data for model needs, 
and testbeds to enable co-located big datasets that can be fed into models on HPC facilities. Examples of 
technologies that can be used in modeling testbeds include Jupyter notebooks (http://jupyter.org), Docker 
containers (http://docker.com), and tools that enable seamless execution of ML/hybrid models on HPC 
and cloud computing centers (Source: Lawrence Berkeley National Laboratory). 
 
Capabilities for Modeling: Priority areas include developing capabilities to speed up use of ML 
models such as AutoML frameworks (Hutter, Kotthoff, and Vanschoren 2019) with automated 
architecture selection and hyperparameter optimization; creating modeling testbeds and tools to 
enable model ensembles and intercomparisons; and software frameworks that make it easier to 
explore combinations of ML and process-based models. While combinations of ML and process-
based models have been demonstrated at a systems level, software frameworks are needed to 
allow finer-grained integration where both ML- and process-based models are components in a 
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larger system. Availability of mid-range computing and sufficient graphical processing unit 
(GPU)-based computational resources is critical to advance the widespread adoption of ML in 
hydrologic sciences. 
 
Software Workflows and Data-Model Pipelines: Priority directions include developing data-to-
model pipelines that enable integration of observational data with simulation codes, which would 
dramatically improve the efficiency of modeling workflows; expanding the use of modeling 
testbeds to include associated datasets with co-located and covarying observations; and 
developing tools to harness model output to inform measurement collection in a feedback loop. 
 
Data Capabilities: A priority direction is to develop infrastructure and software tools to make it 
easier to extract and combine data from multiple, independent data systems with the DOE and 
across other data sources (including federal agencies). This infrastructure could take the form of 
federated, cloud-based infrastructure or extensions of brokering tools. Separately, efforts to 
create and adopt data standards and interoperability between DOE data systems (e.g., ESS-
DIVE, ARM, ESGF) would make it easier to curate and synthesize diverse data funded by 
different programs. Other priorities include developing tools for data discovery (e.g., ML-
enabled metadata extraction and search capabilities), subsetting, and visualization that lower the 
burden on scientists to obtain the data needed for ML research. 
 
Workforce Development: Priority directions include enabling domain scientists to obtain a deep 
understanding of ML approaches through trainings and attending computational workshops 
(e.g., NeurIPs), creating opportunities to engage cross-functional teams of computational and 
domain scientists, and supporting the building of an international hydrological-ML community 
that can promote the use of ML in hydrological sciences. 
 

3.6  Short-Term (<5 years), 5-year, and 10-year Goals 
 

3.6.1  Short-term (<5 years) Goals 
 
A near-term goal is organizing workshops or other community efforts to help prioritize 
collection, synthesis, and curation of data that would be most valuable for advancing the use of 
AI in hydrology. Expanding standardized benchmark datasets for ML testing and development is 
another. In particular, approaches to obtain data at desired scales and resolutions need to be 
identified and initiated. For integrated hydroterrestrial models, software frameworks that make it 
easier to combine process-based and ML-based models is a near-term goal, as are data-driven 
methods for identifying hydrologically similar catchments. Developing ML-based surrogate 
models for a variety of applications is achievable in the next few years. In the short-term, a 
critical examination of when, where, and how data-driven models add value for modeling and 
hypothesis generation would guide future research directions. 
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3.6.2  5-yearGoals  
 
A 5-year goal is to use ML to improve key data products for model inputs and evaluation 
(e.g., soil properties, evapotranspiration, climate forcing) and develop software frameworks that 
enable assimilation and synthesis of data in models. Efforts to close identified data gaps and 
collect appropriate data for ML models need to be underway in 5 years to attain the long-term 
goals. Identifying promising approaches for a deep integration of process-based and ML 
(e.g., surrogate models trained on high-resolution process-based hydrology models, physics-
informed neural networks) to achieve regional- to continental-scale predictive capabilities is an 
important 5-year goal. Another goal is to develop frameworks to improve explainability and 
uncertainty quantification for the hybrid models. Development of a workforce with deep 
knowledge across hydrology and AI/ML in 5 years is essential to making future progress. 
 

3.6.3  10-year Goals  
 
In 10 years, ML should be deeply woven into hydrology, and not considered two distinct fields 
as they are now. This likely will parallel the development of HPC to exascale modeling 
development currently being carried out by domain scientists. An order-of-magnitude increase in 
observations, particularly in under-represented regions and hydrologic systems, may be 
necessary to achieve the 10-year goals. Developing technologies that seamlessly assimilate the 
latest available data into models and use models to guide observations in a near real-time 
feedback loop is a 10-year goal. The use of ML-based models to improve representation of 
lateral surface and subsurface flow, biogeochemical processes, human impacts, and extreme 
events in ESMs is another 10-year goal. An important long-term goal is to enable basin-scale, 
decadal-timeframe, integrated hydrology model projections with sufficient spatial and temporal 
resolution to provide actionable information to stakeholders. 
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4  Watershed Science 

Authors: Mavrik Zavarin (LLNL), Carl Steefel (LBNL), David Moulton (LANL), Xingyuan 
Chen (PNNL), Scott Painter (ORNL), Dipankar Dwivedi (LBNL), Li Li (Penn State) 

4.1  Introduction 
 
Watershed science is the interdisciplinary study of the natural processes and human activities 
that affect freshwater resources. It necessitates the integration of hydrology with geochemistry, 
plant physiology, microbial community dynamics, human system dynamics, and other processes 
to predict emergent behavior of a complex system. Watersheds are a basic unit of Earth’s land 
surface system and link human activities (consumption, agriculture, energy production, 
transportation, and recreation) to ecosystem health and resilience and climate-impacted extreme 
events (e.g., fires, precipitation, extreme weather). The management of freshwater resources and 
prediction of future watershed function are increasingly important and complex challenges in the 
United States and worldwide. 
 

4.2 Grand Challenges 
 
Watershed science is, by nature, an interdisciplinary research area. Conducting a full treatment of 
water flow and biogeochemical reactive transport at watershed to river basin scales is not 
currently possible, and yet there is a critical need to provide improved estimates of fluxes of 
nutrients and contaminants for both scientific and water management purposes at these scales 
(Figure 4-1). Our capacity to predict watershed system behavior is challenged by the evolving 
nature of extreme events (fire, precipitation, etc.) that are outside the bounds of historical 
conditions, by system and process complexity, and by the computational demands. Simulations 
of watershed processes are additionally challenged by both sparsity (insufficient spatial density) 
and scarcity (insufficient and infrequent observations) of data. This is particularly the case in the 
subsurface domain. It is apparent that growth in computing power will not be sufficient to 
account for the scale of complexity and the spatial and temporal modeling fidelity that are 
needed. AI is poised to bridge the gap between process complexity, model fidelity, and 
computing power to allow for the effective prediction of watershed function within the context of 
large Earth system modeling. We envision that AI will play a critical role in (1) co-design of data 
collection and modeling, (2) process scaling, (3) hybrid-ML approaches, (4) trait-based and 
surrogate ecosystem ecology modeling, (5) extreme event modeling, and (6) incorporation of 
human and engineered systems into watershed models. However, significant challenges to the 
application of AI in watershed systems exist.      
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4.2.1   Co-designing Data Collection and Assimilation for Soil and Watershed System 
Applications (Sensors, Complex Data, and Sparse Data)  
  
The iteration between model and 
experiments (ModEx) is essential to 
improve the predictability of watershed 
models under both baseline and perturbed 
conditions (Chen et al. 2021). The increase 
in model complexity and data volume has 
led to a substantial increase in computational 
cost and an exponential increase in data 
dimensionality that have both hampered 
ModEx. However, observational data for 
extreme events are scarce due to their rare 
occurrence and the practical challenges in 
collecting data under those conditions. 
Targeted data collection assisted by 
modeling can increase the information 
content of data for model improvement. We 
need a systematic way to integrate data and 
modeling with varying complexity and 
evaluate the models’ performance against 
each other and against observational data to 
identify gaps. We are facing several 
challenges to boost the adoption of AI/ML 
methods (Maskey et al. 2020): 
(1) incorporating physics in ML models; 
(2) improving the interpretability of ML 
models; (3) enabling reliable extrapolations 
beyond the training conditions; (4) quantifying and propagating uncertainty in model results; and 
(5) developing publicly available benchmark training datasets that can be used to aid and test 
new ML methods.  
 

4.2.2  Strategies of Scaling (Multifidelity ML, Surrogate Models) 
 
Watershed modelers have traditionally relied on lumped-parameter or semi-distributed spatial 
representations to make models tractable at watershed or river-basin scales. When properly 
calibrated, that approach has been valuable for quantifying watershed-scale hydrology and 
biogeochemical processes. However, calibrated, semi-distributed models have a large empirical 
component and significantly underestimate the diversity of flowpaths and the potential for storm-

Figure 4-1. Watershed processes span a range of 
spatial scales while also integrating across these 
scales (Source: U.S. Department of Energy 2019).  
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driven changes in those flowpaths, which introduces large uncertainties when used to evaluate 
the impacts of changing climate or land use. Focusing on denitrification as an example, 
Helton et al. (2010) point out the limitations of watershed modeling approaches and conclude 
those limitations “restrict our ability to simulate biogeochemical dynamics among diverse river 
networks.” 
 
Modern software and high-performance computing have resulted in powerful physics-based 
integrated models (e.g., ATS) that couple surface water, shallow groundwater, and land surface 
processes. Those hydrology-based models have recently been extended to form integrated 
surface/subsurface reactive transport models (Molins et al. 2019; Painter 2021). This emerging 
class of models has great potential for increasing our understanding of watershed response to 
changes in external forcings. However, applications at basin scales have been thwarted by the 
large computational demand. ML can potentially accelerate those models and make them more 
tractable at basin scales by, for example, providing accurate surrogate models for component 
subsystems or more efficient approaches for inverse modeling and uncertainty quantification. 
 

4.2.3   Hybrid AI Models (e.g., On-demand ML) for Biogeochemical Reactive Transport 
Simulation and Scaling 
 
Conducting a full treatment of water flow and biogeochemical reactive transport at watershed to 
river basin scales is not currently possible, and yet there is a critical need to provide improved 
estimates of fluxes of nutrients and contaminants for both scientific and water management 
purposes at these scales. The use of hybrid, multifidelity predictive models that take advantage of 
ML techniques offers an attractive option to overcome the obstacles associated with 
computational expense, especially insofar as it is possible to maintain process fidelity for 
heterogeneously distributed biogeochemical processes interacting with the hydrological cycle—a 
situation that is expected to be particularly pronounced during climate extremes. 
Explainable/interpretable AI is key to its integration with physics-based watershed and Earth 
system predictive models (i.e., application of AI from the realm of interpolation to 
extrapolation). We must create new hybrid ML algorithms that identify processes (both known 
and unknown) and associations to discover emergent properties that help predict system 
behavior. 
 

4.2.4  Watershed Microbial Dynamics and Ecology 
 
Integration of microbial ecology at watershed scales: Integrating mechanistic microbiological 
processes in biogeochemical models is not scalable at this moment. While trait-based approaches 
are being developed (e.g., MicroTrait, BioCrunch), it is as yet unclear how these approaches can 
be scaled effectively. Surrogate models, which can be aided by AI, will likely need to be 
developed. Surrogate models can be used in large-scale models (watershed, basin, Earth) to 
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achieve computational tractability. These models can, for example, be developed from 
mechanistic metabolic genome-informed biogeochemical reaction network models (e.g., trait-
based models). 
 
Data access and transferability: The data needed for mechanistic/trait-based models (direct and 
indirect data) are becoming increasingly available across diverse watershed settings (e.g., those 
from WHONDRS and the GROW database). However, methodologies to harness knowledge 
from these data are challenging because of issues related to transferability (space for time, etc.), 
extrapolation vs. interpolation, and inference, among others. AI can facilitate the application of 
community datasets to address the sparse data issue. This will require development of 
transferability models that can predict microbial potential function and expressed function 
through space and time, across watershed “components” distributed across global watersheds, 
and distributed across both “normal” conditions and extreme events. These kinds of predictions 
can be used to feed the surrogate models for large-scale application. 
 
Optimization of sparse sample collection: Microbial community composition and activity data 
are intrinsically expensive and are naturally sparse at the watershed scale. Microbial functional 
data are accessed through relatively expensive and low-throughput approaches that require 
physical sample collection and intensive and costly laboratory analysis (i.e., metagenomics, 
metatranscriptomics, metaproteomics). AI can be implemented to guide optimal sample 
collection (in space and time) and optimal sequencing/analysis depth of each sample, to more 
efficiently generate data with maximum information content. For example, AI approaches may 
help improve the translation of “cheap” microbial surveys to infer the more expensive functional 
information (e.g., metabolic potential). 
 

4.2.5   AI Application to Extreme and Future Effects and Events (Fires, Precipitation, 
Flooding, and Compounding) 
 
Watersheds are becoming more susceptible to climatic and anthropogenic disturbances, as well 
as extreme events such as droughts, floods, extreme weather, wildfires, and land-use changes. 
Predicting extreme events and their future compounding effects through transformative science 
solutions is critical to understanding watershed function and managing freshwater resources. The 
increasing frequency and intensity of extreme precipitation events are anticipated to cause 
numerous problems beyond the storm and flooding, for example, failures to provide clean 
drinking water and excessive nutrient export from agriculture. Although AI is poised to 
dramatically impact watershed science, several challenges must be addressed in the application 
of AI to extreme and future effects. Data sparsity and obtaining relevant data, particularly with 
respect to extreme events, have remained the largest of these challenges. 
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4.2.6   Impacts and Feedback of Human/Engineered Systems on Watersheds (e.g., Reservoir 
Management, Urban, Agricultural) 
 
Human impacts and engineering in watersheds (e.g., agriculture, dams, flood controls, land 
management) have significantly altered these systems to support services for human use, whether 
directly for drinking water and recreation, or indirectly for agriculture and power generation. 
However, climate change is challenging the assumptions made in the design of these managed 
systems, from low-to-no snow futures in the west to increasing frequency and intensity of extreme 
precipitation events. The impact of these changes will go well beyond the flooding observed 
already and will include failures to provide clean drinking water, contaminant releases from once-
stable legacy waste sites, and excessive nutrient export from agriculture. Unfortunately, data 
covering this range of human-impacted watersheds are sparse and fragmented because water 
management-related data (irrigation, reservoirs, drinking water, storm drains) are often not 
publicly available and are controlled by different local or regional agencies. Addressing this data 
shortage, along with developing a typology of human-impacted watersheds and their function, are 
grand challenges that underpin new AI approaches to building understanding, making predictions 
over a range of scales, and exploring adaptation of engineered watersheds. 
 

4.3  State-of-the-Science 

4.3.1   Co-designing Data Collection and Assimilation for Soil and Watershed System 
Applications (Sensors, Complex Data, and Sparse Data) 
 
Neural networks have a long history of applications in watershed science, ranging from 
streamflow forecast to groundwater and water quality modeling. Increasing the depths of the 
network, that is, the number of hidden layers, could improve its ability to represent more 
complex system behaviors (Shen 2018; Raghu et al. 2017), especially for mapping highly 
nonlinear relationships between the model inputs and outputs. More recently, machine learning 
methods are used to replace computationally expensive forward models in uncertainty 
quantification and model parameter estimation via surrogates and other reduced-order 
representation. For example, Mo et al. (2019) successfully employed a deep autoregressive 
neural network-based surrogate approach to estimate the heterogeneous aquifer permeability as 
well as groundwater contaminant sources with high accuracy and computational efficiency. 
Canchumuni, Emerick, and Pacheco (2019) found that a convolutional variational autoencoder 
outperformed the standard ensemble data assimilation methods in reconstructing the spatial 
distribution of geologic facies. Cromwell et al. (2021) successfully used deep learning to map the 
nonlinear relationship between permeability and stream discharge, presenting new opportunities 
for improving the subsurface characterization of large-scale watersheds. It also paves the way to 
help develop more generalized watershed model calibration strategies for complex systems that 
involve multiple parameters and multiple types of observation data.  
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To facilitate co-design strategies, national and international efforts are emerging to build 
standardized databases and associated field sites (e.g., ESS-DIVE, NEON, LTER, CZNet), in 
parallel to advancements in sensing and monitoring technologies. High-resolution satellite and 
remote-sensing data products with global coverage are becoming increasingly available, ranging 
from surface properties (e.g., land use/land cover types, elevation), to states (e.g., leaf area index, 
biomass, surface soil moisture), and to energy, water, and carbon fluxes (e.g., evapotranspiration 
and gross primary production). 
 
Iterative ModEx loops are being implemented. For example, Chen et al. (2021) describe an 
iterative model-experiment process in the PNNL River Corridor Science Focus Area (SFA). In 
this example, a series of field- and lab-based studies demonstrated that thermodynamic 
properties of organic matter exert significant control on biogeochemical processes in river 
corridors. This experimental finding motivated development of a new theoretical modeling 
framework published by Song et al. (2020) that defined a new model parameter that quantifies 
the impacts of thermodynamics on biogeochemical reactions. Additional field sampling was then 
conducted through the WHONDRS consortium to identify spatial and temporal patterns across 
diverse systems, and the resulting data were used to simulate intersystem biogeochemical 
process variability using the KBase modeling platform (e.g., Napieralski and Roden 2020; 
Klasek et al. 2021). The ModEx cycle is ongoing in this example and extends into the AI/ML 
space, as ML analyses of the WHONDRS data/metadata are currently being used to plan the next 
WHONDRS sampling campaign, the outcomes of which will in turn be used to refine watershed 
model parameters.  
 
Better ways to collect data are needed. Presently, modeling has not been used to inform data 
collection on a regular basis. Techno-economic analysis can be conducted before deploying 
sensors to identify the optimum location of sensors and value of information collected. More and 
better low-cost sensors are required for AI-informed data collection and targeted field design. 
Sensors that are flexible (movable and controllable in space and time) and linked to models in 
near-real time are needed, as well as the ability to decide sampling sites/times using AI/ML and 
ingest data into models using AI/ML in real time. Combining data from different scales (both 
space and time) is necessary to connect from the point scale to the continental scale and enable 
causal inference to identify cross-scale linkages. 
 

4.3.2  Strategies of Scaling (Multifidelity ML, Surrogate Models) 
 
Opportunities to incorporate ML into process-based watershed or water quality models have 
been noted (e.g., Fu et al. 2020), but those opportunities are yet to be realized. ML has been used 
to address scaling challenges in watershed hydrology (see Hydrology, chapter 3) and those 
approaches are generally applicable to watershed reactive transport modeling. Approaches 
include using ML as an alternative to traditional inverse modeling (Cromwell et al. 2021), for 
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surrogate modeling in support of uncertainty quantification (see Surrogate Models and 
Emulators, chapter 9), or to construct data-driven representations of component subsystems. 
While multifidelity models (e.g., Meng and Karniadakis 2020; Peherstorfer, Willcox, and 
Gunzburger 2018) that use ML to relate results from fast-running but lower-fidelity models with 
more expensive, higher-fidelity models could be promising to accelerate watershed modeling 
(e.g., Fu et al. 2020), but only initial steps have been taken in that direction in the watershed 
modeling context (e.g., Mao et al. 2021).  
 

4.3.3 Hybrid AI Models (e.g., On-demand ML) for Biogeochemical Reactive Transport 
Simulation and Scaling 
 
Much of our understanding of ecosystem function, including the integrated water and 
biogeochemical cycles, stems from high-fidelity, physics-based models. Although these high-
fidelity models can provide a detailed simulation of how the future climate extremes will impact 
biogeochemistry in river basins, they are computationally expensive and extremely time-
consuming, making them unsuitable for the multitudinous runs needed to evaluate the complex 
interactions of processes ranging from the bedrock to the canopy (Leal et al. 2020). The use of 
surrogates or emulators within the on-demand machine learning, multifidelity framework can 
significantly limit the prohibitive computational costs of high-fidelity simulations while 
capturing the dynamics of underlying processes. The overarching benefit of surrogates is their 
ability to reduce complexity by learning the state variables’ dynamics directly from the 
observational data or full output of a custom-built model (i.e., synthetic high-resolution data). As 
a whole, these data-informed or custom-built, model-informed surrogates can easily be 
developed on the fly using ML techniques, such as Gaussian process regression, dynamic mode 
decomposition, random forest, and neural networks (e.g., Lu and Tartakovsky 2021), and be 
seamlessly integrated with the larger multifidelity framework. The computational costs 
associated with modeling chemical processes in reactive transport simulations can substantially 
compromise performance, such as when rich chemical descriptions of fluids and rocks are 
considered. In this case, the on-demand ML strategy presented in Leal et al. (2020) and Kyas 
et al. (2022) can speed up the sheer number of chemical equilibrium and kinetics calculations by 
one to three orders of magnitude and provide significant overall speed up. 
 

4.3.4  Watershed Microbial Dynamics and Ecology 
 
Integrating microbial community function, generally through a trait-based approach at the 
watershed scale, is still nascent. Notable codes that are attempting to implement trait-based 
microbial community function into reactive transport models include microtrait and biocrunch. 
However, these models are likely to remain untenable at the watershed or larger scales. Surrogate 
model development will be needed to scale processes. 
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As data scarcity and sparsity with regard to sequencing and omics data will remain an issue into 
the future, indirect (and more cost-effective) measurements (e.g., satellite and sensor data) will 
likely need to be harnessed to bridge the gap between model calibration requirements and data 
availability. Indirect measurement of subsurface microbial function is a promising development 
(e.g., Kim et al. 2021). Causal inference, the need to establish that relationships are asymmetric 
in time, sets a certain requirement of data frequency—this interacts with the variance of a system 
process/component. 
 

4.3.5 AI Application to Extreme and Future Effects and Events (Fires, Precipitation, 
Flooding, and Compounding) 
 
ML methods are versatile and can handle a range of watershed-related research questions, 
including extreme events to some extent. For example, several studies have utilized machine 
learning for post-fire applications (Saxe, Hogue, and Hay 2018; Schmidt and Eloy 2020) and 
have estimated several critical watershed characteristics, including soil burn severity following 
wildfires in California (e.g., Wilder et al. 2021). However, deep learning models for extreme 
events have been underutilized because of the unavailability of adequate extreme events data 
needed to train such models. A new paradigm is needed to overcome the dearth of data and 
obtain relevant data utilizing deep learning methods. 
 

4.3.6 Impacts and Feedbacks of Human/Engineered Systems on Watersheds (e.g., Reservoir 
Management, Urban, Agricultural)  
 
Exploration of AI/ML techniques in water management and many aspects of human-impacted 
watersheds is widespread and growing, with more than 7,000 papers published in this area in 
2019 (Allen-Dumas et al. 2021). The majority of this work has focused on data-driven methods, 
with each study focused on a single facet of an overarching challenge. For example, Sapitang 
et al. (2020) examined ML algorithms for reservoir water level forecasting for managing 
hydropower generation. Kim and Han (2020) evaluated the urban flood prediction skill of a deep 
neural network with data augmentation. In the first of these studies, water level and dam 
operations data were obtained directly from the Kenyir Operation Unit, while in the second 
study, simulation output was used to overcome the lack of urban runoff data. These papers 
highlight the challenges we face in data access and sparsity. Furthermore, although this broad but 
isolated approach is a natural starting point for the exploration and integration of these new 
methods and workflows, it does not begin to address the integrated challenge of water security in 
human and engineered systems (Allen-Dumas et al. 2021). Additionally, it does not address the 
challenge of a changing climate where historical data may not reflect future conditions. As this 
field matures, we anticipate not only the integration of more comprehensive datasets, but also the 
integration of process-based models through physics-informed or hybrid ML techniques to help 
mitigate the sparsity of the data, as well as to support predictions under future climate scenarios. 
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Ultimately, this integration will help support a more holistic approach to guide management and 
adaptation of an increasingly comprehensive view of the watershed and its services, spanning, 
for example, reservoir management, agricultural best practices, and urban drinking water, along 
with overall drought and flood risk. 
 

4.4  Experimental, Data, and Modeling Opportunities 
 

4.4.1 Co-designing Data Collection and Assimilation for Soil and Watershed System 
Applications (Sensors, Complex Data, and Sparse Data) 
 
There is great opportunity (for domain researchers and knowledge engineers and data scientist) 
in exploring how to codevelop ontologies and semantic tools to both annotate data on 
repositories and inform AI/ML (via traditional knowledge graphs or otherwise). AI techniques 
can be used to automate data curation (e.g., through apps or devices that can automatically 
collect required metadata or help with sensor maintenance) and optimize data collection. AI can 
be used to integrate, unify, and harmonize a hierarchy of observational datasets that range from 
high to low frequency (e.g., hourly, daily, one-time measurement, etc.), covering various 
timescales (e.g., once, seasonal, annual, decadal) across different regions. For example, using AI 
to map multiple irregular sensor outputs onto regular grids can significantly lower the barrier for 
researchers to use such information in improving watershed models through model 
parameterization, calibration, or benchmarking. In addition, because a lot of historic data exist in 
non-digital forms, there is potential opportunity in using natural language processing (NLP) 
methods to extract such data from historic records and making them accessible to watershed 
system science. Such efforts are nearly impossible to be undertaken by researchers without 
machine learning. 
 
AI can inform sensors for better data collection. Self-correcting sensors or intelligent sampling 
are possible on the edge when AI algorithms are deployed on the edge devices to identify 
problematic data points or find the most valuable data to improve models. Such adaptive control 
will also enable intelligent data collection triggered by certain events (e.g., extreme event or 
disturbances) to address data sparsity under conditions, leveraging recent advances in AI@Edge, 
low footprint sensors, and data acquisition (DAQ) systems. 
 
The greatest opportunity is in building a community computational platform to allow the sharing 
of ML-assisted ModEx pipelines, with easy access to pre-trained ML models (e.g., similar to 
Model Zoo, https://modelzoo.co/), standardized application-ready datasets, interoperable 
process-based models, and supercomputing and/or cloud computing resources. 
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4.4.2  Strategies of Scaling (Multifidelity ML, Surrogate Models)  
 
Several opportunities to accelerate large-scale hydrobiogeochemical models can be identified. 
Replacing expensive process-based models with faster-running ML-based surrogate models is a 
well-established strategy for model calibration that can be adapted to scale process-based models 
to large scales (Fu et al. 2020). One approach is to not repeat calculations for subdomains 
with similar climate forcings, biogeochemical inputs, and physiographic properties (see, 
e.g., Hydrology, chapter 3). In the short term, this strategy could be implemented by first 
building surrogate models from simulations on smaller domains and then combining them in 
larger-scale simulations. Longer term, it is envisioned that this strategy could be implemented 
dynamically, using AI/ML to replace the subdomains of a fully resolved simulation with 
surrogate models on-the-fly, switching back to fully resolved simulations if needed (e.g., Steefel 
et al. 2021; Painter, Coon, and Lu 2021). A closely related approach would be to combine fast-
running but more approximate models with computationally demanding full-physics simulations. 
In this multifidelity approach, high-fidelity models would be performed only for selected 
catchments within the basin of interest while fast-running intermediate-complexity models would 
be used for all catchments. ML would then be used to develop mappings that relate high-fidelity 
model output to model inputs and intermediate-fidelity output. Once those mappings are learned, 
the intermediate-fidelity model would then be used in projections and model calibrations. 
 

4.4.3 Hybrid AI Models (e.g., On-demand ML) for Biogeochemical Reactive Transport 
Simulation and Scaling 
 
Considering biogeochemical processes in reactive transport simulations is computationally 
expensive. By using an on-demand machine learning (ODML) algorithm (Leal et al. 2020), 
however, the computing costs for biogeochemistry and transport calculations can be reduced by 
orders of magnitude. The ODML model will start with zero knowledge at the beginning of the 
simulation. It will then gradually learn key biogeochemical calculations during the reactive 
transport simulation. These key calculations are then used as often as possible to predict similar 
calculations. The predictions are much faster because they do not require iterative algorithms, 
just a fast matrix-vector multiplication. In addition to ODML, other ML approaches can provide 
an uncertainty quantification (UQ)-based approach relying on selective comparison with 
observational data and high-resolution physics-based simulations to automatically choose the 
fidelity of a biogeochemical approach (e.g., high-resolution RTM versus 1D flowtube versus 
surrogate) to balance the demands of computational efficiency and process fidelity (Figure 4-2). 
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Figure 4-2. Watershed microbial dynamics and ecology (Source: Steefel et al., 2021). 
 
Distributed data collection efforts are growing exponentially and show great promise to develop 
direct and indirect data for knowledge discovery, particularly with regard to integrating ecology 
at the watershed scale (e.g., WHONDRS, GROW, and EXCHANGE). Leveraging KBase efforts 
to link microbial ‘omics with detailed chemistry (e.g., FTICR-MS, LC-MS, NMR) will open new 
avenues to explore microbial data transferability and surrogate model development. ICON 
principles are critical: as described in a recent BER workshop, they are to intentionally design 
research efforts as Integrated, Coordinated, Open, and Networked in order to build the 
interoperable data foundation needed to feed AI modeling efforts that are designed to learn new 
“physics” and predict microbial function across diverse watershed settings (Goldman 2021) 
(Figure 4-1).  
 
A new generation of libraries focused on trait-based microbial function (Sokol et al. 2022) could 
provide a pathway for scaling and surrogate model development (Figure 4-2). A Unified 
Biogeochemical Reaction/Trait Database/Library conforming to community standards would 
provide the necessary data harmonization to harness AI for process discovery, surrogate model 
development, benchmarking, and robust uncertainty quantification (Sokol et al. 2022). 
Community standards would provide opportunities to harmonize complex field data with 
simplified and controlled laboratory microbial consortia experiments. Detailed laboratory 
microbiology experiments yield deep knowledge of genomic potential and rich data on expressed 
function and associated contextual chemistry and physical properties. Integrating laboratory 
functional data with field observations will help in the development of hybrid and surrogate 
modeling approaches at the watershed scale. 
 
Due to the inherently high costs of sampling and processing of samples to obtain genomic and 
multi-omic data necessary to capture subsurface microbial ecology and its impacts on watershed 
function, development of methodologies to optimize costly data collection activities and data 
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curation (adaptive sampling) is essential. AI can also contribute to the generation of direct and 
indirect (e.g., soil characterization) data through the application of natural language processing 
of decades of historical data and application of deep learning to causal inference and elucidating 
biogeochemical function and traits.  
 

4.4.4 AI Application to Extreme and Future Effects and Events (Fires, Precipitation, 
Flooding, and Compounding) 
 
To handle the dearth of data for extreme events, relying on physics-based hydrological models 
can be valuable. Especially because data will never be abundant for extreme events, the idea is to 
use physics-based models iteratively to create scenarios and generate data. However, physics-
based models are computationally expensive. There is also a need to develop an efficient 
workflow that can run these models tractably. AI/ML can provide a viable option to enhance 
seamless integration of physics-based models with field observations to generate reliable data for 
deep learning models. Moreover, AI/ML methods can develop surrogates and emulators installed 
in the field for ModEx-guided data collection. Indeed, ModEx-guided data collection can be very 
efficient for collecting relevant extreme event data by informing how, when, and where to collect 
data. However, extreme events such as fires are not what we can plan, so rapid data collection 
and deployment capabilities are key. Integrated field laboratories, automated samplers, and on-
site AI-driven decision systems for data collection are needed to collect relevant extreme event 
data. 
 

4.4.5 Impacts and Feedback of Human/Engineered Systems on Watersheds (e.g., Reservoir 
Management, Urban, Agricultural) 
 
The fragmentation in data access has naturally led to fragmentation in the community, with the 
scope of each application of data-driven AI/ML techniques constrained by the limited data that a 
researcher can use. To accelerate a more complete and holistic approach to watershed science, 
there is a need for a community of practice that can develop and promote best practices in a wide 
range of AI/ML techniques, help coordinate the creation of an open data portal that can act as a 
central location for researchers to access common datasets and share AI/ML workflows and 
results. Significant effort is needed here to collect and coordinate existing open datasets, 
potentially anonymize datasets that are unavailable due to privacy or proprietary concerns, create 
synthetic datasets, and explore and curate historical and ancestral best management practices. In 
addition, to address the challenge of watershed resilience under the impact of future climate and 
continued human development, there are modeling opportunities at all scales and across scales. 
For example, process-based models (e.g., ATS, ParFlow) can help fill some of the data gaps, 
particularly as we look at future climate scenarios for which we have no real data. In this case, 
some model development is needed to add engineered features and water management into these 
models, and better support workflows that integrate operational data. This development would 
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help support advancing our current understanding of watershed function as well. Modeling 
across scales is needed as the domain of interest moves from local to regional or even to national. 
Here, AI/ML can help inform the transition in models from process-based (fully resolved) to 
semi-distributed and statistical and can help leverage new approaches to building surrogates or 
directly combining models of varying fidelity (see breakout on Strategies of Scaling) to enable 
more robust and transferable predictions of system function. 
 

4.5  Research Priorities 

4.5.1 Co-designing Data Collection and Assimilation for Soil and Watershed System 
Applications (Sensors, Complex Data, and Sparse Data) 
 
Generating public benchmark training datasets (similar to ImageNet, http://www.image-net.org/) 
is the key to advancing applications of ML in Earth science domains (Maskey et al. 2020; 
Dramsch 2020). There is a unique opportunity to enhance the use of the new generation of 
remote sensing (RS) products that capture components of the water cycle (precipitation, snow, 
soil moisture, evapotranspiration, groundwater, and runoff), as well as coupled carbon and 
nutrient cycle components, with increasing spatial and temporal resolutions. Training data may 
also be generated from process-based models. Leveraging open-source resources from federal 
agencies is necessary for the success of such an extensive and expensive effort. For example, 
NASA’s Earth Sciences Data Systems (ESDS) has generated high-quality training datasets that 
are open and easily accessible. NOAA, USGS, and other federal agencies have been maintaining 
extensive observation networks and are developing a large number of integrated Earth system 
models. Standardized data management practices would significantly increase data usability. 
 
We need computational infrastructure to address long-standing challenges of complexity and 
heterogeneity in watershed models that would otherwise be overwhelmed by the tremendous 
complexity in managing software, hardware, workflows, and computational cost. Addressing 
these challenges requires developing and maintaining open-source scientific software and ML 
frameworks for deploying Earth science ML and process-based models. To achieve this goal, 
existing frameworks can be expanded or integrated through collaborative efforts for efficiency. 
DOE’s Systems Biology Knowledgebase (KBase, https://www.kbase.us/) is a good example of 
such computational infrastructure, which is designed to meet the grand challenge of predicting 
and designing biological functions. In addition to facilitating data access/sharing and building 
reusable bioinformatic pipelines, KBase uses a Narrative (an interactive digital notebook) to 
capture workflows for various scientific discoveries, which can be shared with other researchers 
to enhance scientific reproducibility and adaptability to answer other questions. The use of a 
Jupyter Notebook-based narrative interface to encode workflows makes the computational 
framework much more accessible to the broader community. Another example is Pangeo 
(https://pangeo.io/), which is an open-source architecture that provides interconnected software 
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packages and deployments of the software in cloud and high-performance computing 
environments for ocean, atmosphere, land, and climate science. 
 

4.5.2  Strategies of Scaling (Multifidelity ML, Surrogate Models) 
 
Priority activities for enabling scaling of process-based models to basin scales cluster into two 
general groups: development of the necessary software tools to implement various strategies, and 
real-world example applications to provide the knowledge base necessary for routine 
applications. Specific priorities include: 
 

● Flexible and composable modeling systems that make it possible to easily switch out ML 
and process-based models.  

● Modeling tools that accommodate watershed-based domain decompositions, thus 
allowing for switching between data-driven and process-based simulations of individual 
watersheds. 

● Fully resolved process-based modeling results at sufficient scale to provide benchmark 
data for testing various efficient scaling approaches. 

 
● Software tools to manage the complex workflows around multifidelity models and 

surrogate model construction, testing, and integration into hybrid models.  
● Research into AI/ML methods to detect when a given subdomain can be represented by a 

surrogate and when it needs to be represented explicitly. 
● Real-world tests of ML-based multifidelity models. 
● Community model comparison projects to test and compare different approaches for 

using ML to accelerate large models. 
 

4.5.3 Hybrid AI Models (e.g., On-demand ML) for Biogeochemical Reactive Transport 
Simulation and Scaling 
 
The need for dramatically improved prediction of river basin–scale biogeochemical function is 
clear, but the computational challenges are daunting, But ML can play an important role in at 
least five ways: (1) ML can facilitate the inclusion of diverse big data in physics-based models 
for water and biogeochemistry through downscaling and upscaling approaches (Mital et al. 
2020); (2) ML can achieve improved predictability by enabling calibration and validation of 
models for given river basins and watersheds (Cromwell et al. 2021); (3) ML can enable the 
development of surrogate and reduced order/dimension models that capture watershed and river 
basin function with reduced computational expense; (4) on the fly ML can be used for 
automation of uncertainty quantification to choose dynamically the level of fidelity and 
computational expense that is adequate for a given river basin-scale simulation; and (5) on 
demand ML can be used to gradually reduce the number of full predictive calculations that are 
needed to describe the watershed to river basin-scale biogeochemical function, essentially 
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replacing full physics-based simulation with continuously improving surrogate models (Leal et 
al. 2020). 
 

4.5.4  Watershed Microbial Dynamics and Ecology 
 
Bridging genomic and metagenomics information into models at watersheds and Earth system 
scales is a key priority. Trait-based approaches appear to be the most promising mechanism to 
achieve this objective. However, the complexity and data limitations, particularly for the 
subsurface community diversity, spatial distribution, and function, will continue to be a 
challenge. Surrogate approaches must be explored to bridge scales, and knowledge-informed AI 
is poised to help scale genomic information to make genomically informed watershed function 
modeling tractable. 
 
Key research that knowledge-informed AI may help to resolve include questions such as how 
evolution of microbial community composition and function will constrain or accelerate 
response to perturbation in Earth systems. In addition, can AI identify the rules/patterns/rates of 
ecosystem response by mining data from ever-increasing data collections across the Earth 
system? AI may help inform alternatives to trait-based approaches that identify the most 
sensible/meaningful units of biodiversity at watershed and Earth system scales, for example, of 
genetic groups versus species/populations/strains/clades or taxonomic versus phylogenetic versus 
genetic data as input variables into models. 
 
Much of the data needed to apply AI to watershed and Earth systems already exists. However, 
ICON/FAIR principles in data collection, mining, curating, and access need significant 
investment. Linking controlled laboratory microbial function information with field observations 
can yield more cause-and-effect data instead of correlation data. Natural language processing 
may yield new forms of indirect information that can accelerate surrogate model development. 
Field studies associated with perturbed environments (e.g., chemical pollutants, fire impacts, 
erosion, extreme weather) can inform trait-based and surrogate models that connect microbial 
responses to future climate extremes. 
 

4.5.5 AI Application to Extreme and Future Effects and Events (Fires, Precipitation, 
Flooding, and Compounding) 
 
Although ML faces data scarcity, we are far from fully utilizing all the observational data for two 
reasons: our limited data-ingesting abilities and data availability with unknown sources. Several 
small research groups collect valuable data across the nation and are willing to share that 
information. However, we do not have any mechanism to maximize data availability through 
aggregating all the information through these groups. Nevertheless, doing so will require 
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QA/QC. We argue that there is an urgent need to develop ways to structure complex 
amalgamations of data through various sources and enhance data-ingesting abilities. 
 
Finally, no universal strategy exists regarding what machine learning method and variables 
should be used to address extreme events and examine future compounding effects. For example, 
there are several deep learning approaches, and there is no guidance on using method A vs. B. 
Further, we choose to rely on a few variables, assuming them to be important rather than 
considering the full range of data variables. There is an urgent need to develop domain-aware AI 
and benchmarking AI methods with mechanistic models (or otherwise) to build confidence. 
However, benchmarks are only as useful as the metrics themselves, so appropriate metrics are 
also required. 
 

4.5.6 Impacts and Feedback of Human/Engineered Systems on Watersheds (e.g., Reservoir 
Management, Urban, Agricultural) 
 
Establishing a data portal is a critical research priority and offers a multifaceted challenge. First, 
the AI/ML workflows and analysis that researchers need to advance are integrating data and 
models across scientific and engineering disciplines; and hence, development of a metadata 
standard (and possibly an ontology) is necessary for the portal to function effectively. Next, the 
portal needs a straightforward API that enables data discovery, remote data operations 
(e.g., subsetting), and download. Remote data operations depend on the functionality that is 
supported by the data repository that holds the data, such as ESGF or ESS-DIVE. Next, there is 
significant research and development surrounding data collection itself. For example, we can 
survey the community and identify datasets that have been published through successful 
collaborations with local governments or industry, such as the Argonne National Laboratory 
(Argonne) collaboration with AT&T on infrastructure locations for analysis of flood risk. We 
can reach out to other agencies (e.g., U.S. Department of Agriculture) and explore the potential 
of anonymizing their data, or creating synthetic collections inspired by their data, so that it could 
be made accessible to the broader community. We can explore the collection and analysis of 
more remote sensing data, particularly in relation to agricultural practices, but also for water 
management in general. Finally, we can consider natural language processing to explore 
historical (including ancestral) as well as current land management practices, and develop 
ontologies needed to express this knowledge in useful ways for AI. 
 
The data portal should not be limited to traditional observational data. It is imperative that it also 
provides a catalog of models, documenting the scales and processes that a model supports. In 
addition, it should support model data (both input and output data), as this data may be integrated 
in AI/ML workflows for training or evaluation purposes. An additional research priority is 
development of process-based models that include the specific and unique features of human-
impacted watersheds and that can address questions of water quality, not just water quantity. 
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This includes advances in process-based models to include water management structures such as 
reservoirs and diversions; agricultural fields, such as tile drains and ditches; and urban features 
such as riparian zones and storm drains. In addition, the efficacy of the various process 
representations at various scales should be documented and discoverable through the data portal. 
To help develop this modeling component of the data portal and advance these models, a number 
of use cases could be defined that examine current and future scenarios in real or synthetic 
watersheds. 
 

4.6  Short-term (<5 years), 5-year, and 10-year Goals 
 
At the outset, embedding ML capabilities in watershed science teams requires strong 
collaboration with AI expertise and is critical to AI application in watershed system science. This 
may require the formation of Applied AI Research Centers that embed domain scientists with 
AI/data science expertise to expedite collaboration across an ever-increasing multidisciplinary 
research area. 
 
In the short term, an effort should be initiated to make available the necessary software 
infrastructure for integrating ML-surrogate models and process-based models, highly resolved 
process-based simulations at sufficient scale for benchmarking different approaches, proof-of-
concept simulations of scaling approaches with static spatial structure (e.g., ML-based and 
process-based subcatchments are pre-selected), and a community workshop to define model 
comparison studies.  
 
Trait-based, alternative, and surrogate approaches that capture genomic and metagenomic 
information in watershed and Earth system models must be developed. These approaches will 
require significant investment in ICON/FAIR principles in data collection to enable knowledge-
information AI to play a major role in knowledge discovery in complex watershed systems that 
will continue to be plagued by sparse/scarce data and require data transferability and indirect 
data to calibrate and scale ecological processes to the watershed and Earth system. 
 
Generating benchmark datasets, co-design of flexibly deployable sensor systems, development of 
AI-assisted physics-based models, and AI/ML for data assimilation and sensor control are 
needed. Using AI analysis of existing models is also a good near-term step—models provide rich 
data on the structure and dynamics of process interactions, as there are non-intuitive interactions 
that emerge that are excellent hypotheses for us to test empirically. We either falsify those and 
therefore show that our model structures or parameterizarion needs work, or we accept them and 
validate our conceptual models/theories. 
 
In the medium term (~5 years), developing a Subsurface Biogeochemistry (BGC) network 
patterned along the format of Ameriflux should be a priority. The network development can be 
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initiated through the existing field observatories to demonstrate value. The data collection, 
curation, storage, and accessibility should be patterned, ab initio, to the application of 
knowledge-informed AI with data science expertise integrated into the initiative. 
 
Using AI to identify patterns of interaction across scales to identify what governs the 
distributions of traits in ecosystems (plants, microbes, animals, and physical/chemical traits) is 
also achievable in the near to mid term, for example, by combining multiple remotely sensed 
data layers and complementary ground-based surveys. We need to do this with theory in mind—
that way a community advances together even if we work in disparate systems. The time is right 
for coupling AI with these exploding data sources to build integrated, soil-aware, land-
atmospheric domain datasets that can both improve watershed and Earth system models, and at 
the same time inform development/deployment of targeted observation networks to reduce 
uncertainties and increase predictive understanding. 
 
In the longer term (~10 years), our goals should include extending the scaling approach to 
become dynamic, using AI/ML to replace subdomains of a fully resolved simulation with 
surrogate models on-the-fly, switching back to fully resolved simulations as needed. In addition, 
results from a community model comparison would provide the necessary knowledge base to 
support applications.  
 
Integration of genomic, metagenomic, and ecological datasets across space and time to identify 
interactions between different scales through biological and environmental trait analysis should 
be developed. Fully developed hybrid or surrogate models of microbial dynamics and ecology 
should be developed whereby the coarse-scale grid represents climate factors or fluxes (gasses/ 
particulates) and the fine-grid solver for biological processes. 
 
Building a software infrastructure that allows seamless iterations between the model and 
experiments, making it easier to test different combinations of ML and process-based models, is 
critical. We can work with the ESS cyberinfrastructure working groups to collect the design 
requirements of the computational infrastructure from the broad community for maximum 
impact. Once built, it will provide transferable scientific tools to understand watershed systems 
by iteratively learning from both process-based models, observational data, and data-driven 
approaches, paving our way toward a hybrid modeling approach that couples physical process 
models with the versatility of data-driven ML to improve the predictability of watershed models 
and Earth system models. 
 

4.7  References 
 



 

128 
 

Allen-Dumas, Melissa R., Haowen Xu, Kuldeep R. Kurte, and Deeksha Rastogi. 2021. “Toward 
Urban Water Security: Broadening the Use of Machine Learning Methods for Mitigating 
Urban Water Hazards.” Frontiers in Water 2. https://doi.org/10.3389/frwa.2020.562304. 

Canchumuni, Smith W. A., Alexandre A. Emerick, and Marco Aurélio C. Pacheco. 2019. 
“Towards a Robust Parameterization for Conditioning Facies Models Using Deep 
Variational Autoencoders and Ensemble Smoother.” Computers and Geosciences 128 
(January): 87–102. https://doi.org/10.1016/j.cageo.2019.04.006. 

Chen, Xingyuan, Raymond Mark Lee, Dipankar Dwivedi, Kyongho Son, Yilin Fang, Xuesong 
Zhang, Emily Graham, et al. 2021. “Integrating Field Observations and Process-Based 
Modeling to Predict Watershed Water Quality under Environmental Perturbations.” Journal 
of Hydrology 602 (November): 125762. https://doi.org/10.1016/J.JHYDROL.2020.125762. 

Cromwell, Erol, Pin Shuai, Peishi Jiang, Ethan T Coon, Scott L Painter, J David Moulton, 
Youzuo Lin, and Xingyuan Chen. 2021. “Estimating Watershed Subsurface Permeability 
From Stream Discharge Data Using Deep Neural Networks.” Frontiers in Earth Science 9: 
3. https://doi.org/10.3389/feart.2021.613011. 

Dramsch, Jesper Sören. 2020. “70 Years of Machine Learning in Geoscience in Review: A 
Preprint.” https://arxiv.org/abs/2006.13311. 

Fu, B., J. S. Horsburgh, A. J. Jakeman, C. Gualtieri, T. Arnold, L. Marshall, T. R. Green, et al. 
2020. “Modeling Water Quality in Watersheds: From Here to the Next Generation.” Water 
Resources Research 56 (11): e2020WR027721. 
https://doi.org/https://doi.org/10.1029/2020WR027721. 

Goldman, A. E.; S. R. Emani, L. C. Pérez-Angel, J. A. Rodríguez-Ramos, J. C. Stegen, 2021. 
“Integrated, Coordinated, Open, and Networked (ICON) Science to Advance the 
Geosciences: Introduction and Synthesis of a Special Collection of Commentary Articles.” 
Earth and Space Science Open Archive. 
https://www.essoar.org/doi/10.1002/essoar.10508554.1. 

Helton, Ashley M., Geoffrey C. Poole, Judy L. Meyer, Wilfred M. Wollheim, Bruce J. Peterson, 
Patrick J. Mulholland, Emily S. Bernhardt, et al. 2011. “Thinking Outside the Channel: 
Modeling Nitrogen Cycling in Networked River Ecosystems.” Frontiers in Ecology and the 
Environment 9 (4): 229–38. https://doi.org/https://doi.org/10.1890/080211. 

Kim, Hyun il, and Kun Yeun Han. 2020. “Urban Flood Prediction Using Deep Neural Network 
with Data Augmentation.” Water 12 (3): 899. https://doi.org/10.3390/w12030899. 

Kim, Junhyeong, Allen H. Goldstein, Romy Chakraborty, Kolby Jardine, Robert Weber, Patrick 
O. Sorensen, Shi Wang, Boris Faybishenko, Pawel K. Misztal, and Eoin L. Brodie. 2021. 
“Measurement of Volatile Compounds for Real-Time Analysis of Soil Microbial Metabolic 
Response to Simulated Snowmelt.” Frontiers in Microbiology 12 (June). 
https://doi.org/10.3389/fmicb.2021.679671. 

Klasek, Scott A., Marcus T. Brock, Hilary G. Morrison, Cynthia Weinig, and Loïs Maignien. 
2021. “Soil Microsite Outweighs Cultivar Genotype Contribution to Brassica Rhizobacterial 



 

129 
 

Community Structure.” Frontiers in Microbiology 12. 
https://doi.org/10.3389/fmicb.2021.645784. 

Kyas, Svetlana, Diego Volpatto, Martin O. Saar, and Allan M. M. Leal. 2022. “Accelerated 
Reactive Transport Simulations in Heterogeneous Porous Media Using Reaktoro and 
Firedrake.” Computational Geosciences 26 (2): 295–327. https://doi.org/10.1007/s10596-
021-10126-2. 

Leal, Allan M. M., Svetlana Kyas, Dmitrii A. Kulik, and Martin O. Saar. 2020. “Accelerating 
Reactive Transport Modeling: On-Demand Machine Learning Algorithm for Chemical 
Equilibrium Calculations.” Transport in Porous Media 133 (2): 161–204. 
https://doi.org/10.1007/s11242-020-01412-1. 

Lu, Hannah, and Daniel M. Tartakovsky. 2021. “Dynamic Mode Decomposition for 
Construction of Reduced-Order Models of Hyperbolic Problems with Shocks.” Journal of 
Machine Learning for Modeling and Computing 2 (1): 1–29. 
https://doi.org/10.1615/JMachLearnModelComput.2021036132. 

Mao, Yongjing, Daniel L. Harris, Zunyi Xie, and Stuart Phinn. 2021. “Efficient Measurement of 
Large-Scale Decadal Shoreline Change with Increased Accuracy in Tide-Dominated 
Coastal Environments with Google Earth Engine.” ISPRS Journal of Photogrammetry and 
Remote Sensing 181 (November): 385–99. 
https://doi.org/10.1016/J.ISPRSJPRS.2021.09.021. 

Maskey, Manil, Hamed Alemohammad, Kevin Murphy, and Rahul Ramachandran. 2020. 
“Advancing AI for Earth Science: A Data Systems Perspective.” Eos 101 (November). 
https://doi.org/10.1029/2020EO151245. 

Meng, Xuhui, and George Em Karniadakis. 2020. “A Composite Neural Network That Learns 
from Multi-Fidelity Data: Application to Function Approximation and Inverse PDE 
Problems.” Journal of Computational Physics 401 (January): 109020. 
https://doi.org/10.1016/J.JCP.2019.109020. 

Mital, Utkarsh, Dipankar Dwivedi, James B. Brown, Boris Faybishenko, Scott L. Painter, and 
Carl I. Steefel. 2020. “Sequential Imputation of Missing Spatio-Temporal Precipitation Data 
Using Random Forests.” Frontiers in Water 2 (August). 
https://doi.org/10.3389/frwa.2020.00020. 

Mo, Shaoxing, Nicholas Zabaras, Xiaoqing Shi, and Jichun Wu. 2019. “Deep Autoregressive 
Neural Networks for High‐Dimensional Inverse Problems in Groundwater Contaminant 
Source Identification.” Water Resources Research 55 (5): 3856–81. 
https://doi.org/10.1029/2018WR024638. 

Molins, Sergi, David Trebotich, Bhavna Arora, Carl I. Steefel, and Hang Deng. 2019. “Multi-
Scale Model of Reactive Transport in Fractured Media: Diffusion Limitations on Rates.” 
Transport in Porous Media 128 (2): 701–21. https://doi.org/10.1007/S11242-019-01266-
2/FIGURES/10. 



 

130 
 

Napieralski, Stephanie A., and Eric E. Roden. 2020. “The Weathering Microbiome of an 
Outcropping Granodiorite.” Frontiers in Microbiology 11. 
https://doi.org/10.3389/fmicb.2020.601907. 

Painter, Scott L. 2021. “On the Representation of Hyporheic Exchange in Models for Reactive 
Transport in Stream and River Corridors.” Frontiers in Water 2. 
https://doi.org/10.3389/frwa.2020.595538. 

Painter, Scott L., Ethan Coon, and Dan Lu. 2021. “AI-Directed Adaptive Multifidelity Modeling 
of Water Availability and Quality at River Basin Scales,” April. 
https://doi.org/10.2172/1769669. 

Peherstorfer, Benjamin, Karen Willcox, and Max Gunzburger. 2018. “Survey of Multifidelity 
Methods in Uncertainty Propagation, Inference, and Optimization.” SIAM Review 60 (3): 
550–91. https://doi.org/10.1137/16M1082469. 

Raghu, Maithra, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. 2017. 
“On the Expressive Power of Deep Neural Networks.” In Proceedings of the 34th 
International Conference on Machine Learning, edited by Doina Precup and Yee Whye 
Teh, 70:2847–54. Proceedings of Machine Learning Research. PMLR. 
https://proceedings.mlr.press/v70/raghu17a.html. 

Sapitang, Michelle, Wanie M. Ridwan, Khairul Faizal Kushiar, Ali Najah Ahmed, and Ahmed 
El-Shafie. 2020. “Machine Learning Application in Reservoir Water Level Forecasting for 
Sustainable Hydropower Generation Strategy.” Sustainability 12 (15): 6121. 
https://doi.org/10.3390/su12156121. 

Saxe, Samuel, Terri S. Hogue, and Lauren Hay. 2018. “Characterization and Evaluation of 
Controls on Post-Fire Streamflow Response across Western US Watersheds.” Hydrology 
and Earth System Sciences 22 (2): 1221–37. https://doi.org/10.5194/hess-22-1221-2018. 

Schmidt, Isabel Belloni, and Ludivine Eloy. 2020. “Fire Regime in the Brazilian Savanna: 
Recent Changes, Policy and Management.” Flora 268 (July): 151613. 
https://doi.org/10.1016/J.FLORA.2020.151613. 

Shen, Chaopeng. 2018. “A Transdisciplinary Review of Deep Learning Research and Its 
Relevance for Water Resources Scientists.” Water Resources Research 54 (11): 8558–93. 
https://doi.org/10.1029/2018WR022643. 

Sokol, Noah W., Eric Slessarev, Gianna L. Marschmann, Alexa Nicolas, Steven J. Blazewicz, 
Eoin L. Brodie, Mary K. Firestone, et al. 2022. “Life and Death in the Soil Microbiome: 
How Ecological Processes Influence Biogeochemistry.” Nature Reviews Microbiology 2022 
20:7 20 (7): 415–30. https://doi.org/10.1038/s41579-022-00695-z. 

Song, Hyun-Seob, James C Stegen, Emily B Graham, Joon-Yong Lee, Vanessa A. Garayburu-
Caruso, William C. Nelson, Xingyuan Chen, J. David Moulton, and Timothy D. Scheibe. 
2020. “Representing Organic Matter Thermodynamics in Biogeochemical Reactions via 
Substrate-Explicit Modeling.” Frontiers in Microbiology 11. 
https://doi.org/10.3389/fmicb.2020.531756. 



 

131 
 

Steefel, Carl, Dipankar Dwivedi, Guillen Sole-Mari, Zexuan Xu, Ilhan Ozgen, Allan Leal, and 
Utkarsh Mital. 2021. “On Demand Machine Learning for Multi-Fidelity Biogeochemistry in 
River Basins Impacted by Climate Extremes.” United States. 
https://doi.org/10.2172/1769757.  

U.S. DOE (U.S. Department of Energy). 2019. “Open Watershed Science by Design: Leveraging 
Distributed Research Networks to Understand Watershed Systems Workshop Report.” 
DOE/SC-0200, Environmental System Science program, Office of Science. 
https://ess.science.energy.gov/open-watershed-workshop/. 

Wilder, Benjamin T., Catherine S. Jarnevich, Elizabeth Baldwin, Joseph S. Black, Kim A. 
Franklin, Perry Grissom, Katherine A. Hovanes, et al. 2021. “Grassification and Fast-
Evolving Fire Connectivity and Risk in the Sonoran Desert, United States.” Frontiers in 
Ecology and Evolution 9. https://doi.org/10.3389/fevo.2021.655561. 

 
  



 

132 
 

5  Ecohydrology 

Speakers: Forrest M. Hoffman (ORNL), Zheng Shi (Univ. of Oklahoma), Jinyun Tang (LBNL), 
Mallory Barnes (Indiana Univ.), Octavia Crompton (Duke Univ.), James Dennedy-Frank 
(LBNL), Sagar Gautam (SNL), Alexandra Konings (Stanford Univ.), Paul Levine (NASA JPL), 
Natasha MacBean (Indiana Univ.), Jiafu Mao (ORNL), Elias Massoud (UC-Berkeley), Richard 
Tran Mills (Argonne), Umakant Mishra (SNL), Sarah Scott (SNL), Matthias Sprenger (LBNL), 
Naomi Tague (UC-Santa Barbara), Erica Siirila-Woodburn (LBNL), Chonggang Xu (LANL), 
and Claire Zarakas (Univ. of Washington) 
 
Acknowledgement: Session leaders & workshop organizers would like to acknowledge the 
significant contribution to report of Yaoping Wang. 

5.1  Grand Challenges 
 
Ecohydrology research sits at the intersection of ecosystem ecology and water cycle science, and 
it incorporates land surface processes and atmospheric and watershed science in addressing 
ecophysiological responses and feedbacks to the hydrological cycle. Vegetation and benthic 
organisms, soils, and surface and subsurface hydrology are key components of the Earth system 
encompassed in ecohydrology. Ecohydrology research focuses on plant transpiration and water 
use, plant productivity, ecophysiology, plant-soil interactions, and biogeochemistry of terrestrial 
ecosystems. These processes span scales from stomates and microbes to canopies, watersheds, 
continents, and the entire globe (Figure 5-1). Understanding interactions among important 
mechanisms across these scales is challenging. Constraining ecohydrological models is limited 
by mechanistic knowledge gaps and by observations that are available at only a few of the scales 
of interest. 
 
Artificial intelligence (AI) and machine learning (ML) approaches will likely provide new 
avenues for extracting mechanistic understanding from the diversity of data available at different 
scales. Here we identify fundamental grand challenges in ecohydrology research that are likely to 
be transformatively addressed by AI/ML approaches. 
 
Grand Challenge #1: Develop multiscale representations of land processes that incorporate 
heterogeneous patterns of water stores and fluxes, vegetation patterns and processes, 
physiological function, heterogeneous soil properties and processes, and biogeochemical cycling 
to understand and predict responses to climate change and climate extremes. 

Current models inadequately capture the necessary land processes for simulating ecohydrology 
at the plant scale. Biological data for root network density and depth, root trait variability, and 
root responses to varying stresses are sparse, and data on soil properties and processes are 
insufficient for constraining models. While above-ground processes are better understood, there 
are still significant gaps in the data needed to resolve species differences in ecophysiological 
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processes, such as carbon allocation, and the degree to which species-specific traits are plastic 
and adapt to local conditions. Moreover, traditional methods for integrating available data have 
been inadequate for developing insights into plant-soil interactions and how those interactions 
respond to and feed back into hydrology at the watershed and larger scales. 
 
Grand Challenge #2: Develop models of climate extremes, pulse and press stresses, 
ecophysiological responses, and ecosystem structure and function to understand and predict 
ecosystem disturbances and recovery. 
 

 
Figure 5-1. Schematic representation of primary processes and functionality in the Community Land 
Model version 5 (CLM5) shown as an example of integrated ecohydrological processes required for 
modeling across scales. SCF = snow cover fraction; BVOC = biogenic volatile organic compounds; and 
C/N = carbon and nitrogen. For biogeochemical cycles, black arrow denotes carbon flux, and the purple 
arrow denotes nitrogen flux. Note that not all soil levels are shown. Not all processes are depicted. 
Optional features that are not active in default configurations are italicized (Source: Reproduced from 
Figure 1 in Lawrence et al. 2019 under Creative Commons CC BY 4.0). 
 

Land surface models adequately simulate mean state behavior of vegetation, soils, and 
interactions with the atmosphere, but they often fail to capture responses to climate extremes 
either because of missing processes or sensitivity to changes in temperature and precipitation that 
are too weak or too strong. Ecosystem disturbances and recovery patterns are especially 
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challenging because traditional big-leaf models do not incorporate vegetation’s structural 
elements required to mechanistically account for changes in structure and function induced by 
climate or meteorological extremes, like windthrow, frost, drought, and insect or pathogen 
outbreaks. Biases in atmosphere models and forcing data, as well as scaling issues, can also 
strongly affect land surface model responses. 
 
Grand Challenge #3: Apply machine learning to assimilate and calibrate emerging datasets, 
constrain model complexity, develop functional model benchmarks, and quantify the magnitude 
and sources of model and data uncertainty. 

A wide diversity of satellite and airborne remote sensing and in situ measurements are available 
to support ecohydrology research; however, the data are not well integrated and often do not 
include observations of quantities needed by models. In an effort to improve model performance, 
scientists tend to increase the complexity of models to capture processes for which sufficient 
measurements are not available and parameters are highly uncertain. AI/ML approaches are 
already being used to improve data through multisensor data fusion and quantitative methods for 
extrapolation and accounting for heterogeneity. Similar approaches are showing promise for 
calibrating model parameters and quantifying model structural uncertainty. AI/ML approaches 
are needed to improve data, develop multivariate model benchmarks of functional performance, 
and constrain the ever-increasing complexity of models. 
 

5.2  State-of-the-Science 
 
Ecohydrology involves coupling of soils, plants, and the atmosphere, requiring computationally 
intensive iterative solutions, which are difficult to integrate with limited observations. Machine 
learning approaches are already being used to (1) interpolate, extrapolate, and integrate data and 
models, accounting for nonlinear relationships among variables, to constrain and improve 
models; (2) build data-driven model components or parameterizations of processes from 
measurements and observational data products; and (3) develop emulators and surrogate models 
of complex, nonlinear process representations for parameter optimization and model tuning. 

Bi-linear interpolation, kriging, cluster analysis, random forests, model tree ensembles, 
convolutional neural networks, and other machine learning methods have been applied to 
spatially sparse measurements to understand their representativeness (e.g., Hoffman et al. 2013; 
Kumar et al. 2016), to design optimal sampling networks (e.g., Keller et al. 2008; Hoffman et al. 
2013), to analyze multidimensional model output (e.g., Burke et al. 2021), and to intelligently 
upscale and extrapolate environmental fluxes and characteristics over larger spatial domains 
(e.g., Langford et al. 2019; Jung et al. 2020; Konduri et al. 2020) using inferred relationships 
with environmental gradients, ecosystem dynamics, and remote sensing radiances. Recently, 
Mishra et al. (2020) compared four different machine learning approaches with traditional 
regression kriging to estimate surface soil organic carbon (SOC) stocks for the northern 
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circumpolar permafrost region. Their results showed that the ensemble median of the results of 
these machine learning techniques exhibited the highest prediction accuracy. 

Widening adoption of deep neural networks and the growth of meteorological and climate data 
have fueled interest in adopting machine learning technologies for use in weather and climate 
models (Dueben and Bauer 2018). Leveraging the successes in rainfall prediction (Miao et al. 
2015; Tao et al. 2016), soil moisture retrievals (Santi et al. 2016; Kolassa et al. 2017), and 
surface turbulent flux retrievals (Alemohammad et al. 2017; Jung et al. 2020), researchers are 
training deep neural networks as model parameterizations, initially for convection and subgrid-
scale processes (Rasp et al. 2018; Gentine et al. 2018; Brenowitz and Bretherton 2018, 2019; 
Brenowitz et al. 2020), which are poorly captured by current models or are computationally 
prohibitive for decadal or longer timescale simulations. 

Massoud (2019) used polynomial chaos expansion (PCE) emulators and sparse grid sampling for 
models of increasing complexity, including a hydrology, ecohydrologic, and vegetation 
dynamics model. The study showed that emulators performed better for lower-complexity 
models, as opposed to those models that were more complex. However, the results demonstrated 
that dimensionality reduction improved the emulation of even the most complex model in the 
study. 

Burke et al. (2021) employed random forests to identify the relative importance of biophysical 
and climatic parameters in predicting effects of fuel treatment in forests. These researchers found 
that interactions between biophysical settings, climate, and fuel treatments are complex and have 
nonlinear effects on forests, water, and fire behavior. The importance of individual drivers 
emerged from their analysis. They further indicated that random forest models could be used to 
test additional scenarios without needing to run the complex model. 

 

5.3  Experimental, Data, and Modeling Opportunities 
 
Advancing Earth system predictions with AI/ML methods requires large quantities of data 
regarding relevant processes across multiple spatial and temporal scales. Data requirements for 
training ML algorithms typically exceed the data needs for traditional process model 
development, verification, and validation. Therefore, additional data may be required from new 
laboratory and field measurements, manipulative experiments, airborne and satellite remote 
sensing, multisensor fusion and data synthesis, and modeling studies. Collecting, aggregating, 
sharing/distributing, and archiving these larger quantities of data and newly derived data 
products require a systematic and organized approach to data management. Creating, finding, 
accessing, analyzing, visualizing, and utilizing these data to train ML algorithms necessitate an 
integrated storage and computational infrastructure available across projects, institutions, and 
individual investigators. 
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5.3.1  New Data Products 
 

Ecohydrology research suffers from a lack of sufficient data across spatial scales from microbial 
and leaf scales to watershed and continental scales. In particular, because of its high spatial 
heterogeneity and difficulty in sampling, much more belowground data are needed to reduce 
characterization uncertainties and understand relationships between soil organic carbon and 
environmental factors (e.g., soil moisture, soil texture) that influence its formation and turnover 
and to understand root density, distribution and how roots change with environmental conditions. 
Similarly, species-specific plant data are needed globally to improve the representation of 
vegetation communities in models and better characterize and simulate responses to 
environmental change. A wide variety of measurement techniques is required across scales, and 
a hierarchical modeling approach is needed to simulate processes across spatial scales 
(Figure 5-2). AI/ML can be useful in acquiring such data through optimization of sampling or 
monitoring networks (e.g., Keller et al. 2008; Hargrove et al. 2003), autonomous control of 
measurement or sampling devices under changing conditions and extreme events, intelligent gap-
filling and extrapolation of point measurements (e.g., Mishra et al. 2020; Jung et al. 2020), and 
fusion of data from multiple sensors and in situ data from different agencies and measurement 
campaigns (e.g., Langford et al. 2017). New data products should be constructed in a manner that 
makes them easily accessible as a collection in standard, well-documented formats to facilitate 
ease of use and testing with a wide range of AI/ML approaches. One prominent example of such 
benchmark datasets, called ImageNet (Russakovsky et al. 2015), consists of a collection of 
images with associated labels (nouns) that can be used by the research community to train and 
test any number of object detection algorithms. Building collections of labeled Earth science data 
and offering them to the community would facilitate rapid testing of existing AI/ML methods 
and faster development of new AI/ML methods aimed specifically at addressing the needs of 
ecohydrology and related Earth science research. 
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Figure 5-2. A wide variety of measurement techniques is required across spatial scales from stomata to 
biomes to improve representation of ecohydrological processes with machine learning approaches, and a 
hierarchy of process-based and machine learning-based models is needed to simulate important 
processes across those scales and improve Earth system predictability (Source: Figure courtesy of 
Nathan Armistead, Oak Ridge National Laboratory). 
 

5.3.2  Hybrid Models 

Improving and developing new model parameterizations of ecohydrology processes in models is 
inherent in the Grand Challenges presented above. However, where sufficient data are available, 
the opportunity exists to train deep neural networks as model parameterizations. Such efforts 
have begun, initially for convection and subgrid-scale processes (Rasp et al. 2018; Gentine et al. 
2018; Brenowitz and Bretherton 2018, 2019; Brenowitz et al. 2020), which are poorly captured 
by current models or are computationally prohibitive for decadal or longer timescale simulations. 
Adding such capabilities in land surface models for simulating ecohydrological processes could 
greatly advance the utility and performance of these models. Envisioned is a framework that 
employs such methods for data-driven, hybrid process-/ML-based Earth system models 
(Schneider et al. 2017). As can be seen from this early work, lack of adequate data, numerical 
instabilities in coupling, and “out-of-sample” problems must be overcome, but the outlook for 
these approaches is promising. Employing similar approaches for adding machine learning 
capabilities in land surface models for simulating ecohydrological processes could greatly 
advance the utility and performance of these models.  
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By explaining patterns identified by machine learning, physically based models can be improved, 
providing transferability across space and time scales (Figure 5-3). Alternatively, ML can be 
used to reduce the complexity of multidimensional output from physically based models. The 
framework envisioned employs machine learning methods for data-driven process representation 
alongside traditional differential equation-based representation of ecohydrology processes, 
resulting in a hybrid process-based/ML-based Earth system model (Schneider et al. 2017). To 
facilitate that vision, existing models must be made more modular so that individual process-
based or ML-based parameterizations with a model may be swapped in and out as desired. 
 

 
Figure 5-3. Combining physically based models with machine learning models enables identification of 
processes and patterns that can inform future model development and new observational campaigns. 
Such hybrid models provide transferability across space and time scales (Source: Figure courtesy of 
Naomi Tague, UC Santa Barbara). 
 

5.3.3  Computing and Data Infrastructure 

The research community currently has access to high-performance computing capabilities at 
large computing centers within DOE, like NERSC at Lawrence Berkeley National Laboratory, 
the Oak Ridge Leadership Computing Facility, and the Argonne Leadership Computing Facility. 
The community has access to large collections of data at data centers like DOE’s Atmospheric 
Radiation Measurement (ARM) Data Center (ADC), Environmental Systems Science Data 
Infrastructure for a Virtual Ecosystem (ESS-DIVE), Earth System Grid Federation (ESGF), 
NASA’s Distributed Active Archive Centers (DAACs), and others. These data centers operate as 
stand-alone resources and require data users to download data to their own computational 
resources. This process of downloading data, pre-processing and integrating the data, and then 
performing simulations and analysis is tedious and unnecessary given recent technological 
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developments. When developing and deploying AI/ML methods, the difficulty of this workflow 
will increase since high-speed access to vastly larger data collections will be required for training 
ML models, potentially doing such training as part of simulation itself. 

The opportunity before the community is to build integrated computing and data infrastructure 
that eliminates the challenges of finding, acquiring, and downloading data. Benchmark AI/ML 
data should be accessible from any large computing environment, no matter where those data 
reside or are archived. This could be accomplished through application programming interfaces 
and data transport services, like Globus (https://globus.org/), that hide the details of data 
movement and exploit high-bandwidth networks to deliver data as needed for simulation and 
analysis. Funding agencies might coordinate in the creation of a model-data integration center 
that could provide such integrated storage and computing resources for the growing Earth system 
science community. The center could provide data hosting services, offer compute-near-the-data 
computational infrastructure and “AI/ML as a service” capabilities, and sponsor training 
activities and multidisciplinary working groups focused on advancing new or advanced research 
topics that may have some element of risk. Such a center could lower the bar of entry for 
laboratory and university scientists while enabling research with tools not otherwise easily 
accessible or usable. 

 

5.4  Research Priorities 
 
Priorities for near-term research in ecohydrology should aim to prepare the research community 
to address the Grand Challenges enumerated above. This includes improving characterization of 
soil and vegetation properties, improving representation of water stores and fluxes, developing 
models of extremes and ecosystem disturbance and recovery, and developing new assimilation 
and analysis capabilities to help constrain models and quantify sources of both model and data 
uncertainty. The research community is at a stage where progress can be made in creating 
benchmark “AI-ready” datasets and developing initial machine learning parameterizations and 
process emulators. Initial research and development activities should engage a broader, more 
multidisciplinary community of researchers, particularly in mathematics and computer science. 
Transitioning the community to significant use of AI/ML approaches in ecohydrology and 
climate science will require enhanced efforts to train the next generation of researchers to use 
new tools and methods. National scientific workforce development activities should consider 
how best to deliver the additional knowledge and training to early career scientists. 
 

5.4.1  Benchmark Datasets 

While Earth system and environmental data centers distribute and archive a wide variety of data 
collections from in situ measurements, monitoring networks, and airborne and satellite remote 
sensing platforms, they do not typically lead activities to synthesize data products across those 
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collections for specific research purposes. Instead, funded or volunteer working groups are often 
formed to synthesize data to address specific science questions or hypotheses. Such working 
groups may be catalyzed by existing projects (e.g., RUBISCO Soil Carbon Dynamics Working 
Group, RUBISCO-AmeriFlux Working Group), data collection activities or databases 
(e.g., various AmeriFlux and Fluxnet working groups, International Soil Carbon Network 
[ISCN], International Soil Radiocarbon Database [ISRaD], TRY Plant Trait Database, 
International Soil Moisture Network), or data synthesis centers (e.g., National Center for 
Ecological Analysis and Synthesis [NCEAS], National Institute for Mathematical and Biological 
Synthesis [NIMBioS], Powell Center for Analysis and Synthesis, Aspen Global Change 
Institute). They may be sponsored by the National Science Foundation, U.S. Geological Survey, 
U.S. Department of Agriculture, and other agencies and nongovernmental organizations. 
However, because these working group activities are often narrowly focused, they may not 
produce synthesized data products that are of general use, well documented, easily distributed, 
archived, and maintained over time. A more systematic approach with a broader vision for 
reusability and maintainability is required to generate benchmark datasets for training, testing, 
and benchmarking AI/ML models. 

Producing and maintaining large collections of understandable and reusable data, like that from 
ImageNet (Russakovsky et al. 2015), will be of great utility to the ecohydrology research 
community and will facilitate wider engagement of the mathematics and computer science 
communities already involved in developing and applying AI/ML methods. Some of these 
datasets will be similar to climate reanalysis data products (e.g., ERA5) or synthesized data used 
for model evaluation by software like the International Land Model Benchmarking (ILAMB) 
package (Collier et al. 2018). However, they must be highly multivariate for ML methods to 
uncover relationships, integrated in a consistent manner for direct use without translation or 
conversion, and available across multiple spatial and temporal scales and must contain long time 
series of a large number of samples, points, or grid cells. Such datasets should draw upon many 
independent data sources, such as data fused from multiple remote sensing platforms, and be 
calibrated with in situ measurements and continental-scale monitoring networks. To be of 
greatest utility, these data must be maintained and distributed by existing or new data centers, 
and integrated computing and storage infrastructure should be developed to facilitate data 
discovery and eliminate barriers to data movement and download. 
 

5.4.2  Hybrid Modeling 

Given the availability of growing volumes of observational data and in situ measurements, the 
Earth system modeling community is beginning to adopt data-driven approaches for high-
resolution weather and climate simulations (Schneider et al. 2017). An ML framework could be 
used to integrate the wealth of leaf-level fluorescence and gas exchange measurements 
(e.g., Leafweb), AmeriFlux and FLUXNET ecosystem fluxes, and Free Air Carbon Dioxide 
Enrichment (FACE) and Spruce and Peatland Responses Under Changing Environments 
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(SPRUCE) data to develop a unified treatment of stomatal responses, assimilation, and 
acclimation to changes in hydrology and soil moisture. ML-based models of stomatal 
conductance and plant hydraulics should be employed to produce a hybrid process-based/ML-
based land model with the aim of reducing the uncertainty of soil moisture and carbon 
assimilation (Figure 5-4). Such hybrid ecohydrology models could also inform watershed models 
to deliver dynamic ecological process representations often absent in such models. In addition, 
ML models can be created to improve the characterization of soil organic carbon and soil bulk 
properties to further reduce soil moisture uncertainties. ML methods should be explored to scale 
leaf-level and ecosystem processes to the watershed scale for season-to-interannual predictions, 
through a hierarchy of ML and process-based models, and further to regional and continental 
scales for interannual-to-decadal predictions. For research questions involving disturbance and 
recovery, new mechanistic modeling approaches to disturbance and disturbance recovery 
(e.g., Hanan et al. 2021) are advancing understanding, and these models would benefit from 
detailed information about change to vegetation structure to both support model parameterization 
and evaluation. Modeling disturbance is an area, due to its complexity, that would particularly 
benefit from hybrid approaches. 

Since plant and soil processes respond to climate change, FACE and SPRUCE data should be 
used to develop climate-adaptive ML models for the processes described above. This approach 
could enable significant steps forward in developing and integrating new and alternative 
parameterizations within Earth system models, like DOE’s Energy Exascale Earth System Model 
(E3SM), to produce a hybrid process-based/ML modeling framework (Reichstein et al. 2019). 
The requirement for reducing uncertainties in ecohydrological processes dictates prioritizing 
process representations of land–atmosphere interactions (energy, water, and carbon) that are 
(1) highly uncertain but for which observational data are available and (2) computationally 
expensive. Measurements of leaf-level responses to environmental variations can be related to 
measurements made at the canopy scale to reduce uncertainties in canopy integration schemes. 
ML methods can be applied to scale up plant responses—informed by ecosystem- and 
watershed-scale measurements, upscaled soil properties, and remote sensing data—to bound 
water budgets for watersheds and quantify risks of flooding and drought, particularly under water 
cycle extremes. While the primary motivation is to improve mechanistic understanding of these 
processes across scales, by connecting a chain of hierarchical ML-empowered models to weather 
forecasting systems, the results may be useful for informing probabilistic risk analysis to 
quantify risks for urban areas and other built infrastructure and to better quantify drought impacts 
on streamflow for energy and water utilities. 
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Figure 5-4. A process schematic of a full-complexity land surface model. Processes, and sets of 
processes, are represented as boxes in the diagram, with information connections represented as arrows. 
All processes—though here shown only for stomatal conductance—are intended to allow alternative 
specification, including possibly multiple hypothetical process realizations, empirical or machine learning-
derived formulations, and/or simplified stub or null representations to allow for holding a given process 
constant while other processes vary (Source: Figure adapted from Fisher and Koven 2020 under Creative 
Commons CC BY 4.0). 
 

5.4.3  Multidisciplinary Engagement 

New research in ecohydrology employing AI/ML approaches will benefit from strong 
collaboration with scientists in mathematics and computer science, who routinely apply such 
methods in other disciplines and who are actively developing new methods specific to research 
needs in other domains. Strengthening such collaborations will require frequent interaction 
between domain experts and computer scientists, mathematical generalization of specific process 
representations in models, and well-documented benchmark datasets. For ecohydrology, 
engaging with mathematicians and computer scientists will enable leveraging of research and 
development activities already underway, and it will foster long-lasting collaborations that will 
benefit both sets of communities. For long-lasting changes fostering intense cross-disciplinary 
collaborations, mathematics and computer science should become more prominent in Earth 
system science education at both the undergraduate and graduate levels. 
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5.4.4  Integrated Data and Computational Research Infrastructure 

Adding AI/ML approaches for data acquisition, processing, assimilation, modeling, and analysis 
will require improved infrastructure for large datasets and computational capacity. The growth 
opportunity is to build integrated computing and data infrastructure that eliminates the challenges 
of finding, acquiring, and downloading data. Benchmark AI/ML data should be accessible from 
all large computing environments, no matter where those data reside or are archived. This could 
be accomplished through application programming interfaces and data transport services, like 
Globus (https://globus.org/), that hide the details of data movement and exploit high-bandwidth 
networks to deliver data as needed for simulation and analysis. Funding agencies might 
coordinate in the creation of a model-data integration center that could provide such integrated 
storage and computing resources for the growing Earth system science community. The center 
could provide data hosting services, offer compute-near-the-data computational infrastructure 
and “AI/ML as a service” capabilities, and sponsor training activities and multidisciplinary 
working groups focused on advancing new or advanced research topics that may have some 
element of risk. Such a center could lower the bar of entry for laboratory and university 
scientists, fostering multidisciplinary engagement, while enabling research with tools not 
otherwise easily accessible or usable. 
 

5.4.5  Training and Workforce Development 

In order to advance research with AI/ML approaches, current and next-generation researchers 
need training on the wide variety of ML methods, data management, large-scale analytics 
techniques, and use of integrated computational and data resources. This could be accomplished 
through fellowships that support national laboratory internships for promising graduate students, 
training courses for postdoctoral and early career scientists (akin to open access online classes 
for hydrology at https://www.hydrolearn.org/), and seminars and hackathons for existing staff 
(similar to hydrology seminars provided by the CUAHSI Community at 
https://www.cuahsi.org/community). These activities could begin with webinars that highlight 
existing research in national laboratories and universities and virtual hackathons that demonstrate 
analysis techniques, useful software packages, and strategies for applying emerging datasets. 
These education and training activities should be an integrated part of training the next-
generation workforce of diverse research scientists to meet the needs of the nation. 
 

5.5  Short-term (<5 years), 5-year, and 10-year Goals 
 
Addressing the research priorities identified above will lead to completion of goals in the short 
term, in the mid term, and in the longer term. Incremental progress through these goals is 
expected to reduce model uncertainties and improve predictions, leading to actionable science 
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outcomes. The following short-term, mid-term, and long-term goals provide a roadmap for 
ecohydrology experiments, data, and models. 
 

5.5.1  Short-Term (<5 years) Goals 
Shorter-term goals include efforts to:  

● Develop a collection of “AI-ready” benchmark datasets for leaf-level measurements of 
fluxes of energy, water, and carbon; canopy-level observations of evapotranspiration and 
productivity; and continental-scale estimates of carbon and water cycle time series from 
in situ measurements and airborne and satellite remote sensing. 

● Synthesize existing data in a network-of-networks approach to provide “AI-ready” 
datasets on subsurface characterization (e.g., high-frequency soil moisture dynamics, soil 
water tracer data) across large environmental gradients to study the soil-plant feedbacks. 

● Improve the modularity of current models so that individual parameterizations can be 
isolated and swapped with ML-based versions of parameterizations. 

● Develop an initial set of ML-based parameterizations for photosynthesis and soil 
processes that can be integrated as components into hybrid models. 

● Establish collaborative opportunities across Earth system science, mathematics, and 
computer science directed at developing and applying novel and domain-specific ML 
methods to improve the accuracy of ecohydrology process representations in Earth 
system models. 

● Design and begin implementation of an integrated data and computational infrastructure 
to support AI/ML in Earth system science. This could leverage existing data centers, 
computational centers, and software infrastructure, and potentially be transitioned to its 
own center or facility for broader engagement of the research community. 

● Initiate a webinar series for educating and training cross-disciplinary researchers across 
career stages about the use of AI/ML methods and tools.  

● Conduct virtual and in-person hackathons for more rigorous training of graduate students, 
postdoctoral scholars, and early career scientists. 

 

5.5.2  Mid-Term (5 years) Goals 
Mid-term goals include efforts to: 

● Develop an initial modeling framework for swapping or interchanging process-based and 
ML-based parameterizations within Earth system models. 

● Foster cross-disciplinary research and training by sponsoring trans-disciplinary working 
groups that include observational scientists, modelers, data scientists, mathematicians, 
and computer scientists to take advantage of the benchmark data, ML model frameworks, 
and integrated computational and storage resources to address specific science questions 
in ecohydrology. 

● Develop accurate and efficient science-guided ML systems or models to predict effects of 
different ecohydrological disturbances and post-disturbance responses and feedbacks. 

● Employ ML to generate new synthetic data for training ML algorithms, for example, 
photographing each root core collected and developing an ML algorithm to help 
understand and fast-track improvements in data observations of this kind. 
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● Develop ML algorithms that can infer what additional measurements are needed and 
what optimal sampling frequencies and spatial distributions will lead to improvements in 
ecohydrology models. 

 

5.5.3  Long-Term (10 years) Goals 
Long-term goals include efforts to: 

● Deploy a fully functioning modeling framework for easily configuring and monitoring 
ML-based parameterizations alongside process-based parameterizations within Earth 
system models, supporting online training and in situ analysis and visualization. 

● Deploy a fully functioning, explainable ML framework that can identify where to collect 
data (space/time gaps), what processes need to be improved (physics/chemistry/biology 
gaps), and how to better manage and analyze data for ecohydrological applications. 

● Deploy a fully functioning ecohydrological modeling subsystem for Earth system models 
that is tested and calibrated for accurate predictions across relevant space and time scales, 
and which includes ecosystem disturbance and recovery process representations. 

● Establish a multiagency AI center to provide computational and storage infrastructure, 
necessary benchmark data, a wide variety of models at different scales, software tools for 
analysis and visualization, and staff to support a collection of working groups proposed to 
address key science questions in ecohydrological predictability. 
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6  Aerosols and Clouds 

Authors: Po-Lun Ma (PNNL), Paloma Borque (PNNL), Pavlos Kollias (Stony Brook 
Univ./BNL), Salil Mahajan (ORNL), Sam Silva (PNNL), Adam Varble (PNNL), Yunyan Zhang 
(LLNL) 

6.1  Grand Challenges 
Aerosol and cloud processes (Figures 6-1, 6-2) are extremely complicated and not well 
understood. Biases and uncertainties in predicting aerosol and cloud properties and processes are 
the primary sources of uncertainty in long-term projections of global temperature and 
precipitation. Reducing these uncertainties to provide more robust predictions of temperature and 
precipitation, both globally and regionally, is a foremost grand challenge in climate science, and 
AI/ML can be a powerful tool that provides a viable path forward. Three grand challenges for 
using AI/ML to improve the understanding and predictability of aerosols and clouds have been 
identified. 
 

      
Figure 6-1. Schematic illustration of cloud microphysical processes within a typical cumulonimbus cloud. 
Specific microphysical processes are listed in red (involving only liquid drops) and purple (involving ice particles 
only or both liquid and ice). Cloud droplet activation occurs on aerosol particles serving as cloud condensation 
nuclei (CCN) in supersaturation conditions; cloud droplets then grow by condensation. Further growth by 
collision-coalescence produces raindrops. Above the 0°C level, there is heterogeneous ice nucleation on 
aerosols serving as ice nucleating particles (INPs). Ice particles grow by vapor deposition and riming (i.e., 
accretion and freezing of supercooled drops). If riming is especially heavy, not all of the collected liquid water 
freezes onto the ice particles and some is shed, representing wet growth. Above approximately the −40°C level, 
homogeneous ice nucleation can generate additional ice particles. Sublimation of ice particles detrained from 
the cloud occurs in subsaturated conditions. Ice crystals can grow by aggregation when they collide and stick 
together. Secondary ice production, not associated with heterogeneous or homogeneous ice nucleation, can 
generate more ice particles. Below the 0°C level, ice particle melting generates raindrops, and shedding of 
meltwater occurs for some ice particles. Raindrop collision-coalescence produces larger drops, while raindrop 
breakup produces smaller ones. Below cloud base, evaporation of falling raindrops occurs in subsaturated air 
(Source: Reproduced from Morrison et al. 2020 under Creative Commons CC BY 4.0). 
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Figure 6-2. Schematic diagram of aerosol-related processes, denoted by blue boxes in clear air, 
stratiform cloud (shaded area on the right), convective cloud (shaded area on the left), or ice cloud 
(shaded area on the upper left) (Source: Figure reproduced and adapted from Wang et al. 2020 under 
Creative Commons CC BY 4.0).  
 

6.1.1  Insufficient Data 
 
Many important aerosol and cloud properties and processes remain poorly characterized. These 
include but are not limited to new particle formation; aerosol growth and activation; cloud 
processing and wet scavenging of aerosols; cloud droplet, rain, and ice nucleation and growth; 
secondary ice formation; convective circulations; and turbulent cloud entrainment/detrainment, 
cloud transitions, and organizations. Parameterizing these processes in climate models requires a 
combination of theory, process models, and measurements of aerosol and cloud properties such 
as size distributions across the range of atmospheric conditions covering Earth that influence and 
interact with them. However, measurements and high-resolution process models are limited, both 
in sampling and uncertainty, which presents a hurdle for producing sufficient extensive and high-
fidelity datasets for AI/ML purposes. Aerosol and cloud studies that are based on a single field 
campaign or a small set of process model simulations do not represent the worldwide spectrum 
of aerosol, cloud, and meteorological regimes (Kogan and Ovchinnikov 2020; Possner et al. 
2020). Specific cloud regimes and transitions between them are often critical to climate 
prediction including the stratocumulus to trade cumulus transition, high-latitude mixed-phase 
clouds, and deep convection; but these are not sampled equally, while extremes are sampled even 
less. Many collocated observations are required for isolating and quantifying aerosol-cloud-
precipitation interactions due to confounding factors and feedback that operate across a range of 



 

151 
 

scales. Moreover, uncertainties and deficiencies in process models (such as numerical diffusion 
in the bin microphysics approach) can also lead to biases. Both simulation and observational 
datasets are currently insufficient in number and often have uncharacterized uncertainties. 
 

6.1.2  Model Calibration and Uncertainty Quantification 
 
Studies have shown that the predictions of aerosols, clouds, effective radiative forcing (ERF) 
associated with anthropogenic aerosols (ERFaer), and cloud feedback are sensitive to model 
parameter settings. However, best practices for this resource-intensive procedure have not been 
established. Deriving signals from the nonlinear system, such as decoupling aerosol signals from 
meteorological co-variability, disentangling large-scale controls, and aerosol-cloud interactions 
(ACI), etc., is challenging. The effectiveness of existing emergent constraints is unclear 
(Schneider et al. 2017; Schlund et al. 2020), so continuous efforts on the development of 
process-oriented constraints as calibration targets are desirable. Furthermore, as Earth system 
models become more complex, the dimensionality of the parameter space also grows 
significantly. The scientific community has not established a prioritization of metrics for 
calibration targets. 
 

6.1.3  Extreme-scale Separation 
 
Processes affecting aerosols, clouds, and their interactions with the Earth system span a vast 
range of scales from 10-9 to 106 m. Finding the right technology and data to bridge these scales is 
a major challenge. A hierarchy of models exists to resolve different portions of this vast scale 
spectrum from DNS to LES, CPM, LAM, and RRMs with limited domain sizes before reaching 
ESMs with global coverage. However, the workflows and best practices needed for bridging 
these models and scales are unclear. Similarly, observations vary in resolved scale and 
spatiotemporal coverage, but the ideal methods for overcoming scale mismatches to connect a 
range of different datasets are also unclear. While promising process-oriented test cases at select 
scales exist including applications of ML, the challenge remains of how to implement those 
results into global ESMs in a way that does not degrade other aspects of ESM predictions. 
 

6.2  State of the Science 
 
There have been many successful applications of AI/ML in understanding and improving the 
predictability of aerosols and clouds. Below we list five research areas. 
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6.2.1  Surrogates and Emulators 
 
Plenty of studies have demonstrated success in applying AI/ML approaches to develop emulators 
for aerosol or cloud processes, including chemistry (Kelp et al. 2020; Keller and Evans 2019), 
aerosol activation (Silva et al. 2021), aerosol mixing (Zheng et al. 2021), and the warm rain 
process (Chiu et al. 2021; Gettelman et al. 2021). These emulators are developed to improve the 
accuracy, computational performance, or both. DNNs have been demonstrated to be more 
skillful than traditional, physically based parameterizations (Figure 6-3). Additional work has 
been done exploring the role of maintaining physical consistency when applying machine 
learning methods (Sturm and Wexler 2020; Beucler et al. 2021).  
 

 
Figure 6-3. Scatterplot comparisons of the three physically naïve machine learning emulators using ridge 
regression, XGBOOST, and deep neural network (DNN) and the Abdul-Razzak and Ghan (2000) scheme 
(ARG) predicted activation fraction with the detailed parcel model. The 1:1 line is in red, and the blue lines 
represent a factor of 2 difference. Performance statistics are given in each panel  
(Source: Reproduced from Silva et al. 2021 under Creative Commons CC BY 4.0).      
 

6.2.2  Bridging Spatial Scales 
 
Model hierarchies consisting of numerical models of varying resolution have been used by the 
research and operational communities for providing predictions across scales. Modern AI/ML 
techniques for coarse graining (Bretherton et al. 2021) and downscaling (Sachindra et al. 2018) 
show promise for bridging such scales.  
 



 

153 
 

6.2.3  Feature/Signature Detection and Causal Inference 
 
Multiple studies have highlighted the importance and usefulness of interpretable AI (IAI), 
explainable AI (XAI), feature/signature detection, and causal inference techniques in climate and 
weather science (Barnes et al. 2020; McGovern et al. 2019; Toms, Barnes, and Ebert-Uphoff 
2020; Tao Zhang et al. 2021). These methods can be used to identify indicator patterns of forced 
changes and emergent properties of the real and simulated climate system. These indicator 
patterns and emergent properties provide a path toward knowledge discovery, understanding 
what the AI/ML learned, and revealing missing mechanisms.  
 

6.2.4  Model Optimization and Uncertainty Quantification 
 
AI/ML approaches have shown promise in correcting model biases with respect to observations 
or a high-fidelity model simulation, optimizing model fidelity (Watt-Meyer et al. 2021; Kennedy 
and O’Hagan 2001; Couvreux et al. 2021; Hourdin et al. 2021; Zhang et al. 2015; Zhang et al. 
2018; Xu et al. 2018; Cleary et al. 2021). Emulating a complex model’s parameter sensitivities 
following human-constructed trial simulations have been used to aid model calibration and 
uncertainty quantification. 
 

6.3  Experimental, Data, and Modeling Opportunities 
 

6.3.1  Developing Representative Datasets for AI/ML Applications 
 
This requires more extensive, accurate aerosol and cloud microphysics datasets consisting of 
in situ measurements, surface and satellite-based remote sensing retrievals, and high-fidelity 
process model simulations. Uncertainties associated with those datasets need to be quantified and 
cataloged. Synthesizing different datasets to overcome data gaps is essential for building 
representative datasets that can sufficiently apply to a range of climate scenarios. In addition, 
data collected for natural experiments such as volcanic eruptions and reduced socioeconomic 
activities due to COVID can provide insights into impacts of low-frequency or extreme events. 
Targeted observations are helpful for closing critical data gaps by identifying sensitive regions, 
collecting high-resolution/high-fidelity data, and designing the campaigns. Another good 
application of AI/ML is to improve retrievals because they are quasi-linear operators that can be 
inverted and used for data assimilation.  
 
Process models can be used to generate high-fidelity data. For example, explicit particle-resolved 
models (Riemer et al. 2009, 2010) can be used to generate data for aerosol microphysics and 
chemistry. Bin models (Khain et al. 2015; Tzivion [Tzitzvashvili], Feingold, and Levin 1987; 
1989; Feingold, Tzivion [Tzitzvashvili], and Leviv 1988) and the new Lagrangian-based super 
droplets approach (Grabowski et al. 2019) are useful for providing detailed cloud microphysics 
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information. Models using the 4-stream approximation (Liou, Fu, and Ackerman 1988) can be 
used to generate data for estimating the 3D radiative effects of aerosols and clouds. Optics 
models (such as Mie code) can provide information about aerosol and cloud radiative properties. 
Large eddy simulations (LES) may provide detailed turbulence structure and transport of mass, 
momentum, and energy in cloud and sub-cloud layers. Model simulation ensembles (with 
perturbed physics, emissions and forcings, or other model configurations) provide useful 
information about the projection uncertainties and sensitivities to the perturbations. These 
datasets can be generated from high-resolution LES or ESMs and be used for emulator 
development and for improving the understanding of predictability. Unsupervised variational 
autoencoder (VAE) compression can be applied to mine the datasets for feature detection 
through the transformation of high-dimensional data into a quasi-Gaussian “latent-space.” 
 

6.3.2  Developing Emulators for Aerosol and Cloud Parameterizations in ESMs 
 
Many existing aerosol and cloud parameterizations are based on empirical fits of observational 
or simulation data. Faster and more accurate emulators can be developed to replace or augment 
these parameterizations. Furthermore, the right level of complexity required in ESMs has not 
been systematically assessed. The ad hoc determination regarding, for example, the number of 
moments or the number of distinct separable sub-regimes used for parameterizing cloud 
microphysics leads to uncharacterized uncertainties. The appropriate architectures for different 
emulation purposes remain unclear. Unsupervised ML dimensionality reduction techniques such 
as VAEs applied to high-resolution data can be used to enhance our view of how many and 
which sub-regimes merit separate treatment in heuristic parameterization, ensuring the 
generalizability of the parameterizations. In the meantime, equation discovery and interpretable 
AI are important for emulator development to ensure physical interpretability. A verification and 
validation framework for emulators needs to be established. For processes without appropriate 
benchmark data, a Bayesian framework can provide a proper constraint. In addition to 
developing emulators for individual aerosol and cloud processes, developing emulators for 
systems can help us better understand and predict various feedback and adjustments by focusing 
on multivariate co-variabilities rather than effects of a single variable. 
 

6.3.3  Model Calibration 
 
The traditional manual calibration methods are resource-intensive and subjective, and their use 
makes it difficult to achieve local or global optimality in complex ESMs. While some techniques 
are established, such as emulating a complex model’s parameter sensitivities following human-
constructed trial simulations, end-to-end optimization that involves AI/ML in the model tuning 
process is not here yet. Yet deploying AI/ML-assisted calibration techniques online could 
significantly reduce the computational cost or enhance the quality of model calibration. 
Spatiotemporal Bayesian inference and multiagent reinforcement learning can efficiently link 
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various timescales of the Earth system. These approaches also provide valuable information on 
the model uncertainty and limitations throughout simultaneous surrogate modeling. Instead of 
running expensive ESM simulations, surrogate models using AI/ML regression methods can be 
utilized to describe the relationship between the uncertain parameters and the output variables of 
an ESM to aid model calibration. Combining the data-driven tuning and domain knowledge from 
traditional manual tuning can help optimization algorithms converge effectively and analyze the 
mechanism of different local optimums. 
 

6.3.4 Developing New Software Infrastructure to Seamlessly Incorporate AI/ML Approaches 
in the Modeling Framework 
 
The software architecture for state-of-the-art ESMs is largely based on FORTRAN. However, 
AI/ML tool-chains are typically developed in a Python ecosystem. Efficient use of Python-based 
AI/ML trained networks in FORTRAN-based ESMs remains a challenge. Modelers have 
developed different approaches to address this gap. Libraries connecting the two software 
architectures are only a short-term solution. The software architecture needs to be redesigned to 
achieve computational performance portability for ESMs implemented with AI/ML methods to 
enable online training, calibration, and bias correction and to facilitate testing of process 
(emulator) splitting and coupling.  
 

6.4  Research Priorities 
 
The session participants suggested that the socioeconomic benefits and scientific uncertainties 
should be two important factors for determining priority science questions. Research resource 
allocation should be proportional to the scientific and socioeconomic impact. In addition, a set of 
use cases should be developed, such as (1) understanding and predicting aerosol emissions 
associated with wildfires (location, intensity, emission height, etc.); (2) exploring the influence 
of decarbonization on aerosol microphysics and chemistry; (3) characterizing the highly 
nonlinear chemical interactions; and (4) building faster, more accurate, and physically 
constrained emulators. Datasets for these use cases should be made accessible to the scientific 
community. The session participants also identified three priority research areas. 
 

6.4.1  Data Compilation and Harmonization 
 
Collecting and harmonizing data from different sources are critical. This includes data from 
ARM, satellites, detailed process-level and high-resolution-high-fidelity models, and other 
detailed data such as cloud chamber measurements. Data properties including the spatial and 
temporal scales they represent, as well as their uncertainty, strength, and weakness, need to be 
cataloged.  
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6.4.2  Improving the Representation of Aerosols and Clouds in ESMs 
 
Many process representations can be replaced by emulators based on large training datasets that 
contain all variables. With increasing emulator development efforts, a framework for identifying 
good architecture of the AI model for different data needs to be established. A procedure for 
systematically evaluating the performance, trustworthiness, and generalizability of the emulators 
is critical. In addition to verification and validation techniques in the data science community, 
representative spatiotemporal information and process-level metrics as emergent constraints 
developed by the climate science community should also be used. For highly uncertain processes 
that do not have sufficient benchmark data, Bayesian representation of uncertainties can be 
helpful. Surrogates for the system, rather than individual processes, should also be developed to 
efficiently and systematically assess system response to perturbations. 
 

6.4.3  Improving Understanding Using XAI and IAI  
 
New XAI and IAI techniques have transformed the AI/ML applications from black box to 
identifying intrinsic properties and relationships of the data. These techniques are helpful in 
finding variables that are driving a system and can be used for feature detection and signature 
identification. These techniques can yield insights to aerosol and cloud scientists so they can 
provide physical interpretation. New insights can further drive new knowledge discovery and 
next-generation model development. 
 

6.5  Short-term (<5 years), 5-year, and 10-year Goals 
 
The short-term goals are to establish a set of good and bad practices. At this stage, the 
community should carry out a large number of exploratory projects to accumulate experience 
and establish best practices. These efforts will include: 
 

1. Exploration of different architecture for building emulators for well-defined aerosol and 
cloud processes. 

2. Application of XAI or IAI techniques for feature/signature detection to reduce ERFaci 
uncertainty in observations and models and to better isolate and quantify contributing 
factors. 

3. Generation and collection of a large amount of observational and simulation data from 
high-resolution/high-fidelity models. 

 
The 5-year goals are to complete the groundwork for using AI/ML to transform the prediction 
and understanding of aerosols and clouds. These efforts will include:  
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1. Data curation, harmonization, and uncertainty characterization. 
2. Development of a framework for evaluating AI/ML techniques against observations, in 

addition to evaluating models against observations. 
3. Next-generation model development driven by new knowledge discovered by AI/ML 

feature detection techniques. 
4. Application of AI/ML for automated model calibration. 
5. Targeted observations through AI/ML-assisted OSSEs. 
6. Establishment of the standard for the AI/ML models to be more interpretable, transparent, 

and trustworthy. 
 
The 10-year goals are to significantly improve the understanding and predictability of aerosols, 
clouds, and their roles in the Earth system through the integration of AI/ML techniques in the 
research and operational communities. These efforts will include: 
 

1. Development of digital twins for science applications of significant impact. This includes 
identifying new mechanisms with AI/ML and exploring correlations in the system to find 
minimal subspaces or manifolds that could represent the full system efficiently. 

2. Better understanding and model treatment of multiscale interactions. 
3. Better characterization, and reduction, of model uncertainty including parametric, 

structural, and representative uncertainties. 
4. Better representation of the system in data-limited regimes. 
5. A movement toward machine reasoning where the AI/ML model trained from one dataset 

can be applied for another science application. 
 

6.6  References  
 
Barnes, Elizabeth A., Benjamin Toms, James W. Hurrell, Imme Ebert-Uphoff, Chuck Anderson, 

and David Anderson. 2020. “Indicator Patterns of Forced Change Learned by an Artificial 
Neural Network.” Journal of Advances in Modeling Earth Systems 12 (9): 
e2020MS002195. https://doi.org/https://doi.org/10.1029/2020MS002195. 

Beucler, Tom, Michael Pritchard, Stephan Rasp, Jordan Ott, Pierre Baldi, and Pierre Gentine. 
2021. “Enforcing Analytic Constraints in Neural Networks Emulating Physical Systems.” 
Physical Review Letters 126 (9): 98302. https://doi.org/10.1103/PhysRevLett.126.098302. 

Bretherton, Christopher S., Brian Henn, Anna Kwa, Noah D. Brenowitz, Oliver Watt-Meyer, 
Jeremy McGibbon, W. Andre Perkins, Spencer K. Clark, and Lucas Harris. 2021. 
“Correcting Coarse-Grid Weather and Climate Models by Machine Learning from Global 
Storm-Resolving Simulations.” Earth and Space Science Open Archive, 39. 
https://doi.org/10.1002/essoar.10507879.1. 

Chiu, J. Christine, C. Kevin Yang, Peter Jan van Leeuwen, Graham Feingold, Robert Wood, 
Yann Blanchard, Fan Mei, and Jian Wang. 2021. “Observational Constraints on Warm 
Cloud Microphysical Processes Using Machine Learning and Optimization Techniques.” 



 

158 
 

Geophysical Research Letters 48 (2): e2020GL091236. 
https://doi.org/10.1029/2020GL091236. 

Cleary, Emmet, Alfredo Garbuno-Inigo, Shiwei Lan, Tapio Schneider, and Andrew M. Stuart. 
2021. “Calibrate, Emulate, Sample.” Journal of Computational Physics 424 (January): 
109716. https://doi.org/10.1016/J.JCP.2020.109716. 

Couvreux, Fleur, Frédéric Hourdin, Daniel Williamson, Romain Roehrig, Victoria Volodina, 
Najda Villefranque, Catherine Rio, et al. 2021. “Process-Based Climate Model 
Development Harnessing Machine Learning: I. A Calibration Tool for Parameterization 
Improvement.” Journal of Advances in Modeling Earth Systems 13 (3): e2020MS002217. 
https://doi.org/10.1029/2020MS002217. 

Feingold, Graham, Shalvn Tzivion (Tzitzvashvili), and Zev Leviv. 1988. “Evolution of Raindrop 
Spectra. Part I: Solution to the Stochastic Collection/Breakup Equation Using the Method of 
Moments.” Journal of Atmospheric Sciences 45 (22): 3387–99. 
https://doi.org/10.1175/1520-0469(1988)045<3387:EORSPI>2.0.CO;2. 

Gettelman, A., D. J. Gagne, C. C. Chen, M. W. Christensen, Z. J. Lebo, H. Morrison, and G. 
Gantos. 2021. “Machine Learning the Warm Rain Process.” Journal of Advances in 
Modeling Earth Systems 13 (2): e2020MS002268. https://doi.org/10.1029/2020MS002268. 

Grabowski, Wojciech W., Hugh Morrison, Shin-Ichiro Shima, Gustavo C. Abade, Piotr Dziekan, 
and Hanna Pawlowska. 2019. “Modeling of Cloud Microphysics: Can We Do Better?” 
Bulletin of the American Meteorological Society 100 (4): 655–72. 
https://doi.org/10.1175/BAMS-D-18-0005.1. 

Hourdin, Frédéric, Daniel Williamson, Catherine Rio, Fleur Couvreux, Romain Roehrig, Najda 
Villefranque, Ionela Musat, Laurent Fairhead, F. Binta Diallo, and Victoria Volodina. 2021. 
“Process-Based Climate Model Development Harnessing Machine Learning: II. Model 
Calibration From Single Column to Global.” Journal of Advances in Modeling Earth 
Systems 13 (6): e2020MS002225. https://doi.org/10.1029/2020MS002225. 

Keller, C. A., and M. J. Evans. 2019. “Application of Random Forest Regression to the 
Calculation of Gas-Phase Chemistry within the GEOS-Chem Chemistry Model V10.” 
Geoscientific Model Development 12 (3): 1209–25. https://doi.org/10.5194/gmd-12-1209-
2019. 

Kelp, Makoto M., Daniel J. Jacob, J. Nathan Kutz, Julian D. Marshall, and Christopher W. 
Tessum. 2020. “Toward Stable, General Machine-Learned Models of the Atmospheric 
Chemical System.” Journal of Geophysical Research: Atmospheres 125 (23): 
e2020JD032759. https://doi.org/https://doi.org/10.1029/2020JD032759. 

Kennedy, Marc C., and Anthony O’Hagan. 2001. “Bayesian Calibration of Computer Models.” 
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63 (3): 425–64. 
https://doi.org/10.1111/1467-9868.00294. 

Khain, A. P., K. D. Beheng, A. Heymsfield, A. Korolev, S. O. Krichak, Z. Levin, M. Pinsky, et 
al. 2015. “Representation of Microphysical Processes in Cloud-Resolving Models: Spectral 



 

159 
 

(Bin) Microphysics versus Bulk Parameterization.” Reviews of Geophysics 53 (2): 247–322. 
https://doi.org/10.1002/2014RG000468. 

Kogan, Yefim, and Mikhail Ovchinnikov. 2020. “Formulation of Autoconversion and Drop 
Spectra Shape in Shallow Cumulus Clouds.” Journal of the Atmospheric Sciences 77 (2): 
711–22. https://doi.org/10.1175/JAS-D-19-0134.1. 

Liou, Kuo-Nan, Qiang Fu, and Thomas P. Ackerman. 1988. “A Simple Formulation of the Delta-
Four-Stream Approximation for Radiative Transfer Parameterizations.” Journal of 
Atmospheric Sciences 45 (13): 1940–48. https://doi.org/10.1175/1520-
0469(1988)045<1940:ASFOTD>2.0.CO;2. 

McGovern, Amy, Ryan Lagerquist, David John Gagne, G. Eli Jergensen, Kimberly L. Elmore, 
Cameron R. Homeyer, and Travis Smith. 2019. “Making the Black Box More Transparent: 
Understanding the Physical Implications of Machine Learning.” Bulletin of the American 
Meteorological Society 100 (11): 2175–99. https://doi.org/10.1175/BAMS-D-18-0195.1. 

Morrison, H., et al. 2020. “Confronting the Challenge of Modeling Cloud and Precipitation 
Microphysics.” Journal of Advances in Modeling Earth Systems 12 (8). 
https://doi.org/10.1029/2019MS001689.   

Possner, Anna, Ryan Eastman, Frida Bender, and Franziska Glassmeier. 2020. “Deconvolution 
of Boundary Layer Depth and Aerosol Constraints on Cloud Water Path in Subtropical 
Stratocumulus Decks.” Atmospheric Chemistry and Physics 20 (6): 3609–21. 
https://doi.org/10.5194/acp-20-3609-2020. 

Riemer, N., M. West, R. A. Zaveri, and R. C. Easter. 2009. “Simulating the Evolution of Soot 
Mixing State with a Particle-Resolved Aerosol Model.” Journal of Geophysical Research: 
Atmospheres 114 (D9): 9202. https://doi.org/10.1029/2008JD011073. 

Riemer, Nicole, Matthew West, Rahul Zaveri, and Richard Easter. 2010. “Estimating Black 
Carbon Aging Time-Scales with a Particle-Resolved Aerosol Model.” Journal of Aerosol 
Science 41 (1): 143–58. https://doi.org/10.1016/J.JAEROSCI.2009.08.009. 

Sachindra, D. A., K. Ahmed, Md Mamunur Rashid, S. Shahid, and B. J. C. Perera. 2018. 
“Statistical Downscaling of Precipitation Using Machine Learning Techniques.” 
Atmospheric Research 212 (November): 240–58. 
https://doi.org/10.1016/J.ATMOSRES.2018.05.022. 

Schlund, Manuel, Axel Lauer, Pierre Gentine, Steven C. Sherwood, and Veronika Eyring. 2020. 
“Emergent Constraints on Equilibrium Climate Sensitivity in CMIP5: Do They Hold for 
CMIP6?” Earth System Dynamics 11 (4): 1233–58. https://doi.org/10.5194/esd-11-1233-
2020. 

Schneider, Tapio, Shiwei Lan, Andrew Stuart, and João Teixeira. 2017. “Earth System Modeling 
2.0: A Blueprint for Models That Learn From Observations and Targeted High-Resolution 
Simulations.” Geophysical Research Letters 44 (24): 12,396-12,417. 
https://doi.org/10.1002/2017GL076101. 



 

160 
 

Silva, Sam J., Po-Lun Ma, Joseph C. Hardin, and Daniel Rothenberg. 2021. “Physically 
Regularized Machine Learning Emulators of Aerosol Activation.” Geoscientific Model 
Development 14 (5): 3067–77. https://doi.org/10.5194/gmd-14-3067-2021. 

Sturm, Patrick Obin, and Anthony S. Wexler. 2020. “A Mass- and Energy-Conserving 
Framework for Using Machine Learning to Speed Computations: A Photochemistry 
Example.” Geoscientific Model Development 13 (9): 4435–42. https://doi.org/10.5194/gmd-
13-4435-2020. 

Toms, Benjamin A., Elizabeth A. Barnes, and Imme Ebert-Uphoff. 2020. “Physically 
Interpretable Neural Networks for the Geosciences: Applications to Earth System 
Variability.” Journal of Advances in Modeling Earth Systems 12 (9): e2019MS002002. 
https://doi.org/https://doi.org/10.1029/2019MS002002. 

Tzivion (Tzitzvashvili), Shalva, Graham Feingold, and Zev Levin. 1987. “An Efficient 
Numerical Solution to the Stochastic Collection Equation.” Journal of Atmospheric 
Sciences 44 (21): 3139–49. https://doi.org/10.1175/1520-
0469(1987)044<3139:AENSTT>2.0.CO;2. 

———. 1989. “The Evolution of Raindrop Spectra. Part II: Collisional Collection/Breakup and 
Evaporation in a Rainshaft.” Journal of Atmospheric Sciences 46 (21): 3312–28. 
https://doi.org/10.1175/1520-0469(1989)046<3312:TEORSP>2.0.CO;2. 

Wang, H., R. C. Easter, R. Zhang, P.-L. Ma, B. Singh, and K. Zhang, 2020. Aerosols in the 
E3SM Version 1: New developments and their impacts on radiative forcing. Journal of 
Advances in Modeling Earth Systems, 12, 
e2019MS001851. https://doi.org/10.1029/2019MS001851. 

Watt-Meyer, Oliver, Noah D. Brenowitz, Spencer K. Clark, Brian Henn, Anna Kwa, Jeremy 
McGibbon, W. Andre Perkins, and Christopher S. Bretherton. 2021. “Correcting Weather 
and Climate Models by Machine Learning Nudged Historical Simulations.” Geophysical 
Research Letters 48 (15): e2021GL092555. 
https://doi.org/https://doi.org/10.1029/2021GL092555. 

Xu, Haoyu, Tao Zhang, Yiqi Luo, Xin Huang, and Wei Xue. 2018. “Parameter Calibration in 
Global Soil Carbon Models Using Surrogate-Based Optimization.” Geoscientific Model 
Development 11 (7): 3027–44. https://doi.org/10.5194/gmd-11-3027-2018. 

Zhang, T., L. Li, Y. Lin, W. Xue, F. Xie, H. Xu, and X. Huang. 2015. “An Automatic and 
Effective Parameter Optimization Method for Model Tuning.” Geoscientific Model 
Development 8 (11): 3579–91. https://doi.org/10.5194/gmd-8-3579-2015. 

Zhang, Tao, Wuyin Lin, Andrew M. Vogelmann, Minghua Zhang, Shaocheng Xie, Yi Qin, and 
Jean-Christophe Golaz. 2021. “Improving Convection Trigger Functions in Deep 
Convective Parameterization Schemes Using Machine Learning.” Journal of Advances in 
Modeling Earth Systems 13 (5): e2020MS002365. 
https://doi.org/https://doi.org/10.1029/2020MS002365. 

Zhang, Tao, Minghua Zhang, Wuyin Lin, Yanluan Lin, Wei Xue, Haiyang Yu, Juanxiong He, et 
al. 2018. “Automatic Tuning of the Community Atmospheric Model (CAM5) by Using 



 

161 
 

Short-Term Hindcasts with an Improved Downhill Simplex Optimization Method.” 
Geoscientific Model Development 11 (12): 5189–5201. https://doi.org/10.5194/gmd-11-
5189-2018. 

Zheng, Zhonghua, Jeffrey H. Curtis, Yu Yao, Jessica T. Gasparik, Valentine G. Anantharaj, Lei 
Zhao, Matthew West, and Nicole Riemer. 2021. “Estimating Submicron Aerosol Mixing 
State at the Global Scale With Machine Learning and Earth System Modeling.” Earth and 
Space Science 8 (2): e2020EA001500. 
https://doi.org/https://doi.org/10.1029/2020EA001500. 

  
  



 

162 
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7.1  Grand Challenges 
 
To tackle this question, we asked, “What are the Grand Challenges in Coastal Dynamics, 
Oceans, and Ice prediction that could be uniquely and transformatively addressed by AI/ML 
approaches?” 
 
We have identified four Grand Challenges across our diverse session, as follows. 
 

7.1.1  Grand Challenge 1 (GC1) 
 
GC1 is to accurately represent multiple spatiotemporal scale processes across the ice-land-ocean 
system, which includes efforts to: 
 

● Capture coastal, ocean, and cryosphere processes that span a wide range of interacting 
scales in space and time. Examples include eddy turbulence in the ocean affecting large-
scale transport and distribution of sea ice floe size affecting large-scale rheology. 

● Develop parameterizations that are scale-aware/valid for all model resolutions, including 
the use of stochastic subgrid-scale models. 

● Resolve model physics appropriate for the question being addressed.  
● Improve model/data ensemble use through ML (e.g., by making ensembles more efficient 

to capture the range of uncertainty in a coupled system). 
 

7.1.2  Grand Challenge 2 (GC2) 
 
GC2 is to accurately represent complex coupled ice-land-ocean systems and the nonlinear 
interactions between individual components in both observational systems and models, which 
includes efforts to: 
 

● Address many critical coastal, ocean, and cryosphere processes that occur at interfaces, 
and these boundary effects have a large impact on the overall behavior of the system. 
Examples include freshwater fluxes affecting the stratification of the ocean, and glacier 
hydrologic processes on the surface (e.g., crevasse propagation) and bed (e.g., basal 
friction). 

● Obtain a better understanding of sensitivities and uncertainty/bias propagation in a 
coupled system. 

● Build connections between fully resolved process models. 
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● Describe interfacial fluxes, which are not well modeled at the current grid scales. 
● Improve coupled model tuning. 

 

7.1.3  Grand Challenge 3 (GC3) 
 
GC3 is to address incompleteness in observed data and theory, which includes efforts to: 
 

● Overcome the lack of data for the vast ocean and remote polar regions, which particularly 
suffer from challenges in data collection and data sparsity. 

● Overcome incomplete/unrepresented physics. 
● Use AI/ML to develop insights where data do not exist (short term). 
● Use AI/ML to generate new platforms to fill holes where no data exist (long term). 

 

7.1.4  Grand Challenge 4 (GC4) 
 
GC4 is to improve the prediction of extremes, the identification of tipping points, and the 
influence of human actions, which includes efforts to: 
 

● Incorporate marine and cryosphere processes, which often have strong nonlinearities and 
regime changes related to phase change and other threshold processes. Predicting 
extremes is exacerbated by the Grand Challenges listed above (multiscale, controls at 
interfaces, data sparsity). 

● Recognize that traditional physics approaches may struggle; continuum simulations may 
be poor at extrema. 

● Navigate the reality that the effects of human scenarios and future decisions are difficult 
to incorporate into predictions. 

 
In addition, we developed a work cloud summarizing the phrases/words related to Grand 
Challenges expressed by workshop participants, shown in Figure 7-1.  
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Figure 7-1. Word cloud indicating Grand Challenges that come to mind for session participants with 
regard to coastal dynamics, oceans, and ice. 
 

7.2  State-of-the-Science 
 
Next, given the Grand Challenges we identified, we asked, “What is the state-of-the-science for 
development and application of AI/ML approaches for these Grand Challenges?” 
 
As shown in Figure 7-2, ML techniques that have been most commonly employed by workshop 
participants are neural networks, model emulators/surrogates, and data synthesis. 
 

 
Figure 7-2. Summary of AI/ML techniques that the workshop participants have previously used. 
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7.2.1  Coastal Dynamics 
 
Coastal dynamics encompasses multiple interacting systems and scales across sharp horizontal 
gradients in the coastal zone, including aspects such as ocean and lake dynamics, flooding, 
sediment transport and geomorphology, biogeochemistry (BGC), and human interactions. This 
complexity is hard to model and predict, and strongly motivates past and emerging ML 
applications. 
 
Extreme coastal water level and flooding prediction are the most common areas of ML 
development in coastal dynamics. In particular, storm surge surrogate models have had wide 
attention using methodologies such as Gaussian process regression (Kriging), polynomial chaos, 
CNN, ANN, and SVR (Kajbaf and Bensi 2020; Jia et al. 2016; Kim et al. 2015; Kyprioti et al. 
2021a; Lee et al. 2021; Plumlee et al. 2021; Sochala et al. 2020; Zhang et al. 2018). In these 
studies, tropical cyclones (TCs), which are responsible for the strongest surge events, are 
modeled through parametric models. This allows researchers to characterize TCs through a small 
set of parameters and thus form a map from these inputs to the modeled surge. Emerging areas 
for ML-based coastal flooding include: incorporating sea-level rise (Kyprioti et al. 2021b), 
coupling to and including rainfall and hydrological processes for compound flooding prediction 
(Bass and Bedient 2018; Li, Kiaghadi, and Dawson 2021), and using more advanced ML 
techniques such as deep learning (Tiggeloven et al. 2021) and Fourier Neural Operators (Jiang, 
et al. 2021). An additional component to sea levels and coastal flooding originates from wind 
waves and associated wave setup, runup, and overtopping. Wind wave models, especially so-
called third-generation models, are however very computationally expensive as they are solved 
in five dimensions. One study drastically reduced this cost using MPL ANNs and SVM 
classification methods for predicting significant wave heights and characteristic periods (James, 
Zhang, and O’Donncha 2018).  
 
In the area of coastal sediment transport, suspended sediment concentrations and fluxes have 
been predicted using ANN and Boosted Regression Trees (BRTs) (see Goldstein, Coco, and 
Plant 2019 for a review). Settling velocities have been estimated using Random Forest (RF) 
techniques (Cao et al. 2020). In morphodynamics, sandbars tend to be studied using ANN, while 
Bayesian Networks (BNs) are often applied to shoreline and dune erosion (Goldstein, Coco, and 
Plant 2019). Probabilistic ML is important for the highly uncertain nature of coastal 
morphodynamics, an example of which was using Gaussian processes for prediction of wave 
runup for dune erosion estimates (Beuzen, Goldstein, and Splinter 2019). 
 
BGC models encompass a whole range of chemical kinetics from biological to gas phase. These 
include stiff reaction systems and often biological reactions that are either too slow or very fast 
and poorly understood. Developing surrogate models for this entire reaction chain that are an 
order of magnitude faster will allow us to include these multi-timescale kinetics in larger models 
(regional and global) and explore the feedbacks/nonlinearities fully. The typical approach to deal 
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with stiffness and a wide range of timescales in reaction kinetic networks is to use different time 
integrators for various parts of the timescales of the problem. With AI/ML we can do something 
similar using neural ordinary differential equation (ODEs). An emerging topic is data analysis 
and surrogate modeling of coupled water, sediment, and nutrient fluxes, as well as dissolved 
organic carbon (DOC) dynamics using satellite data in tidally influenced wetland–estuarine 
systems (Cao and Tzortzio 2021).  
 

7.2.2  Ocean 
 
The global ocean covers 71% of Earth’s surface, and yet it is one of the least understood and 
least mapped domains in the climate system. The open ocean directly interacts with the sub-
domains of coastal, cryosphere, and the atmosphere. Observational ocean measurements are 
spatially and temporally sparse and mostly limited to the surface, and few continuous 
measurements span more than several decades. The timescales relevant to accurate 
measurements span seconds to millennia, and spatial scales of importance range from micro with 
relevance of ocean turbulence, to synoptic with relevance to fronts and wave propagation. The 
complexity of ocean observation and modeling strongly motivates developers of past and 
emerging ML applications to improve their understanding and predictability. 
 
For the open ocean, AI/ML has been used for observational analysis in addition to modeling 
applications. For observational applications, examples include:  

● Data fusing using satellite and in situ data products for biological and physical insights 
(e.g., Castellani 2006; Chapman and Charantonis 2017; Denvil-Sommer et al. 2019; 
Duncan et al. 2019; Kavanaugh et al. 2016; Martinez et al. 2020; ben Mustapha et al. 
2014) or combining data from disparate satellite platforms (e.g., Guimbard et al. 2012).  

● Quantifying deep ocean currents (Manucharyan, Siegelman, and Klein 2021) and heat 
fluxes (George, Manucharyan, and Thompson 2021) from satellite altimetry.  

● Deciphering three-dimensional North Atlantic ocean circulation, and ocean dynamical 
regions from an ocean state estimate (Sonnewald, Wunsch, and Heimbach 2019) in 
addition to numerous ocean model simulations (Sonnewald and Lguensat 2021).  

● Estimating global ocean heat content from tidal satellite observations (Irrgang, Saynisch, 
and Thomas 2019), predicting Indian Ocean Dipole events (Ratnam, Dijkstra, and Behera 
2020), and identifying the ENSO state from sea surface temperature (SST) inputs, along 
with predicting near surface temperature on land from SSTs (Toms, Barnes, and Ebert-
Uphoff 2020). 

 
In addition, leveraging unsupervised ML methods has facilitated new objective approaches that 
complement conventional classification techniques, including: developing physical insights as a 
function of vertical ocean temperature/stratification in the North Atlantic (Maze et al. 2017), 
Southern Ocean (Jones et al. 2019), mid-latitude and equatorial Pacific (Houghton and Wilson 
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2020), subpolar North Atlantic (Desbruyères, Chafik, and Maze 2021), and Southern Ocean 
mixing off the Kerguelen Plateau (Rosso et al. 2020) from Argo profile data. This has also 
resulted in developing an understanding of the pathways and variability of modified Circumpolar 
Deep Water in the Amundsen Sea (Boehme and Rosso 2021), along with biogeochemical 
insights, such as mapping subsurface oxygen (Giglio, Lyubchich, and Mazloff 2018), CO2 fluxes 
(Bushinsky et al. 2019), and silicate and phosphate (Park et al. 2021) in the Southern Ocean, 
along with estimates of global atmosphere-ocean CO2 fluxes (Landschützer et al. 2014; Watson 
et al. 2020). 
 
The application of AI/ML to ocean modeling is less developed than its observational counterpart. 
Some preliminary applications include data-driven meso/submesoscale eddy parameterizations to 
better anchor parameterizations from data, rather than idealized theories (Zanna and Bolton 
2020; Bolton and Zanna 2019), parameterizing unresolved mesoscale ocean dynamics using deep 
learning (Guillaumin and Zanna 2021), reconstructing an index of the Atlantic Meridional 
Overturning Circulation (AMOC; DelSole and Nedza 2021), and ascertaining the predictive 
sensitivity of September sea ice across ten representative climatological quantities in a coupled 
climate model (Nichol et al. 2021). 
 
There are numerous opportunities for AI/ML to tackle ocean science challenges. Like the 
cryosphere, the poor temporal and spatial sampling of the global ocean lends itself to being a rich 
opportunity for ML-assisted data fusion and exploration (GC3). The role of climate extremes 
(GC4) and their role as drivers of climate impacts are another area where AI/ML could aid 
discovery, deriving insights from crude-resolution ocean model data that poorly resemble the 
Earth system. In addition, we can leverage ML to quantitatively guide the development and 
updating of parameterizations directly from observed data, rather than the conventional 
approach, using idealized theories. 
 
Figure 7-3 shows how ML has started to converge with research developments in oceanography 
(top), while the lower box shows the ML process with oceanography components assigned to 
each ML step.  
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Figure 7-3. Convergence of oceanography research with the emergence of ML (top); and ML applications 
within components of oceanography (bottom) (Source: Reproduced from Sonnewald et al. 2021b under 
Creative Commons CC BY 4.0).   
 

7.2.3  Sea-Level Prediction 
 
Sea-level changes occur for many reasons and on a range of timescales, from fast changes, such 
as storm surges or tides, to slow changes linked to persistent natural processes like decadal ocean 
temperature variations. The influence of these factors also varies around the globe, where other 
local effects (e.g., subsidence or variations in land height) can also affect sea-level rising, making 
it harder to estimate regional sea-level changes at specific locations. Developing more accurate 
predictions will bring huge benefits for the world population living within 100 kilometers of the 
coast – which represent 40% of all territories (Stocker et al. 2014). We also need a diverse set of 
tools with different informational needs to help planners and decision makers identify key 
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regions vulnerable to sea-level changes. Among all available tools and techniques, the 
application of ML to this topic has been largely underexplored, even though it seems to be 
particularly suitable for capturing nonlinear complex relationships. In this context, nearshore and 
short-timescale processes (e.g., extreme coastal sea levels) have been the primary target of ML 
efforts (Sztobryn 2003; Bajo and Umgiesser 2010; French et al. 2017), as discussed in 
section 7.3. More recently, the impact of offshore (natural) processes, such as internal climate 
variability, was examined through observational ocean temperature data (Nieves, Marcos, and 
Willis 2017) and ML techniques (Nieves, Radin, and Camps-Valls 2021) to predict regional 
coastal sea levels on timescales from 1 to 3 years. Input for short-term predictions may be 
obtained as well through statistical ML downscaling of climate models (Sithara, Pramada, and 
Thampi 2021). On longer timescales, ML can also be used to fill data gaps or identify outliers in 
the dataset to aid in the evaluation of past sea-level variability (Hieronymus, Hieronymus, and 
Hieronymus 2019; Radin and Nieves 2021).  
 

7.2.4  Ice 
 
In the domains of sea ice and land ice, AI/ML has been used both in interpreting observations 
and improving models. Within observational applications, automated feature classification from 
satellite imagery is a common application. For sea ice, this has been applied to sea ice ridges, 
surface melt ponds, and open ocean leads, for example, using convolutional neural networks 
(Reinisch et al. 2021). Land ice applications also include morphological and hydrologic features, 
including crevasses and fracture and surface ponds, lakes, and streams (e.g., Lai et al. 2020). To 
date, these applications have generally been performed using single satellite sensors, and analysis 
of multiple coincident sensors or satellite sensors with other types of airborne or in situ 
measurements remains a challenging, but promising, direction. Variations in spatial and temporal 
scales (GC1) and data sparsity associated both with in situ data as well as satellite repeat 
intervals (GC3) are also difficult, although AI/ML approaches have made some progress in these 
areas where traditional remote sensing studies have struggled (e.g., Braakmann-Folgmann and 
Donlon 2019). 
 
In modeling applications, AI/ML has been applied most to learning parameterizations for 
unresolved processes and for emulation for uncertainty quantification. Sea ice parameterization 
applications have included wave-ice interactions (Horvat and Roach 2022). Land ice applications 
have been most focused on representing fracturing and calving, but are also starting to consider 
surface mass balance processes in snow and ice and subglacial hydrology. Uncertainty 
quantification applications have included ranking parameter space sensitivity for stand-alone sea-
ice models and building sea-level emulators from large-scale ice sheet models (Urrego-Blanco 
et al. 2016). 
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Ice sheet contributions to regional sea level constitute a highly nonlocal phenomenon, through 
glacial isostatic adjustment and changes to the gravitational field with impacts on the sea-level 
fingerprint and tides. ML has been used primarily to statistically emulate ice sheet mass loss 
scenarios to constrain uncertainty, as mentioned above. However, the differential regional sea-
level rise associated with ice loss from Greenland and Antarctica remains a challenge to ML 
approaches to sea-level predictability on decadal timescales.  
 

7.3  Experimental, Data, and Modeling Opportunities 
 
We next asked, “What experimental, data, and modeling opportunities exist for advancing 
development and use of AI/ML approaches for these Grand Challenges?” 
 
In the various breakout groups, there was an emphasis on advancing the ModEx approach of 
using data to improve models, and using models to inform data gathering and experiments, in a 
repeating cycle. For instance, models can be continuously updated with real-time data paired and 
continuously interrogated and tested. Different ways AI/ML approaches could be Integrated with 
the ModEx approach include by: 
 

● Comparing models to data in order to understand underlying processes and improve 
model parameterizations and therefore their predictive capabilities (using better physics 
or AI/ML). 

● Assuming that models are skillful/perfect, using AI/ML techniques to improve our prior 
knowledge of environmental variables (e.g., data assimilation). 

● Using models to improve observational data by removing effects of other unwanted 
environmental variables and similarly removing contamination from observations that are 
not relevant to models. 

● Using ML to link observations with process modeling. 
 

7.3.1  Coastal Dynamics 
 
The main limitations on coastal data are twofold: the lack of availability of consistent and 
continuing time series of coastal measurements and a lack of well-distributed observations. 
Having more co-located, multi sensor measurements to be combined with satellite imagery, 
NWP, and reanalysis products would be most helpful (e.g., by using 4D CNN ML methods) and 
could include, for example, nearshore wave measurements and current profilers, or reflectors in 
marshes to enable InSAR analyses of these sensitive areas. In the case of extreme flooding 
events, it is important to have detailed damage and recovery information to test model 
predictions and develop ML approaches that go beyond the empirical damage curve approach.  
 
In the BGC community, measurements to figure out the dynamic and heterogeneous areas are 
required, including landscape and spatial structures. For example, as tides ebb and flow, they 
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create a dynamic environment for microbes to respond along with the plants, and measurements 
targeting this area and processes are needed. Similarly, observations on the arctic permafrost are 
lacking at all relevant scales, and there is very limited sampling. The state of the permafrost is 
that of extreme heterogeneity and in scales beyond the reach of current physics-based models, 
motivating the need for more data to develop alternative AI/ML modeling approaches and to 
reduce the uncertainty and accuracy of the models. ML approaches for optimization of data 
placement sensors, to better tap into remote sensing imagery and to fill gaps in data (e.g., on the 
permafrost) could be transformative to improving data coverage and quality.  
 
Modeling opportunities include wave-current interaction and the nonlinear interaction of sea 
level, tide, surge, and wave-setup interaction for coastal flooding, especially across large regions 
as opposed to point-based output. Also, incorporating inland hydrological processes with ocean 
processes (coupling watershed ML models with coastal surge models) is a big opportunity to 
improve both climate modeling and extreme flood prediction under a future climate of wetter 
storms. These nonlinear coupled processes are challenging to model using physics-based 
approaches across all scales, and ML approaches that excel in mapping nonlinear high-
dimensional outputs will be useful. ML could be applied for testing where certain processes 
matter (e.g., where wave setup is an important contribution to total water levels that could cause 
coastal flooding). Furthermore, for emulators involving human systems and couplings, there may 
also be lessons from mechanistic surrogates to bring in dynamical knowledge. For example, 
response models are used for SLR, where (assuming linearity) you can predict the response to 
any forcing, without knowing in advance what those forcings might look like. 
 
Furthermore, in exposure modeling, usage of AI/ML approaches could be in generating synthetic 
data to develop and represent built and environmental infrastructure. Using graph-based 
algorithms and ML models, there are opportunities to create power outage modeling and 
combine these with hazard and impact modeling to capture the actual risk. This helps decision 
makers to have necessary information. Impact modeling can be developed with the available 
data. Besides this, usage of linear models such as logistic regression can be used, along with new 
datasets from customers to then apply transfer learning techniques for use of models across 
different regions of interest. 
 
Developing improved parameterizations for physics-based models that are based on idealized lab 
experiments are necessary. Such idealized parameterizations are ubiquitous in BGC models and 
have not been deeply scrutinized. The same argument can be made for turbulence closure and 
boundary layer stress models in hydrodynamic models that are derived from idealized fluid 
dynamics experiments. The use of more versatile and scrutinizable ML/hybrid ML methods in 
model parameterizations could provide opportunities for large modeling advances and help to 
ensure that these parameterizations preserve multiscale features across the coastal zone.  
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7.3.2  Ocean and Sea Level 
 
There are numerous opportunities for AI/ML to make progress on ocean science challenges. Like 
the cryosphere, the poor temporal and spatial sampling of the global ocean lends this to be a rich 
opportunity for ML-assisted data fusion and exploration (GC3). In particular, using unsupervised 
ML techniques may enable new insights to be extracted from existing single or composite 
datasets, elucidating new relationships and new opportunities for predictability (Sonnewald, 
Wunsch, and Heimbach 2019). There may also be opportunities to leverage ML to extract 
information from sparse and “messy” unmanaged observational data such as those from 
individual biologically focused research campaigns. The role of climate extremes and in 
particular marine heatwaves for the ocean (GC4) and their role as drivers of climate impacts are 
another area where AI/ML could aid discovery, deriving insights from crude-resolution ocean 
model data that poorly resemble the Earth system. In addition, leveraging ML to quantitatively 
guide the development and updating of parameterizations – generated directly from observed 
data – rather than the conventional approach using idealized theories is a rich opportunity (e.g., 
Zanna and Bolton 2020). There is also an opportunity to leverage ML to replicate current PDE-
based models, validating and reproducing existing capabilities, while potentially leveraging 
efficiency gains provided by emerging hardware that does not scale well with legacy Fortran 
libraries. 
 

7.3.3  Ice 

7.3.3.1  Sea Ice 

Perhaps the greatest possibilities for AI/ML in sea ice prediction exist in simulating small-scale 
morphological features and in accelerating codes, thereby allowing larger and more physically 
realistic ensembles simulating the sea ice state in Earth system models. A great volume of 
synthetic aperture radar (SAR) data is expected to become available in the coming decade to 
support this development, which will be useful for characterizing the upper surface of sea ice to 
aid the development of models. However, data sparsity will continue to be a challenge for many 
aspects of sea ice, especially for characterizing the submerged ice surface, which will continue to 
be limited by submarine track and mooring measurements. This also poses an opportunity for 
machine learning. Within the available model toolset of the coming decade, new classes of basin-
scale Lagrangian sea ice models are emerging for synoptic to centennial prediction (e.g., Turner, 
Peterson, and Bolintineanu 2022), offering the potential for machine learning to develop 
improved sea-ice element contact models based on observations and high-resolution floe-
resolving simulations. It is also possible that nonlocal physics-informed Neural Networks 
(e.g., Pang et al. 2020) may better capture aspects of sea ice rheology than traditional PDE-based 
continuum models. As part of improvements in sea ice dynamics, thermodynamics, and 
morphology in sea ice models, feature shifts between near-coincident imagery sources 
(e.g., SAR, MSI, etc.) would expand the availability of data for ML problems as well as the 
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potential for quantitative comparison between imaging modalities. With increases in model 
resolution and large increases in observational data, AI approaches could have a significant 
impact by discovering patterns in sea ice evolution, revealing connections between Earth system 
processes associated with the atmosphere-ice-ocean boundary layer. There is also potential for 
development of surrogates or emulators that could be used to more efficiently to create large 
ensembles to investigate uncertainty in predictions. Targeted AI/ML applications to individual 
problems in sea ice simulation may offer the most scientifically sound path to explainable 
outcomes. 
 

7.3.3.2  Land Ice 

Experimental, data, and modeling opportunities in land ice tend to be less mature than in other 
areas, but there has been tremendous improvement in recent years. Observational data for 
glaciers and ice sheets in particular suffer from data sparsity in space and time exacerbated by 
the slow response time of many glacier processes (decades to millennia). Due to the relative lack 
of data, neural networks hold promise, but non-physically informed neural networks will be 
more difficult to evaluate. A proliferation of satellite and airborne data products for ice velocity, 
thickness, thinning rate, and surface conditions has made ice-sheet-wide products for each of 
these quantities available at increasing temporal frequency. The relative uniformity and 
frequency of remotely sensed data products makes them the best target for AI/ML applications. 
In situ observations are significantly more time-consuming and resource-intensive to obtain and 
suffer from more problems with data availability and standards. However, these methods 
represent the only observations of englacial and subglacial conditions, which are critical for ice 
sheet evolution. There are few experimental approaches being used in glaciology, but there has 
been a slight resurgence of these methods, and they offer unique opportunities for AI/ML 
applications. Laboratory experiments of basal and ice rheology using ring-shear and other 
mechanical devices provide direct measures of poorly understood processes that are often 
crudely parameterized in large-scale models and theory. Glaciological models range from 
process-scale, to full-continent ice-sheet models, to Earth system models. Linkages between 
these levels of complexity are relatively few in glaciology, and AI/ML could accelerate 
establishing connections between these efforts. Transitioning to software frameworks that 
support both physical models and AI/ML would help accelerate these connections. 
 

7.4  Research Priorities 
 
Given these active research focus areas, we asked: “What research must be conducted as next 
steps for addressing the Grand Challenges, and what are the research priorities?” 
 
We identified four overarching research priorities for addressing the Grand Challenges, as 
follows. 
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7.4.1 Improving Data Standardization and Consistency and Exploring How AI/ML Can Be 
Used to Address Sparse Data Coverage and Merge Disparate Datasets  
 
Workshop participants across all breakout groups often brought up the challenges of the lack or 
poor data standards, data inconsistencies among datasets, and low machine-readability of the 
data (GC3). As a result, most of the work when using programs like TensorFlow becomes 
interfacing with data input/output. Furthermore, as Internet of Things (IoT) devices become more 
ubiquitous, manual cleansing of data will not be feasible. Participants suggested focusing on the 
need for better data standards (community-agreed data formats, tools, metadata, test databases, 
set of metrics, etc.) and developing templates for people to use to contribute data. Producers of 
data should ensure that the data are in a readily usable form for modeling groups and available 
through open-source repositories that can be easily cited by data users. 
 
Workshop participants also brought up data scarcity and sparse spatiotemporal data issues, which 
are true across the coastal, ocean, and cryosphere space (GC3). An AI/ML approach can shed 
new light on this problem in several ways, including hole filling and representativeness error in 
data-model comparisons (point observation vs. model grid cell). However, the relatively short 
temporal coverage of some observational records can limit the training performance of ML 
models on these datasets. Current strategies for training the models include using 
proxy/substitute data to recreate the missing data (e.g., Radin and Nieves 2021). The forecasting 
ability of the ML models may be assessed where longer records are available. Further targeted 
ML-based research is needed to improve prediction of data gaps when there is a limited number 
of reliable databases. 
 
Other specific examples efforts to: 
 

● Develop and synthesize datasets from satellite and surface remote sensing as an urgent 
precursor for building NN models and validating them.  

● Quantify the required and desired observational data volumes and types for predicting 
detailed features of sea ice including leads, ridges, and floes. 

● Develop data assimilation approaches that can be used to improve the predictions with 
ground information and AI-based remote sensing approaches that can be used to generate 
new calibration datasets. 

● Interrogate existing satellite data, which have not been well-used by the coastal 
community, and merge with in situ observations. 

● Create AI applications for use in data analysis and model validation: process-based 
studies. 

● Convert data that we have on human systems, which are often aspatial, into spatial and 
grid-based form for use in ESMs. 

● In the coastal space, merge and fill in data for groundwater and BGC observations, which 
are much further inland than other coastal observations (GC2).  
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7.4.2 Utilizing Transferable AI/Transfer Learning, and Using AI/ML for Investigating 
Parameter Sensitivity and Scale-dependence in Models 
 
Many AI/ML coastal process and sea ice models will be trained on data from specific well-
instrumented regions and well-measured physical regimes. Their broader applicability will need 
to be addressed with transfer learning approaches in order to allow these models to extend from 
data-rich to data-poor regions (GC3). Transfer learning techniques are also important to apply 
ML methods to multiple situations such as various coastal regions with different attributes and 
physical processes, or multiple sea ice regimes. Mitigating site-specific bias is also related to 
environmental justice issues, since training datasets tend to be disproportionately distributed 
across different socioeconomic regions. It will be important to identify regions where statistical 
ML methods are sufficient and where they are not. Another related priority is determining how to 
ensure accuracy under extreme conditions and improve out-of-sample prediction with AI/ML 
approaches (GC4). Hybrid modeling is an important focus for reducing the uncertainty of AI/ML 
predictions for extremes. 
 
AI/ML techniques that can help determine scale-dependence and parameter sensitivity are of 
particular interest to applications across the ocean, ice, and coastal spaces. These approaches are 
needed to better describe cascades from large to small and from small to large scales (GC1). A 
particular pressing application would be to the Arctic permafrost landscape in which its 
structural makeup is changing across all scales and leading to associated changes to heat and 
BGC fluxes. It is also important to better understand the scale dependence and sensitivity of 
certain parameters, especially in the context of fully coupled simulations (GC2). This includes 
couplings with human dimensions at the coast, and more focus needs to be placed on how we can 
make predictions on human impacts from physical coastal models (GC4).  
 

7.4.3 Increasing Trust in ML through Advances in Interpretability, Interoperability, and 
Explainability 
 
One pervasive priority for advancing the use of AI/ML in ocean, ice, and coastal science is to 
increase the transparency of AI/ML models through explainable and interpretable approaches. 
Not only is this important for building trust in AI-based models within the scientific and 
stakeholder communities, but it will also provide a powerful framework for better understanding 
the complex systems being modeled. Interpretability will better demonstrate the impact AI has 
on Earth system science, and it will improve how the results of AI models can be communicated 
and adopted into actionable policy. UQ will form a large part of this in being able to quantify 
uncertainty from ML models and data.  
 
As real-time data are made more AI-ready, AI models will need to become more interoperable 
with various data sources and uses. Fully leveraging an increase in AI-ready data will require a 
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capability to continuously update models, which necessitates that models be continuously 
evaluated to ensure that they remain physically constrained. This will involve effectively 
interfacing them with domain experts. Furthermore, ML requires more direct interfacing with 
HPC climate models to extend the state of the art – an effort that needs to consider improved 
accuracy, improved precision, and importantly enhanced connectivity to impact industry and 
society and demonstrate how ML improves our world. ESMs should be upgraded to use more 
modern programming tools (e.g., CliMA), which will better allow for direct interfacing with 
AI/ML tools.  
 
Although improved explainability is critical to the application and advancement of AI models in 
the long-term, it should not limit the efforts in pushing the boundaries of what is possible with 
current techniques. It is important that we fully explore the potential accuracy gains made 
possible by AI-based approaches even if they are lacking in interpretability, since in any case 
assumptions and statistical relationships (e.g., for subgrid-scale processes) that may not be fully 
understood are widely employed in existing mechanistic models.  
 

7.4.4  Community Building / Finding a Common Language 
 
Important factors in community building include the following:  

● At Geophysical Fluid Dynamics Laboratory (GFDL), a lot of the momentum comes from 
the younger scientists in terms of engaging other communities and building bridges. 

● Trying to leverage what we already have (e.g., AGU/DOE, etc.), do we pursue 
workshops? What are the tangible steps to make this happen? While it might be more 
clear to build bridges within an institution, other efforts are more fractured. 

● While there are lots of high-level comments/discussions, very specific skills are needed, 
and there are lots of details to sort out. A ground-up approach might be needed. 

● People who often fuel these efforts are those not doing the publishing of papers, and 
efforts can fall through the cracks. We need a better career pathway for those who are 
really dependent on publishing.  

● Lots of work is needed to bridge the gap between work in climate research/physical 
understanding and what we can do with the ML to work together on specific problems, 
approaching them from different perspectives and seeing what we can merge and what 
new understandings can emerge. 

● How do we discover the usefulness of ML, and who do we work with on it? How do we 
set time aside to build bridges across communities (data, code, infrastructure, regridding, 
etc.)? 

● We need a solid way to recognize the work critical to a project but that is not easy to 
recognize through papers. Some DOI recognition is possible now, and there is also the 
journal of open-source software (at https://github.com/openjournals/joss).  
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7.5  Short-term (<5 years), 5-year, and 10-year Goals 
 
Finally, we tackled the question of, “What are the near-term (< 5 years), 5-year, and 10-year 
goals for developing and applying AI/ML approaches for Coastal Dynamics, Oceans, and Ice 
Prediction?” 
 

7.5.1  Short-term (< 5 years) Goals 
 
Short-term goals include efforts to:  

1. Develop various AI-ready standardized datasets and distribute them to the community to 
work on/collaborate on through open-source repositories.  

o Example 1: Deltares CLASH database for ANN development prediction of wave 
overtopping. 

o Example 2: obs4MIPs project to coalesce data. This provides a standard format 
(netcdf-4), and standard metadata that facilitates indexing/discovery. This also 
allows trivial conversion to cloud formats (if required, e.g., Zarr). 

2. For coastal AI/ML research, develop an end-to-end flood modeling pipeline and risk 
assessment solutions using exposure, hazard, and vulnerability (including human 
evacuation) models for a smaller region within the next five years before expanding this 
to greater spatial coverage as computationally feasible. Develop wave-current interaction 
AI/ML-based parameterizations or emulators and employ AI/ML analysis techniques for 
coupled coastal-hydrology applications (e.g., using causal networks).  

3. For ocean AI/ML research, develop ML-based parameterizations or emulators for 
unresolved physics. 

4. For ice AI/ML research, develop efficient methods for representing sea ice morphology 
and associated physical interactions efficiently, including floe, ridge, and lead generation 
and evolution. Begin to explore a framework for AI/ML within Earth system models that 
caters to grand challenges for sea ice. For land ice, a short-term goal is the demonstration 
of AI/ML, either from observations or full complexity models, for reducing the cost and 
complexity of key processes that are currently expensive (glacier ice flow) or difficult to 
model (subglacial hydrology, iceberg calving). 

5. For combined efforts, investigate connections between atmosphere-ocean-ice processes 
using causal networks. Explore scale-dependent parametric space aided by AI/ML. Find 
fast and accurate parameterizations for ice-shelf basal melting (e.g., Rosier, Bull, and 
Gudmundsson 2022). 

 

7.5.2  Medium-term (5-year) Goals 
 
Medium-term goals include efforts to:  

1. Establish a large-scale AI/ML working group to build bridges across the communities 
that can help modelers, observationalists, and computer scientists to connect on shared 
problems and projects. 

o Example: Regular virtual hybrid seminars, with the goal to create a list of research 
projects in the big areas we are involved in. Participants pick projects that they are 
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most interested in and fracture into subgroups to work on the different projects, 
while keeping each other updated and cited since the work is so closely related. 
The seminar is to be envisioned as an “ongoing conference” so that the 
community stays up to date with the diverse ideas and approaches fresh to all of 
us. 

2. Establish “official” domain-focused AI/ML code repositories (Github) to which the entire 
community can collaborate on/contribute. 

o Currently, generalized ML software development has high community 
engagement. We need a higher level of community engagement around 
coastal/ocean/ice applications for AI. It requires interagency cooperation. 

o As part of this, the numerical systems/prediction systems (e.g., E3SM) and data, 
we have a need to be prepared for easy use with AI/ML methods. 

3. Have ocean-/ice-/coastal-focused AI/ML tools and data available to every oceanographer 
(and ice/coastal scientist) so that it becomes a core part of every scientist’s toolkit, 
building from demonstration AI/ML models developed as part of short-term goals. 

4. Develop AI for “smart” instruments (i.e., “learning” drifters, argo profilers, automated 
weather stations, etc.), self-adjusting parameterization, and data assimilation in models. 

 

7.5.3  Long-term (10-year) Goals 
 
Long-term goals include efforts to:  

1. Establish a new workforce stream that is native in AI/ML and uses it as par for the course 
in the areas of ocean, ice, or coastal areas (also see recommendations in Fleming et al. 
2021). 

o Example 1: In Germany, the question of how to bridge marine science and 
ML/data science is being tackled by launching a doctoral training program: 
https://www.mardata.de/program. 

o DOE could be in a unique position to fund Scientific Discovery through 
Advanced Computing (SciDac)-style collaborations or graduate and postdoctoral 
fellowships that build bridges between climate and AI/ML expertise. 

2. Establish trust and reliability as a core part of AI/ML through better interpretability and 
explainability, allowing users to interact with the models. The speed of AI/ML models 
opens opportunities for education and outreach by letting students and members of the 
public run efficient models that convey Earth system concepts.  

3. Develop comprehensive AI/ML-capable modular components within ESMs (e.g., sea ice, 
ice sheet, surface wave, ocean mixing, coastal flooding). 

4. Develop scale-aware coupling of PDE-based models with AI/ML models to capture 
important physical processes more efficiently within Earth system models.  
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8  Climate Variability and Extremes 

Authors: Maria J. Molina (NCAR), Travis A. O’Brien (Indiana University/LBNL), Gemma 
Anderson (LLNL), Moetasim Ashfaq (ORNL), Katrina Eleanor Bennett (LANL), William 
Collins (LBNL/UC Berkeley), Scott Collis (Argonne), Katherine Dagon (NCAR), Stephen Klein 
(LLNL), Juan M. Restrepo (ORNL/University of Tennessee), and Paul A. Ullrich (UC-Davis) 
 

8.1  Grand Challenges 
 
Grand challenges in relation to the application of artificial intelligence (AI) and Earth system 
models (ESMs) for climate variability and extremes are described in the five subsections that 
follow, which constituted breakout group discussions facilitated by the chapter authors and 
attended by the active session participants. Climate variability comprises phenomena across 
spatiotemporal scales, encompassing teleconnections between large-scale modes of variability 
and regional to local-scale climate and weather, which can have natural and anthropogenic 
sources. Extremes include hazards such as heatwaves, floods, droughts, tropical cyclones, and 
severe thunderstorms. 
 

8.1.1  Climate Variability, Signal Identification, and Sources of Predictability 
 
There are several climate variability phenomena with strong teleconnections, such as the 
El Niño-Southern Oscillation (ENSO) and Madden Julian Oscillation (MJO), and these should 
be further explored. In this regard, leveraging new AI tools that can capture nonlinearities and 
quantify causal relationships in very large climate simulations and datasets may help parametrize 
and account for across-scale dynamics that are considered important but are as yet not fully 
understood. It remains unclear whether climate variability and its associated uncertainty are 
sufficiently captured in our ESMs due to spurious trends in observational data, data gaps, and 
differences among observational products and ESMs. Agnostic AI, unaware of our own labels of 
climate modes, along with relaxation of a priori criteria, could potentially lead to the discovery 
of new modes of variability, climate signals, and sources of predictability. Machine learning 
(ML) and AI specific to climate applications should be further developed, refined, and leveraged 
to potentially provide new ways of thinking about variability (Figure 8-1).  
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Figure 8-1. Word cloud indicating Earth system components that come to mind for session participants 
with regard to climate variability and extremes. 
 

8.1.2  Feature Identification and Characterization  
 
ML for feature identification (e.g., tropical cyclones, fronts, and atmospheric rivers) is a rich area 
which has experienced progress in recent years, but many challenges remain. For example, 
current ML methods can identify features and make inferences, even if the data lie outside of the 
training domain, rather than abstaining from making predictions when there is very low 
confidence. Non-stationarity in Earth system processes also presents issues, as changing 
characteristics may lead to incorrect identification of extremes through trained ML models, 
although work focused on conditional stationarity has been recently published (see Table 8-1). 
The genesis, dissipation, and transition of features of interest (e.g., tropical cyclones to 
extratropical cyclones) are also not well handled by ML methods. Detection of localized 
extremes (such as hailstones, tornadoes, and ice storms) that pose significant societal danger are 
a gap in current feature detection work. It is also unclear to what extent ML models trained in a 
specific geographic region or season may be transferable to another. Additionally, the 
unavailability of spatiotemporally resolved Earth system variables, which are needed for feature 
identification, forces the use of analogues whose appropriateness requires thorough investigation. 
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Table 8-1. Synthesis of recent advances in AI for climate variability and extremes. 

Topic	 AI	Application(s)	and	Related	Work(s)	

Bias	Correction	 ● Bias	correction	of	the	MJO	using	LSTM	(Kim	et	al.	2021).	
● CNN-based	precipitation	observation	quality	control	(Sha	et	al.	2021).	
● Bias	correction	of	climate	projections	using	Regularized	Adversarial	

Domain	Adaptation	(Pan	et	al.	2021).		

Causal	Analysis	 ● PCMCI:	PC-based	multivariate	causal	discovery	for	time	series	datasets	
(Runge	et	al.	2019;	Tigramite	github	repository).	

● Causal	inference	for	quantification	of	teleconnection	pathways	
(Kretschmer	et	al.	2021).	

Climate	and	Extremes	
Prediction	

● ML	for	prediction	of	extremes,	associated	hazards,	and	real-time	
decision-making	(McGovern	et	al.	2017).	

● Forecasting	extreme	precipitation	with	random	forests	(Herman	and	
Schumacher	2018).	

● Multiyear	ENSO	prediction	using	DL	(Ham,	Kim,	and	Luo	2019).		
● Analog	forecasting	of	extreme-causing	weather	patterns	using	DL	

(Chattopadhyay,	Nabizadeh,	and	Hassanzadeh	2020).	
● DL	for	near-term	tornado	prediction	(Lagerquist	et	al.	2020).	
● Rainfall-runoff	prediction	following	extremes	(Frame	et	al.	2021).		
● Identification	of	subseasonal	forecasts	of	opportunity	using	explainable	

neural	networks	(Mayer	and	Barnes	2021).	
● Deep	generative	models	for	short-term	skillful	prediction	of	precipitation	

and	associated	radar	imagery	(Ravuri	et	al.	2021).	

Conditional	
Stationarity	

● Local	causal	states	and	discrete	coherent	structures	(Rupe	and	
Crutchfield	2020).	

● Discovering	Causal	Structure	with	Reproducing-Kernel	Hilbert	Space	ε-
Machines	(Brodu	and	Crutchfield	2021).		

Downscaling	 ● DL	for	statistical	downscaling	(Baño-Medina,	Manzanas,	and	Gutiérrez	
2020).	

● DL	for	downscaling	precipitation	over	complex	topography	(Sha	et	al.	
2020).	

Emulation	 ● ML	for	predicting	output	of	high-resolution	climate	models	(Anderson	
and	Lucas	2018).	

● ML	for	emulation	and	parameter	estimation	(Dagon	et	al.	2020).	
● ML	for	clouds	and	associated	processes	in	general	circulation	models	

(Gettelman	et	al.	2021).	

Extremes	and	Related-
Feature	Detection	

● DL	for	detection	of	extremes	(Liu	et	al.	2016).		
● Self-organizing	maps	for	climate	extremes	(Gibson	et	al.	2017).	
● DL	for	simultaneous	tracking	of	weather	phenomena	(Mudigonda	et	al.	

2017).	
● DL-Front:	Detection	of	fronts	using	a	CNN	(Biard	and	Kunkel	2019).	
● DL	for	front	detection	(Lagerquist,	McGovern,	and	Gagne	2019).	
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Table 8-1. (Cont.) 
Topic	 AI	Application(s)	and	Related	Work(s)	

	 ● Uncertainty	quantification	for	detection	of	extremes	(Collins	et	al.	2020).	
● Statistical	ML	for	detecting	atmospheric	rivers	(O’Brien	et	al.	2020).	
● Unsupervised	ML	for	improved	understanding	of	future	drought	

conditions	in	the	Colorado	River	basin	(Talsma,	Bennett,	and	Vesselinov	
2021)	

● ClimateNet:	CNN/ResNet	architecture	for	extremes	detection	using	hand-
labeled	targets	(Prabhat	et	al.	2021).	

Hybrid	Modeling	 ● Hybrid	modeling:	Combining	physics	and	data-driven	approaches	with	
ML	(Reichstein	et	al.	2019).	

● Application	of	physics-guided	ML	for	rainfall-runoff	and	extremes	(Xie	et	
al.	2021).		

Robustness	to	Non-
stationarity	

● Physics	constraints	and	normalization	(Beucler	et	al.	2020).		
● Physics-informed	ML	for	weather	and	climate	(Kashinath	et	al.	2021).	
● Assessment	of	DL-classification	robustness	to	nonstationarity	for	severe	

thunderstorms	(Molina,	Gagne,	and	Prein	2021).		
● Climate-Invariant	ML	(Beucler	et	al.	2021).	

Signal	Separation	and	
Anomaly	Detection	

● Viewing	forced	climate	signals	through	an	AI	lens	(Barnes	et	al.	2019).	
● Physics-based	unsupervised	discovery	of	spatiotemporal	coherent	

structures	(Rupe	et	al.	2019).	
● Using	DL	for	near-term	hail	prediction	and	explainable	AI	for	extraction	

of	prediction	signals	(Gagne	et	al.	2019).	
● Explainable	AI	methods	(McGovern	et	al.	2019	and	Toms,	Barnes,	and	

Ebert-Uphoff	2020).	
● Anomaly	detection	for	physics	analysis	(Nachman	2020).	
● Analysis	of	physical	causes	of	climate	change	on	Midwest	extreme	

precipitation	using	ML	(Davenport	and	Diffenbaugh	2021).	

Synthetic	Data	 ● MJO-index	time	series	reconstruction	using	one-dimensional	
convolutional	neural	networks	(Dasgupta	et	al.	2020).		

 

8.1.3  Extreme Weather Predictors and Precursors 
 
Extremes by definition are rare events and, therefore, the separation of signal from noise in 
extremes statistics remains demanding due to limited observational records. The limited 
observational record also presents challenges to understanding co-variability and compounding 
extremes, in addition to the nonstationarity of extremes and the diversity of teleconnections 
between natural modes of climate variability and extremes. Currently, many statistical and 
explainable AI methods do not consider causality, which may lead to spurious relationships, 
including over-confidence in the teleconnectivity of natural modes of climate variability to 
extremes; causal predictors and precursors for extremes need to be better quantified. 
Characterization and definitions for extremes (e.g., extreme precipitation and floods) also need to 
be improved given different inherent properties based on spatial and temporal scales and the 
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implications on short-term forecasting and climate projections. Furthermore, challenges exist in 
predicting the statistics of extremes skillfully in a changing climate, where new pathways for 
water and heat may emerge. Despite existing identified features, precursors to extreme events are 
still poorly understood and require further identification and characterization. 
 

8.1.4  Observation-Model Integration  
 
Verification and validation of climate model simulations is challenging, particularly during 
longer timescales (e.g., decadal) and for rare events due in part to limited data, which is a barrier 
for major development of ESMs. A risk of over-parameterization when integrating observations 
into models also exists, and thus there is a need for methods that indicate when observation and 
model agreement are suboptimal. Uncertainty quantification at the intersection of observations 
and model simulations is important to assess confidence in predictive capability but is lacking 
and a challenge to compute. Data are also limited over critical climate regions that contain 
potential tipping points, such as the Arctic and Antarctic. There is also a temporal lag in the 
incorporation of observations into models; earlier incorporation of data as they are collected is 
needed. Additionally, connections between modelers and observationalists are difficult to 
maintain, which can stymie progress on tool development and application. Observations are 
often inhomogeneous and disparate over time, which presents a challenge when gap filling 
observations and models. Moreover, a heavy emphasis has been placed on the development of 
data-driven methods in AI; more development of physics-informed AI methods is needed in 
observation-model integration. 
 

8.1.5  Downscaling and Bias Correction 
 
The use of AI/ML in the downscaling and bias correction of climate models at finer scales is 
currently very limited. There is some success in the development of trained deep learning (DL) 
models to represent components of regional models, such as the Weather Research and 
Forecasting model, and in the downscaling of climate models outputs, such as temperature. 
However, most of these efforts are currently limited to snapshot modeling or downscaling. There 
are challenges in the sampling to capture tails in small-scale physics, and in the application of 
ML models without breaking physical laws. Fine-scale benchmarking datasets are also very 
limited or lacking, which could be used for standardized evaluations. There are also challenges in 
the selection and availability of reasonable priors for neural networks, especially for uncertainty 
quantification. Future advancements would require ML models that are specifically designed and 
trained for the domain science, downscaling in both space and time, and blending of traditional 
methods with ML to fully exploit the strengths of multiple data analytics approaches. 
Sufficiently long and high-resolution data streams would be key to exploit ML as a tool to 
emulate physical models representing small-scale physics.  
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8.2  State-of-the-Science 
 
Motivation driving the use of ML for climate variability and extremes includes improving 
predictive skill across timescales and gaining new process understanding, given the ability of AI 
to learn nonlinear, complex relationships in large datasets and across multiple variables. 
Improved climatology and trend assessment of climate variability and extreme events, in 
addition to creating improved representation of extremes, also motivate the use of AI within 
these science areas. ML also provides scalability and resolves issues associated with rule-based 
and heuristic methods, which are sensitive to data distributions, in the detection of extremes. The 
use of AI is also motivated by the need to perform reduced-order modeling, overcome data I/O 
challenges with exascale, and improve assimilation of observations into modeling systems.  
 
Literature that documents applications of ML for climate variability and extremes (Table 8-1) 
include extreme event identification (e.g., atmospheric rivers, tropical cyclones, and fronts), 
improvement of subseasonal-to-seasonal and decadal prediction, explainable AI for signal 
separation from noise (in both space and time), data extrapolation and interpolation (e.g., gap 
filling and generation of pseudo-observational data), representation of subgrid processes 
(e.g., parameterizations of subgrid processes), and bias correction as a model post-processing 
step.  
 
Figure 8-2 shows attendees’ primary usage of AI/ML.  
 

 
Figure 8-2. Attendee responses indicating their primary usage of AI and ML.  
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While not specific to the application of AI, compound extremes are a critically emerging field. 
Predictive understanding of compound and cascading extremes is an emerging area where robust 
frameworks for defining such extremes and evaluating their impacts are still in their infancy 
stage. Complexity in compound extremes is evident from the fact that these can arise due to 
interaction between multiple extremes (e.g., concurrently occurring temperature, precipitation, 
and wind extremes) or due to the confluence of non-extreme states of Earth system variables 
(e.g., persistent increases in mean temperatures) across space and time. Cascading events are 
even more challenging to identify as those often are separated in space and time. ML can guide 
the development of robust analytical frameworks for efficient detection and attribution of such 
interdependent and interacting states in the land-atmosphere-ocean continuum. 
 

8.3  Experimental, Data, and Modeling Opportunities 
 
Using existing ML tools for mechanisms and precursors discovery. Existing tools, such as 
artificial neural networks and linear inverse modeling, present opportunities to discover new 
signals in the Earth system and should be further applied to interrogate existing data. Causal 
inference and causal discovery methods, along with the application of trained ML models across 
varying numerical modeling systems, should be further incorporated into AI workflows to help 
with the quantification of physical drivers and the assessment of robust sources of predictability, 
while also considering their spatiotemporal nonstationarity. 
 
ML and AI also present opportunities for filling observational gaps and/or combining 
observational datasets to leverage their complementary strengths (e.g., transfer learning). The 
use of ML for the creation of pseudo-observational data is another opportunity, which can 
include extending observational products into time periods when remote sensing and certain 
observational technologies were unavailable. 
 
ML model development and benchmarking for climate variability and extremes. Massive 
catalogs from feature trackers, such as the atmospheric river ARTMIP catalog, already exist in 
consistent format and with uniform standards, and could serve as an example of how to use such 
data catalogs to leverage and train ML models for extremes. Already trained ML models for 
feature detection, such as ClimateNet, can also be applied to other numerical model output and 
observations to gain a better understanding of extremes and assess robustness across products, 
and new ML models could be created to detect other features associated with extremes 
(e.g., monsoon depressions and extratropical cyclones). Numerous open-source software 
packages are well-documented and available in Python for development, training, and 
deployment of ML (e.g., scikit-learn) and DL (e.g., tensorflow, pytorch) models. Available 
software, in combination with various large data products, present an opportunity to aid ML 
model development and benchmarking for climate variability and extremes. 
 



 

193 
 

Development and open sourcing of datasets that could be used for ML model benchmarking, 
including ultra-high-resolution simulations for sufficient representation of extremes, are an 
opportunity to catalyze robust advancements in downscaling science and the application of ML 
thereof. Numerous reanalyses, multimodel archives, and cloud-resolving regional climate 
datasets also exist (e.g., ERA5, E3SM large ensemble) that can be used for unsupervised or 
supervised ML approaches. These datasets could also be leveraged by educators to train physical 
science and computer science students. 
 
Data set compression tools and online learning techniques. Data set compression tools present 
an opportunity to store large amounts of data, enabling subsequent training of data-hungry ML 
models. ML methods could also potentially help assess how much compression is possible with 
minimal data loss, and in the case of a reduced set of numerical model output variables, help 
determine how necessary variables can be reconstructed. Online learning techniques, such as 
during a numerical model simulation or during ML model training, also present opportunities for 
observation-model integration. 
 

8.4  Research Priorities 
 

8.4.1  Quantification of Teleconnection Pathways 
 
The teleconnections of ENSO and other climate modes have complex and varying pathways 
(e.g., inter-basin interactions, interactions with other modes), and thus a clear understanding of 
these pathways is important, including identification of model-specific signals and those that 
apply in observations. In regard to methods for climate variability and extremes, further 
development of AI methods incorporating causality, uncertainty, and physics are of priority, 
including, but not limited to, methods such as physics-informed neural nets (PINNs), Bayesian 
multifidelity PINNs, operator regressions, transfer learning for prediction of extremes, and active 
learning for dealing with lack of data for extremes and longer timescales. ML models that focus 
on probabilistic forecasts and those that can handle non-Gaussian distributions should also be of 
priority. The creation of an ML model hierarchy, generation of large ML-based ensembles, 
modification of ML model architectures, and development of domain-specific loss functions are 
also priorities that may aid with advancing the science of climate variability and extremes. 
 

8.4.2  Understanding Drivers and Extending Observations of Extremes 
 
The application of ML for detection of extremes and associated features has been successful, and 
research priorities should lie in gaining a better understanding of the characteristics of extreme 
events and their inception (e.g., convection initiation or cyclogenesis) both within specific ESMs 
and in observations. The use of ML methods for developing symbolic relationships (robust to 
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nonstationarity) between quantities (e.g., sea surface temperatures and precipitation from tropical 
cyclones) were also identified as a priority. In order to extend observational products of extremes 
and modes of variability specific to longer timescales, a research priority includes using ML to 
gap fill, statistically downscale, and extend observations back in time (e.g., using GANs). ML 
should also be leveraged to identify regions that need better sampling (i.e., more observations). 
Augmentation of current data assimilation methods was also identified as a research priority 
(e.g., KF, 4DVAR). Anomaly detection using ML is another area that has experienced much 
progress in recent years, but distinguishing extreme events from outliers that are “bad” or have 
incorrect data remains difficult and is of priority. 
 

8.4.3  Improving Fine-scale Processes and Model Development 
 
Research priorities include the continued development of emulators to replace fine-scale physics 
and parameterizations in regional and global models. Better understanding the connections 
between climate models and weather extremes is another research priority, given that climate 
models cannot resolve or accurately represent processes associated with extremes. Embedding of 
ML into numerical models as they are running is another research priority in order to extract 
information and statistics between time steps. The inclusion of ML in the workflow of model 
development to diagnose model errors, rather than using ML as a post diagnosis, was identified 
as a research priority, along with application of Bayesian calibration tools to better understand 
where numerical model deficiencies are. More robust methods for comparing observations and 
models as dynamical systems were identified as a community need, along with new ways of 
capturing and representing unresolved and poorly understood physics and interactions. Research 
priorities also include the development of physical science synthetic datasets for benchmarking 
of ML methods, in addition to the creation/emulation of factual and counterfactual scenarios that 
incorporate uncertainty for climate change attribution. 
 

8.4.4  Metrics and Robustness Assessment 
 
Metrics are scalar measures of skill that are extensively used in model development to compare 
performance, and the use of AI for their development could lead to metrics that can better 
capture process complexities and nonlinearities. Various existing metrics do not describe 
extremes well (e.g., precipitation), such as generalized extreme value theory, partly due to 
distributions with a heavy tail, and thus AI could be potentially used to create distributions or 
more useful metrics. Development of benchmarking metrics that measure more than just ML 
model performance in prediction tasks, such as scalability across hardware and software systems, 
in addition to trustworthiness of the respective ML method, were identified as research priorities. 
On the topic of robustness, further development and benchmarking of explainable AI methods, 
assessment of the transferability of trained ML models from one ESM to another, and whether 
knowledge extracted is consistent across models and data products and in a nonstationary system 
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(e.g., new water pathways due to changing climate) were all identified as research priorities. 
Assessing and ensuring the robustness of trained ML models to adversarial data are also of 
research priority due to security and societal implications. 
 

8.5  Short-term (<5 years), 5-year, and 10-year Goals 
 
To achieve short-, medium-, and long-term goals, numerous considerations were discussed. 
Collaboration and co-development by computer scientists, domain experts, and software 
engineers were deemed important to make visionary changes and push scientific boundaries. 
Training and development of the future and current workforce was also seen as imperative, 
particularly when considering the experienced workforce with an already clear understanding of 
Earth science data, and strong partnerships between laboratories and universities to allow for 
cross pollination of ideas and training of students. High-risk/high-reward research was also 
identified as critical, with needed support by funding agencies and the broader scientific 
community for creativity and risk taking in research to create transformative change. Focus on 
stakeholder and end-user engagement was also emphasized for ML and predictive analytics. 
 
Short-term (< 5 years) goals related to climate variability and extremes include the continued 
development of ML-based prediction models for modes of climate variability and the application 
of explainable AI methods to these prediction models to identify where new observations should 
be collected to enhance predictability. In a related vein, there should be acquisition of more and 
new observational data for extreme events, such as the use of drifters for tropical cyclones, along 
with consistent and standardized baselines (e.g., how, when, and where to measure them). Other 
short-term goals include: (1) continued simulation and exploration of extreme weather 
phenomena across different ESMs for training ML, (2) development of well-documented 
geoscience datasets for benchmarking ML applications for domain-specific problems, (3) better 
quantification of the linkages between climate variability and change to extremes using causal 
methods, (4) continued development and benchmarking of explainable AI methods for improved 
understanding of ML model decisions and to build community trust, (5) development of ML-
based methods to run and analyze ultra-high resolution simulations and continued assessment of 
needed resolutions for extremes, (6) development of ML-based analytical frameworks for 
detecting the environmental stressors causing compound and cascading extremes, and 
(7) exploration of ML for bounded but long-tailed distributions of extremes. 
 
Medium-term (5-year) goals for climate variability and extremes include the creation of 
extensive catalogs of features (e.g., atmospheric rivers, tropical cyclones) detected using ML, 
along with clear documentation using FAIR principles of the features, the preceding training 
processes, and the trained models themselves. Another medium-term goal is leveraging the 
extensive availability of ESMs and their ensembles, along with data-driven ML methods, to 
extract sources of predictability and assess their robustness across modeling systems and 
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available observations. Related to this, the development of ML-prediction models for modes of 
variability and the capability of ML for handling large volumes of data should allow the 
community to identify new sources of predictability and to overcome traditional predictability 
limits. Once overcome, these ML-prediction models can be interrogated to physically understand 
the new sources of predictability and to identify (via transfer learning) the prediction-relevant 
biases of ESMs that need fixing. Medium-term goals using ML also include: (1) detection of 
features and phenomena to regions where focus has been limited in past years (e.g., Arctic, 
Antarctica, and the southern ocean); (2) modified loss functions for detection of a range of 
extremes robust to a changing climate; (3) application and development of models that can 
appropriately handle long-term memory sequences, effects of compound events, and varying 
causal pathways and teleconnections; (4) efficient detection and attribution of compound and 
cascading extremes; (5) development of scaling theories for extreme-causing events; (6) 
production of an easy-to-use toolbox for extreme value distributions; and (7) development of a 
model hierarchy for use by studies focusing on climate variability and extremes. 
 
Long-term (10-year) goals in relation to climate variability and extremes include the use of AI 
for discovery of new modes of variability and better quantification of teleconnections to 
extremes, including an understanding of teleconnection variations for different flavors of modes 
of climate variability. Long-term goals also include the use of ML for the following: (1) robust 
identification of reasons for prediction failures, (2) enhanced understanding of sources and limits 
of predictability across timescales and across ESM components, (3) data assimilation, 
(4) automated identification of water cycle extremes within observations and ESMs, (5) co-
evolved climate model ensembles with a focus on initialized prediction, (6) extraction of 
coherent structures from model output with robust strategies that can separate long-term forcing 
signals from short-term variability, (7) uncovering of processes involved in the genesis and 
initiation of extreme weather phenomena, (8) assessment of predictability of and extending 
predictions of compound and cascading extremes, and (9) use of transfer operators (or similar) 
providing an unsupervised learning alternative for the detection of extremes, robust to a changing 
climate. Other long-term goals include improvement of AI model emulation for uncertainty 
estimation of climate variability and extremes, the use of AI to enable ultra-high-resolution 
simulations of extreme phenomena (such as tornadoes, lightning, etc.), and the use of transfer 
operators with climate models to map history of observations to predictions. 
 
Table 8-2 summarizes long-term goals for Climate Variability and Extremes.  
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Table 8-2. Overarching long-term and potentially transformative advances in the identified challenge 
areas.  

Grand	Challenges	 Long-term	Vision	(10-years)	

Climate	variability,	signal	
identification,	and	sources	
of	predictability	

Dramatically	enhance	the	predictability	of	modes	of	variability	via	an	ML-
enabled	fusion	of	observations	and	models	incorporating	the	discovery	of	
new	sources	of	predictability,	the	identification	of	where	additional	
observations	are	needed,	and	the	discernment	of	the	optimum	ways	to	
improve	the	predictive	capabilities	of	ESMs.	

Feature	identification	and	
characterization	

Feature	identification	and	characterization	is	seamlessly	automated	using	
suites	of	publicly	available	toolsets	and	event	catalogs	for	validation	of	and	
within	ESMs.	

Extreme	weather	
predictors	and	precursors	

The	processes	involved	in	the	genesis	and	evolution	of	extreme	weather	are	
revealed	within	a	nonstationary	system,	compound	and	cascading	extremes	
are	better	understood	and	predictions	thereof	extended,	and	ultra-high-
resolution	simulations	of	extremes	are	facilitated.	

Observation-	model	
integration	

Observation-model	integration	evolves	to	simultaneously	evaluate	and	
improve	both	observations	and	models,	leverage	AI/ML	to	target	
observational	and	modeling	priorities,	and	encourage	effective	
communication	by	building	connections	between	research	communities.	

Downscaling	and	bias	
correction	

Seamless	integration	of	AI/ML	methods	with	conventional	downscaling	and	
bias	correction	approaches.	
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9  Human Systems and Dynamics 

Authors: Christa Brelsford (ORNL), Melissa Allen-Dumas (ORNL), Thushara Gunda (SNL), 
Donatella Pasqualini (LANL), Abigail Snyder (PNNL), Nathalie Voisin (PNNL) 
 

9.1  Introduction 
 
Human processes are the single largest driver of uncertainty in the future Earth system, 
encompassing everything from global emissions pathways to the farmers’ decisions that impact 
future algal blooms. However, most Earth systems research is not designed to estimate human-
scale consequences (Coen 2021). Research at human-centric scales is critical for performing, 
understanding, and executing actionable climate research because we know that the 
consequences of climate hazards spread far beyond direct geographic impact via economic and 
infrastructural connections (Figure 9-1; Shughrue, Werner, and Seto 2020). In particular, Earth 
systems research needs to enable cross-system and cross-sector analysis of complex climate risks 
including representations of human systems, building on more complex ways of characterizing 
risk determinants and their interactions (Simpson et al. 2021). On the following pages, we 
describe the grand challenges facing human system dynamics in Earth systems predictability and 
the opportunity space enabled by artificial intelligence (AI) and machine learning (ML) to tackle 
these science questions. 
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Figure 9-1. Complex Interactions within human systems. As with geophysical processes, important 
process interactions and heterogeneities in human contexts differ across geographic scales and sectors. 
These interactions are sensitive to various hazards as well as social mechanisms for organization and 
response. The understanding of these complex interactions can manifest in multiple ways, including 
through different statistical and artificial intelligence/machine learning techniques (Source: Reproduced 
from Brelsford and Jones 2021 with permission from creators Jones, Brelsford, and Swantek). 
 

9.2  Grand Challenges 
 
The grand challenges facing human system dynamics in Earth system predictability can be 
grouped into three overarching categories: (1) prediction of primary drivers of Earth system 
change; (2) the impact of Earth system change on human processes and decisions; and finally, 
(3) complex, coupled two-way interactions and feedbacks between the human processes and 
Earth systems. The primary human-driven cause of Earth system change over the next century is 
anthropogenic greenhouse gas (GHG) emissions, while influences of Earth system change on 
human processes occur at finer scales. Complex feedbacks between the two encompass a range 
of processes, spanning natural resources (land and water) use and industrial processes that result 
in changes in net emissions (Figure 9-2). 
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Figure 9-2. High-level synthesis of grand challenges in Earth-human system dynamics research (Sources: 
Pacific Northwest National Laboratory, Oak Ridge National Laboratory, and Sandia National Laboratory). 
 

9.2.1  Primary Drivers of Earth System Change 
 

 
 
Human GHG emissions are the primary anthropogenic driver of Earth system change. However, 
there are fundamental limits to the extent to which aggregate GHG emissions from human 
activities are predictable since human behavior—both individually and collectively—responds to 
both current conditions and our expectations about the future. To improve our capacity for Earth 
system prediction, we need to assess how far into the future, across which social scales of 
aggregation, and over what action spaces our predictions of the evolution of human systems can 
be improved to identify stable patterns at the Earth system level. While we note that substantial 
progress has been made in developing a “predictive” capability at smaller scales – for example, 
extensions of urban scaling theory into human mobility theory (Alessandretti, Aslak, and 
Lehmann 2020; Bettencourt 2013; Pappalardo et al. 2015) – the development of a predictive 
capability at the Earth system level is far more challenging, especially as institutions start to 
explore larger-scale geoengineering options (Bull et al. 2021).  



 

205 
 

9.2.2  Earth System Impacts to Humans Processes and Decisions 
 

 
 
Decision makers need information about how future Earth system changes (particularly hazards 
whose risk and distributions are changing with the climate) influence and interact with human 
processes. In order to improve our understanding of Earth system processes at decision-relevant 
scales, we need to build models that are sufficiently sensitive (e.g., building simulations that 
demonstrate impacts from heating/cooling degree days) and can traverse across scales 
(i.e., capture large-scale variations but also enable explorations of smaller-scale influences). 
However, there is not sufficient information at regional and local scales about how to understand 
and interpret changes in climate risks and hazards, nor an understanding of how global-scale 
climate influences global-scale human processes (e.g., Mach et al. 2019). In general, the 
accessibility, representativeness, and usability of data for supporting integrated human and 
physical systems understanding (especially for informing evolving priorities, e.g., justice and 
equity) are underdeveloped and face substantial computational challenges. Furthermore, models 
coupling human and Earth system processes need to cover a wide range of spatial and temporal 
scales, as well as calibrating high-dimensional parameter spaces. Thus, the intensive 
computational demands involved in coupling human systems and physical systems models is a 
notable challenge. Model interpretability is particularly critical in this area, as the information 
that decision makers actually see and use can be crucial to understanding the dynamics of the 
problems they are attempting to address. 
 

9.2.3  Complex, Two-Way Interactions and Feedbacks 
 

 
 
Finally, to address the grand challenge of evaluating complex feedbacks between human and 
Earth system processes, we must determine the appropriate scales and interactions that are 
needed to produce usable conclusions about these feedbacks and also to adequately capture the 
co-evolutionary aspect of humans as an active participant in Earth systems. Toward these goals, 
the first obstacle to overcome may be the problem of limited compatibility between physical 
models and human models. To improve predictive skill in human systems and dynamics, we 
need to address spatial nonstationarity and feedbacks between human decision-making and 
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environmental impacts on socioecological systems. This includes (1) interactions between and 
decision-making dynamics and change in socioecological systems over time as a function of 
environmental change and extreme events, (2) transferability of models to different local and 
regional settings to capture spatial heterogeneity in human behavior/social processes and how 
they interoperate with Earth systems, and (3) accounting for uncertainty in feedbacks between 
human and Earth system responses. The latter is a critical challenge for all parts of human-Earth 
system interactions but is particularly significant when doing climate research at decision-
relevant scales. The communication of uncertainty extends from technical evaluations, 
accomplished in part by statistical and machine learning techniques, to dissemination of these 
analyses to policymakers and the interested public. Doing the latter in an iterative process might 
be needed to share questions, insight, data, and research outcomes, while following high ethical 
standards around data privacy (Zipper et al. 2019). 
 

9.3  State-of-the-Science 
 
There are several disciplines that focus on interactions between human and physical systems: 
 

● Engineers and urban scholars have focused on low- and zero-emission cities (Chen et al. 
2021; Ramaswami et al. 2016, 2021; Seto et al. 2021). 

● Socio-hydrology looks at interactions between human and hydrological processes 
(Brelsford et al. 2020; Mazzoleni et al. 2021; Müller and Levy 2019).  

● Socio-ecological-systems research highlights the dynamics of interactions between 
ecological processes and human processes (Anderies 2015; Olsson and Jerneck 2018; 
Olsson and Ness 2019).  

● The science of cities looks for universal patterns in urban systems (Alessandretti, Aslak, 
and Lehmann 2020; Bettencourt and Zünd 2020; Verbavatz and Barthelemy 2020). 

 
Generally, inclusion of human system dynamics in Earth system predictability research spans the 
triple intersection of datasets, representations, and computational approaches for understanding 
these complex processes. 
 
Recent advances in human-centric fields have been enabled by newly available digital trace data 
and advances in our ability to use machine learning to infer characteristics of human activities 
from satellites designed primarily to measure the non-human world (Golder and Macy 2014). 
Satellite and remotely sensed information have been processed using machine learning tools to 
create stand-alone datasets, models, and inputs to models that characterize aggregate human 
activity in a globally scalable manner (Allen-Dumas et al. 2021) These approaches have been 
used to gain insights into urban systems, mobility, and water resource activities across scales—
from urban to global systems (Table 9-1). 
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Representations of Earth system effects on human sectors have spanned small energy systems 
(Alemazkoor et al. 2020; Mosavi et al. 2019) to large wildfire, agriculture, and adaptation 
policies (Biesbroek, Badloe, and Athanasiadis 2020; Hamrani, Akbarzadeh, and Madramootoo 
2020; Wang et al. 2021). Methods used vary from coupling the Global Change Analysis Model 
(GCAM) with global climate models, integrating AI/ML with agent-based models, developing 
emulators or less complex surrogate models for physical or human systems models, and 
performing basic statistical and ML implementations (Table 9-1). Computer simulations have 
established practices for credibility generation (e.g., verification, validation, uncertainty 
quantification, sensitivity analyses, counterfactuals). Although some of these practices can be 
leveraged for AI/ML, credibility processes across the full pipeline are not yet well-established 
for scientific machine learning (Rushdi and Acquesta 2021). From accounting for data 
collection-related errors to generalizability assessments beyond initial training sets, much still 
needs to be done to improve the usability of hybrid simulations, particularly as they relate to 
human activities.  
 
Table 9-1. Synthesis of recent advances in AI for human system dynamics. 

Topic AI Application(s) and Related Work(s) 

Human systems data 
extension via inference 
models 

● Digital trace data and machine learning to gain insights into urban prediction 
and long-term urban policy (Alessandretti, Aslak, and Lehmann 2020). 

● Analysis of high-frequency, big urban data to inform long-term urban policy 
(Kandt and Batty 2021). 

● Mechanistic explanation of emerging spatial structure of cities predicts human 
flows within and through cities through an individual mobility model based on 
exploration of local neighborhoods and preferential return (Schläpfer et al. 
2021). 

● A scalable computational approach based on the topological properties of 
digital maps identifies local infrastructural deficits and proposes context-
appropriate minimal solutions (Soman et al. 2020). 

● Addresses the linkages between human systems and Earth systems by coupling 
GCAM with global climate models through market equilibrium models to 
represent intricate linkages between energy, water, land, climate, and economic 
systems (Calvin et al. 2019). 

● Deterministic classification of human contributions to determine drivers of 
water scarcity across climate change scenarios (Graham et al. 2020). 

● Machine learning to explore climate change mitigation in infrastructure and 
urban resource sectors (Milojevic-Dupont and Creutzig 2021) and building 
energy performance forecasting (Fathi et al. 2020). 

● Machine learning discovers and extracts Earth features from satellite images 
such as land use and land cover, flood inundation extent, and water reservoir 
storage (Hodgson, Davis, and Kotelenska 2010). 

● GeoAI infers from remotely sensed imagery and Google Streetview images 
human activities such as mobility or land use (Bhaduri et al. 2021). 

● Deep learning and big data analytics fuse global radar and multispectral 
satellite data to create global/urban/local climate zones classifications covering 
cities with populations greater than 300,000 (Zhu et al. 2022). 
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Table 9-1. (Cont.) 
Topic AI Application(s) and Related Work(s) 

Human process 
representation using 
AIML/hybrid models 

● Connecting infrastructure models with physics-based hurricane models to 
evaluate power outage risk under climate change (Alemazkoor et al. 2020). 

● Adaptive neuro-fuzzy inference systems for superior energy demand 
forecasting (Mosavi et al. 2019). 

● Leveraging text analysis to train artificial neural networks to support early 
detection of climate change adaptation practices (Biesbroek, Badloe, and 
Athanasiadis 2020). 

● Long-short term memory-based deep learning models and random forests to 
predict GHG emissions from soils (Hamrani, Akbarzadeh, and Madramootoo 
2020). 

● Ensemble learning methods and game theory to identify drivers of wildfires 
(Wang et al. 2021). 

● Modeling typology to bridge human systems research communities, facilitate 
the synthesis of scientific advances, and chart new research directions 
including AIML models and coupling strategies (Yoon et al. 2022). 

● Summary statistics to frame new ML applications for domain insights (Zaidi 
et al. 2018). 

● A reinforcement learning approach for irrigation-related decision-making 
(Chen et al. 2021). 

AI/ML as surrogates 
for complex, 
computationally 
intensive physical 
system models  

● Artificial feed-forward neural networks to emulate Community Land Model 5 
outputs (Dagon et al. 2020).  

● Reducing model complexity through probabilistic calibration of Earth system 
models (Nicholls et al. 2021). 

● Multiyear ENSO prediction using DL (Ham, Kim, and Luo 2019).  
● Machine learning prediction of monthly fire emissions over the contiguous 

United States and comparison to process-based models (Wang et al. 2021a). 
● Identification of drivers of wildfire in the contiguous United States via 

ensemble learning models and game theory Wang et al. 2021b). 
● Hybrid machine learning and process-based crop modeling to improve crop 

yield predictions in the U.S. corn belt (Shahhosseini et al. 2021).  
 

9.4  Experimental, Data, and Modeling Opportunities 
 

“Just as the invention of the telescope revolutionized the study of the heavens, so too by 
rendering the unmeasurable measurable, the technological revolution in mobile, Web, and 
Internet communications has the potential to revolutionize our understanding of ourselves 
and how we interact … . [T]hree hundred years after Alexander Pope argued that the proper 
study of mankind should lie not in the heavens but in ourselves, we have finally found our 
telescope. Let the revolution begin.”     —(Watts 2012)   

 
A major gap in Earth system predictability is the lack of coupling between Earth and human 
systems models, including human-induced dynamics, human response patterns, human decision 
processes, and the dynamic interactions across human and Earth systems. However, artificial 
intelligence and machine learning coupled with new sets of digital trace data provide a 
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transformational opportunity for our understanding of human-Earth system interactions—that is, 
digital trace data can serve as the telescope and machine learning as a tool with which we can see 
patterns in these generally large, inconsistent, and low-quality data (Golder and Macy 2014). 
Specifically, machine learning can improve the coupling between human-Earth systems in the 
following ways: (1) “fill in” sparse data about human systems; (2) enable the synchronous 
bidirectional coupling of human and Earth system models, with uncertainty; and (3) emulate 
climate data and model outputs to efficiently generate spatially resolved climate information for 
any future scenario and support scenario discovery. 
 
We know that environmental, social, and built system processes interact to produce outcomes of 
relevance to resilience, equity, sustainable use of resources, and the global Earth system. 
However, generating actionable and useful insights for decision-making requires effective 
integration of data and modeling, including incorporation of relevant data into models, delivery 
of modeling results, and inclusion of human responses into the model. Because capturing these 
details is primarily a data collection process, data analytical techniques may be more useful than 
mechanistic or process-based models for understanding these relationships. Machine learning 
and artificial intelligence methods may provide the appropriate platforms for understanding 
multiple types and sources of data and explaining relationships that are not yet well understood.  
 

9.4.1  Develop Data about Human Systems 
 
AI/ML could also be leveraged to generate data for coupled or integrated human system-Earth 
system models that may be unavailable or challenging/expensive to acquire. Some human 
activity data that might be useful (e.g., agriculture and infrastructure characteristics) are 
proprietary, and data at the individual scale must also respect the individual’s right to privacy. 
Despite these challenges, developing sustainable and FAIR (i.e., findable, accessible, 
interoperable, and reproducible) data streams to represent anthropogenic processes and coupled 
human-natural systems is one of the most actionable opportunities to increase the pace of 
scientific discovery in Human Systems and Dynamics. For example, established work in natural 
language processing (NLP) and other data mining techniques provides an opportunity to both 
extract more out of existing data sources and to develop novel data streams to address the need 
for data on land use change, resource consumption, mobility, behavior, infrastructure demand, 
infrastructure characteristics, and hazard mitigation strategies (e.g., through web scraping and 
digitization of historical records). In some cases, data that are currently mostly privately owned 
or proprietary come with commercial, privacy, and ethics concerns. Using application 
programming interfaces (APIs) to access anonymized versions of data still held and maintained 
by the owners in mutually beneficial partnerships with the data owners is another opportunity for 
enabling access to the diverse data needed for human systems research. Finally, collaborations 
with citizen-level data entities (e.g., https://www.flowminder.org/) could be pursued to open up a 
new realm of possible studies that can connect human activity to environmental stimulus and 



 

210 
 

response. AI/ML can also be used to provide estimates of observational data at the high-
resolution scales that are becoming increasingly important for Earth system research, especially 
as issues such as equity are becoming a focal research perspective. This is particularly the case 
for the socioeconomic data necessary for adequate characterization/representation of human 
systems. For example, AI/ML techniques to downscale block-level U.S. Census data to even 
finer resolutions and develop artificial agent populations (e.g., Graetz, Ummel, and Aldana 
Cohen 2021; Tuccillo 2021; Tuccillo and Spielman 2022) could be incredibly useful for enabling 
high-resolution agent-based modeling (ABM) efforts in the Earth system space. With the large 
amount of newly available data from remote sensing imagery, in situ observations, and 
unconventional sector, social, and economic data complemented by citizen science observations, 
AI/ML is providing an opportunity to rethink coupled human-Earth system science in the context 
of big data. 
 

9.4.2  Coupling of Human and Earth System Models 
 
We can develop integrated frameworks for these systems by leveraging data from both human 
and natural systems and integrating these systems using machine learning and artificial 
intelligence. One type of integration could be a hybrid model encompassing machine learning, 
data flow, and ABM. These integrated methods could also leverage insights from non-ML 
implementations of interactions between human and Earth systems at varying scales (Arneth, 
Brown, and Rounsevell 2014; Nazemi and Wheater 2015; Thornton et al. 2017; Calvin et al. 
2019) by using data-driven causal inference learning processes such as causal complex network 
analysis to identify feedback among the processes. We can also harness machine learning to 
relate patterns in data across scales and to facilitate reduction of model bias (Molajou, Pouladi, 
and Afshar 2021; Sert, Bar-Yam, and Morales 2020). Additional opportunities within this space 
include the synchronous, bidirectional integration of existing human system models with existing 
Earth system or specific domains (Calvin et al. 2019) as well as exploitation of transfer learning 
methods. Such methods will both improve the individual existing models and aid direct 
integration (Simpson et al. 2021) by allowing for the use of diverse data sources and model 
results across heterogeneous scales. To facilitate these tasks, method development and testing 
should incorporate synthetic datasets and benchmarking standards. Relevant and hard test 
problems that share key challenges should be developed among different research communities. 
 
Machine learning can help facilitate this compatibility by representing human activity as 
distributions of inputs to physical model processes and by providing analysis of physical model 
output. In addition to employing machine learning in these coupled ways, machine learning may 
help us determine which human activities (e.g., infrastructure construction, land use change, 
fertilizer use) or results of human activities (e.g., changes in land, water, and atmospheric 
processes and net emissions) most impact Earth system predictability and should be captured in a 
coupled context. With further AI research, this process can enable improvements in, for example, 
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rapid detections in changes in demand, demand-side management during stresses and shocks, 
and automatic remote infrastructure (re)configuration such as virtual power plants (Gilrein et al. 
2021; Helmrich et al. 2021).  
 

9.4.3 Integration of Social Sciences in Representation of Human-Earth System Interactions, 
including Uncertainties 
 
We can build on methodologies developed and lessons learned from the social sciences by 
incorporating social insights and associated datasets into algorithms and modeling approaches 
(e.g., is there a “digital twin” equivalent of cultural preferences toward tilling?). Such nuances 
will become especially critical for addressing barriers to adoption of adaptation and mitigation 
activities. We need careful consideration of the generalizability of algorithms (i.e., is a model 
trained on region A able to generate valuable/robust insights for region B?). This requires 
explicit attention to the assumptions about human dynamics that are being encoded into the 
algorithm. Finally, quantifying the uncertainty of large coupled systems is a challenge that will 
require large-scale computing for multiple-scenario simulations and new modeling methodology. 
Human system data used to inform models typically have unknown and highly variable 
uncertainty, but inferring a meaningful signal from these data is necessary to improve our 
predictive skill. Such use of AI/ML directly addresses the Grand Challenge of integrating 
complex, coupled human system-physical system models for Earth system predictability. 
 

9.5  Research Priorities 
 
Human systems are both the locus of impact for Earth system dynamics and the locus of 
decision-making for climate hazard mitigation and adaptation. As such, the core research 
priorities in this space center around expanding the scope of Earth system research to directly 
include assessment of climate risks on human systems, tuning research questions so that they are 
relevant for informing decision makers’ choices, and addressing current gaps (Table 9-2). 
 
Table 9-2. Gaps identified by white papers. 

Topic Gaps Identified Whitepaper ID 

Using AI for 
addressing data gaps 

Address data sparsity and data fusion of disparate, multisource data. AI4ESP1114 

Develop the more refined datasets (e.g., more refined LULC details in 
urban systems) that are needed. 

AI4ESP1016 

Integrate LU with LC portions of datasets. AI4ESP1137 

Develop ML algorithms to downscale/upscale data. AI4ESP1093 

Decompose global environmental change data into locally resolved 
processes using probabilistic components within RNN (LSTM) to 
capture uncertainty.  

AI4ESP1001 
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Table 9-2. (Cont.) 
Topic Gaps Identified Whitepaper ID 

Integrating 
knowledge into AI 
implementations 

Address lack of foundational (i.e., theoretical, systemic) understanding 
of different approaches to knowledge-guided AI. 

AI4ESP1138 

Fundamentally advance uncertainty quantification by integrating 
knowledge- and physics-inspired models.  

AI4ESP1019 

Use Driver-Pressure-State-Impact-Response framework for supporting 
decision-making activities. 

AI4ESP1024 

Address “data floods” by using heuristics methods to incorporate 
model/theory-based information into remote sensing model 
parameterization. 

AI4ESP1040 

Extend beyond simple economic representations of agents to 
understand behavior. 

AI4ESP1137 

Use AI to drive 
understanding of 
causality 

Use DNN/RNN to find latent features at multiple scales of analysis 
(e.g., in disease outbreaks). 

AI4ESP1106 

Use ML techniques for predicting model bias and uncertainty as a way 
to explore data-driven causal inferences within interactions/feedbacks. 

AI4ESP1093 

Dynamically trace pathways from south to impact of dominant drivers 
of observed climate changes. 

AI4ESP1020 

Extract information across scales using Bayesian network models. AI4ESP1029 

Increase 
computational 
efficiency 

Use NN for fast solvers (e.g., for urban hydrodynamics). AI4ESP1016 

Pursue hierarchical integration of high-fidelity physics-based models 
with ML-derived surrogates. 

AI4ESP1101 

Develop hybrid models to replace simulation of empirical processes.  AI4ESP1093 

Use ML techniques in combination with probabilistic methods and 
hierarchy of models to increase efficiency of multiple runs. 

AI4ESP1020 

Evaluation of 
impacts 

Use AI/ML to extend lead times for extreme weather event-related, 
engineered infrastructure impacts (e.g., power outages) to longer-term 
planning.  

AI4ESP1041  
 
AI4ESP1068 

Use explainable AI to identify human influence. AI4ESP1029 

 
Priority: Using AI for addressing human systems data gaps by creating better datasets, 
especially by extending and validating the sparse data available. Top priority datasets include 
those related to (1) social vulnerability, (2) physical vulnerability, (3) exposure to hazards, 
(4) social and economic impacts, (5) responses to change, and (6) assessment of existing 
response. Much of the climate research community is wrestling with the computational and 
logistical demands of the data-intensive research ecosystem that ML requires. Human-centric 
data bring additional challenges: data about human systems must both respect the dignity and 
privacy of individuals represented in the data and maintain the security of information about built 
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infrastructure data. Much of the data about humans is owned by large, private corporations, 
which brings additional challenges for data access and reuse. Facilitating data workflows which 
address these challenges is a critical step for integrating human systems into Earth systems 
research. 
 
In particular, one focused objective under these priorities could be to obtain a meaningful and 
semantically enriched representation of the high dimensional, multimodal geospatial data in a 
lower dimensional vector representation such that similar objects in high dimension tend to be 
closer in the embedded space. Such embedded representation is useful for various downstream 
tasks such as urban change detections or prediction of demographic-related information. These 
geospatial representations of anthropogenic processes are also then in a form familiar to Earth 
scientists. Another focused objective could be expanding the use of machine learning to make 
inferences about the state of human systems based on textual, remote sensing, and digital trace 
datasets. For example, convolutional neural networks can be used to infer characteristics of the 
built environment from remotely sensed imagery, and AI-driven data fusion can be used to 
integrate diverse datasets. 
 
Priority: Integrating human systems knowledge into AI4ESP implementations. This can 
improve Earth system predictability by improving both the representations of human drivers of 
uncertainty in the various Earth system sectors, and the predictability of human systems as a 
fundamental component/sector of the Earth system in their own right. For example, machine 
learning can improve our understanding of the human-Earth system coupling through climate 
emulation, which enables us to generate spatially resolved climate information for any future 
scenario, capture different drivers/processes for scenario discovery, and analyze large ensembles 
of model results. Which human sectors are the determining factors for Earth system processes, 
and which are the biggest Earth system influences on human system dynamics and resilience? 
Emulators provide options for fast, cheap, and flexible model coupling and exploration of 
feedbacks between human and Earth systems. Unsupervised methods can help identify what 
information is critical and decision-relevant and identify patterns across scales. AI-driven, agent-
based models can be a bridge between data and simulation models, and Long Short-Term 
Memory networks based on Recurrent Neural Networks (LSTM based on RNN) can represent 
regional Earth and human system dynamic processes. Further, this integration is an intrinsically 
interdisciplinary research area, and it requires that the dissemination of research across 
disciplines becomes a research priority in parallel with the actual domain and integration 
research. To aid dissemination and integration of results as a research priority, support for and 
expected adherence to FAIR standards in research methods and data will be crucial. 
Additionally, the use of existing ML-driven information extraction techniques to create shared 
catalogs of data and model results in a searchable location can aid this dissemination. 
Successfully prioritizing dissemination of results will ultimately improve these multidisciplinary 
models for Earth system predictability, expanding on current efforts (Peng et al. 2021) to map 
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different dimensions of human systems and interactions according to their usefulness, 
implementability in code, and importance to different stakeholders.  
 
Priority: Exploring new, fast-evolving human-Earth systems dynamics and validation. 
Multiple questions arise regarding the credibility of AI implementations as they expand into 
complex, human system dynamics. Namely, questions of verification (i.e., did the model 
accurately execute), validation (i.e., does the model accurately represent the real world), and 
uncertainty quantification will need to be addressed to increase the confidence of 
implementations. Initial efforts to reconcile definitions of important terms that are used 
differently across disciplines will be critical to successful implementations of credibility 
assessments. Traditional AI implementations rely on ground truth data for credibility 
assessments, especially for validation (i.e., training/testing sets). However, such ground truth 
data will be limited as AI implementations expand into data assimilation, causality evaluation, 
and knowledge integration methods for human systems. Therefore, new research techniques will 
be required to build both confidence of AI implementations to support subsequent analyses and 
decision-making as well as model generalizability to support advancement of science in human 
system dynamics. Such techniques could range from comparisons to theory-based estimates, 
evaluation of encoded assumptions, and systematic explorations (from parameter-level to 
scenario-level) of uncertainty within dynamically coupled system models. 
 

9.6  Short-, Mid-, and Long-term Goals: <5 years, 5-year, and 10-year Goals 
 
We have established that the representation of human systems in Earth systems models has so far 
been largely limited to the physical interface and is in its infancy in representing the science of 
decision-making—the action space. The representation of human systems and behaviors is 
mature, yet we identified gaps across individual and aggregated social scales of decision-making, 
and we also established that the science of human decision-making across systems is still in its 
infancy. Activities to advance the current state of the art span science objectives, methodological 
process, and development of resources across time (from <5 years to 10 years+). 
 

9.6.1  Short-Term Goals 
 
Short-term priorities span across: (1) development of science objectives, (2) methodological 
progress in developing benchmarks for AI/ML as well as new modeling techniques, and 
(3) development of compatible platforms to support data sharing and model executions. Given 
the infancy of the integration of human and Earth systems, independently from the AI/ML 
opportunities, science efforts should focus on improving: the spatiotemporal representation of 
human-induced processes, our understanding of multiscale interactions, and developing 
generalization of localized human systems for accelerating dissemination across scales by 
identifying critical pieces of information to support decision-making at various scales. 
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Methodological activities in support of these science priorities require flexible approaches to 
support advancements in both process-based understanding and incremental understanding that 
enable substitution of models for exploration of the unknowns. In the case of AI/ML, the latter 
requires development of benchmarks (e.g., AI-driven ABMs as a “bridge” between data and 
simulation models) as well as new modeling conceptions (e.g., hybrid/surrogate models and 
exploration of parameter space). Finally, with regard to resources, development is needed of 
compatible or hybrid platforms that can handle the different required execution timeframes and 
modeling time horizons—as well as partnerships that can generate mutually beneficial and 
privacy-informed approaches to enable use of (often proprietary) fine-scale data most relevant to 
human systems to advance critical research in this space.  
 

9.6.2  Mid-Term Goals 
 
While the short term is about scientific and methodological advances for human systems 
predictability, we envision that the mid-term priorities will be making progress with workflows 
toward more systematic and reproducible and generalizable integration of human and Earth 
systems. Specific priorities for the mid-term include: (1) development of an institutional 
environment for conducting AI4ESP science, along with the (2) implementation of the science 
(hardware/software and workflows under FAIR principles), and (3) education. Specifically, the 
institutional environment for research approaches will need to continue evolving toward 
complementary paradigms (process-based and AI/ML) to enable more rapid discovery of human 
systems interactions to keep pace with the fast co-evolution of complex processes of human and 
Earth systems. Additionally, we also need workflows that move us toward better standards and 
protocols to allow different models to intercommunicate. Data-/model-sharing protocols will 
need to become seamless as supported by new hardware and software, dramatically advancing 
scientific discovery. Finally, with regard to teaming and education, we need to invest in pipeline 
development to generate expertise through closer collaborations between domain scientists (and 
especially bringing in social science expertise) and methodological scientists. Potential ideas for 
the latter include establishing dedicated research centers, possibly in partnership with universities 
that have established method expertise, and in developing more dedicated internship 
opportunities to enhance relationships with advisors at universities as a long-term investment. 
 

9.6.3  Long-Term Goals 
 
The short- and mid-term goals will support a long-term goal focused on development of AI/ML-
supported, fully coupled human-Earth systems and platforms with multiple complementary ways 
to carry out science related to human systems including their interactions with Earth systems. 
Specifically, the long-term goal involves: (1) workflows, hardware, and software that support 
hybrid process-based and AI4ESP-based science for both incremental and fundamental 
discoveries and fast-evolving fundamental co-evolution discoveries; (2) sustainable data streams 
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(generalizable, FAIR, supporting process-based and AI4ESP types of science) to support the 
coupling of natural and human systems; and (3) established human system science at the 
interface of Earth-human systems. Effective execution of these activities will likely require an 
iterative process as well as a pipeline of expertise and closer collaborations between domain 
scientists (especially social scientists) and methodological scientists. This is an ambitious 
agenda, yet it is key to meeting the nation’s needs to achieve intended objectives given that 
societal transitions are rapidly occurring in these tightly connected systems. 
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10.1  Introduction 
 
The Earth sciences have entered an era of “big data” with a high diversity of data types, 
resolutions (space and time), and formats across the geosciences, Earth System Science (ESS), 
and atmospheric communities (Dietze, Lebauer, and Kooper 2013). This large volume and 
diversity of data stem from a range of efforts that cross multiple agencies (e.g., NASA, NOAA, 
National Science Foundation [NSF], and DOE), measurement platforms (e.g., in-situ 
observations, automated sensors, measurement networks, remote sensing), application types 
(e.g., water cycle, atmosphere, land-ocean-cloud interaction), and collection objectives 
(e.g., monitoring, scaling, reporting and verification, model development and testing). 
 
Typically, the collection and distribution of observational data have remained largely siloed 
around a domain-specific thematic area (e.g., atmospheric, land-surface, ocean). Legacy data 
systems, insufficient metadata standards, and ontologies—as well as a clear lack of 
communication and cross-agency collaboration on the development of accessible, curated, 
harmonized, and distribution standards across research domains—have created new and 
significant challenges for efforts that require large, diverse, well-curated datasets (e.g., Serbin 
et al. 2021), including AI/ML methods (e.g., Devarakonda et al. 2021; Chantry et al. 2021; 
Varadharajan et al. 2021). To foster the increased use of AI and ML methods in the Earth 
sciences, a new comprehensive and fully interoperable cross-domain data infrastructure is 
needed. As described in Figure 10-1, this includes the new development or extension of current 
metadata and ontology standards, new methods for optimizing the acquisition of data, automated 
data characterization and quality assessment, and new tools to enable cross-domain data 
discovery and distribution. At the same time, emerging automated and distributed data streams 
(e.g., 5G, Internet of Things [IoT], e.g., Beckman et al. 2020; Kollias et al. 2021; Varadharajan et 
al. 2021), novel collection platforms (e.g., unoccupied aerial systems [UASs]; Yang et al. 2021), 
together with edge computing capability and AI/ML-guided observations (Balaprakash et al. 
2021) will require modern data and file standards that can be flexible enough to capture key 
spatial information (e.g., projection, resolution), allow for real-time updating of information 
(e.g., streaming data storage and distribution), and account for any data reduction 
(e.g., extracting a specific signal from a larger data stream) while maintaining provenance to 
original data sources. File formats also need to allow for capturing and storing QA/QC and 
uncertainty information from collection to distribution, including as many sources of uncertainty 
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as possible. Some existing file format and metadata standards are already designed for 
modernized data systems to support AI/ML efforts (e.g., netCDF and CF conventions), but a 
much wider adoption of flexible file formats with robust ontologies is needed. Given these 
urgent needs, a critical requirement for building out comprehensive AI/ML capabilities will be a 
data infrastructure that provides the necessary tools to enable this acquisition to distribution of 
analysis-ready data (Figure 10-1). With the advent of modern AI/ML methods (e.g., Huntingford 
et al. 2019) together with new advancements in the curation and documenting of datasets that 
allow for federated data discovery (e.g., Wang et al. 2021; L. Pouchard et al. 2021; Wilkinson et 
al. 2016), new opportunities exist for increasing the utility and accessibility of critical 
observations across space, time, and agencies. 
 

 
Figure 10-1. Key Components for Enabling Cross-domain Interoperability (Source: Oak Ridge National 
Laboratory). 
 

 
Figure 10-2. End-to-end Data Lifecycle Components (Source: Oak Ridge National Laboratory). 
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Developing a comprehensive AI/ML-enabled ModEx approach together with a data and 
modeling cyberinfrastructure is critical to efficiently integrating observations, linking models, 
and assimilating new data with climate simulations and disciplines to transform traditional 
measurement campaigns or synthesize multiple multiscaled efforts (e.g., Fer et al. 2021; Lu et al. 
2021; Mueller et al. 2021; Serbin et al. 2021). Observational data networks use complex data 
lifecycle pipelines to manage the end-to-end data (Figure 10-2). These networks are expected to 
utilize increasingly more and diverse AI/ML methods to improve their data components. For 
example, applying AI to the source instrument will enable real-time data quality assessment, 
targeted data collection, and data dimensionality reductions. Similarly, there are opportunities to 
improve data processing, metadata preparation, and data recommendations based on user 
research needs. In addition, there are opportunities to provide new data services for AI/ML use 
cases. These can include, for example, edge computing to enable data analysis at the source, 
adaptive data collection, and new ontology capabilities to improve cross-domain data discovery 
(e.g., Pouchard et al. 2013; Beckman et al. 2020; Balaprakash et al. 2021). 
 

10.2  Grand Challenges 
 
In our session, a number of key challenges were identified that have slowed the collection and 
dissemination of the Earth and atmospheric science data required for improving model fidelity 
(Table 10-1). For example, the vast majority of surface measurement and observation systems 
that are deployed are biased because they are located in less remote, or low heterogeneity regions 
(e.g., Schimel et al. 2015); more distributed observations are needed in model and scaling efforts 
to represent much larger domains. This creates sampling biases or issues related to the overall 
“representativeness” of the observations, an additional data uncertainty that may not be easily 
quantified and integrated into data uncertainty characterization or modeling studies. 
Measurement networks are also often deployed in a more ad-hoc fashion, which typically creates 
a suboptimal sampling design to capture the processes of interest (e.g., Kaminski and Rayner 
2017). This biased sampling can lead to challenges and errors when developing statistical or 
mechanistic methods meant to upscale these measurements and extrapolate over space and time. 
These issues then translate through data systems but are not adequately captured in metadata, 
QA/QC or uncertainty accounting. Instead, more representative sampling in remote regions or 
those locations with high spatial and temporal gradients are needed to reduce these sampling 
biases. 
 
Beyond data representation issues, additional significant challenges remain (Table 10-1). These 
include data volume and diversity challenges, requiring development of new methods to manage 
the volume and mix of data types across spatiotemporal scales. Addressing this challenge will 
also require new investments in hardware and software to manage the increasing flow of 
complex and novel datasets. Similarly, improved data documentation and automated data 
valuation will allow for improved data synthesis efforts and allow for developing better AI/ML 
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training datasets. However, this also requires new efforts for cross-agency metadata and file 
standardization with consistent ontologies, together with improved lifecycle management, that 
will enable more efficient, federated data discovery and dissemination, provenance management, 
and versioning. Table 10-1 summarizes the main challenges within the end-to-end data services 
thematic areas identified during the workshop. 
 
Table 10-1. There are a number of critical challenges and requirements that need to be addressed to 
improve the data acquisition-to-distribution pipeline of Earth and atmospheric science data. Here we 
provide a detailed list of primary grand challenges that need to be addressed to foster large-scale AI/ML 
methods. 

Topic	 Primary	Grand	Challenges	

Data	Acquisition	 Representative	adaptive	and	on-demand	sampling	in	environments	with	
high	spatial	and	temporal	gradients,	sub-optimal	observing	systems.	

Data	Transfer	and	
monitoring	

Remotely	deployed	instruments,	data	reduction,	both	network	and	power	
requirements	to	operate	and	transfer	data,	cyber	security.		

Data	Processing	 Protocols	and	data	standards	to	enable	real-time	data	processing	to	feed	to	
AI	use	cases.	Coordination	across	distributed	networks.	

Data	Access	and	
Distribution	

Discovery,	near	real	time	data	access,	availability	FAIR	assessment	for	AI-
ready	data,	data	volume	and	diversity.	

Protocols	 Standards	used	for	sensors,	UAV,	IoT,	unrepresentative	data,	transfer,	
adaptive	data	sampling.	

Ontology	 Lack	of	standards	and	knowledgebase	for	cross	-domain	semantic	ontology.		

Metadata	and	data	
standards	

Inconsistent	metadata	requirements	create	significant	challenges	for	
federated	search	and	discovery;	inconsistent	file	and	data	formatting	and	
standards	require	translation	and	harmonization	when	compiled	with	data	
from	multiple	sources.	

Data	mining	and	
integration	

Integration	of	datasets	from	multiple	acquisition	platforms	and/or	
observational	networks	with	ability	to	generate	and	assess	data	products.		

QA/QC	 Automated	data	quality	assessment,	with	instant	feedback	to	data	
submitter/provider/user.		

 

10.2.1  AI/ML-informed Data Collection and Edge Computing  
 
The AI/ML-informed data collection and edge computing “grand challenges” covered a wide 
range of data acquisition, assimilation, and emerging capability efforts enabled by machine 
learning, AI, and advanced methods (Table 10-1). The primary challenges discussed involved 
experimental/network design and its optimization, ability to perform online and continual 
learning at the edge, and hardware-related efforts involving AI, for example, edge computing 
(Balaprakash et al. 2021). This emphasis was attributed to one overarching challenge common to 
the water cycle and its extremes (i.e., droughts, flooding, severe convective storms)—the current 



 

226 
 

limitations of observational capabilities to constrain model treatments of such events that operate 
over extended spatiotemporal scales (Cholia, Varadharajan, and Pastorello 2021). Specifically, it 
was highlighted that current water cycle studies are often focused on episodic events 
(e.g., Varadharajan et al. 2021); however, detailed field campaigns for ideal process-level 
insights often rely on instrumentation co-deployed and/or operated in an ad hoc, suboptimal 
manner and often based on limited experience. These strategies are currently informed by expert 
guidance, with concerns that these strategies may not reflect objective methods but are concepts 
perpetuated by anecdotal evidence. Discussions specifically highlighted the demand to target 
several forms of coordinated water cycle processes or key quantities, for example, designing 
optimal retrieval strategies for key quantities of interest by using ML efforts bolstered by high-
resolution model outputs (e.g., Kollias et al. 2021). Other challenges discussed included concerns 
that most water cycle observations are less representative in regions of high temporal and spatial 
gradients—a problem especially for tracking episodic, isolated extremes in precipitation and 
related fields. Similar discussions extended to the challenges of global representativeness when 
considering limited sampling in higher-latitude and/or other remote tropical or oceanic 
environments. Separately, many water cycle process studies require distributed and reliable 
atmospheric state or related quantity retrievals over relatively finer scales and must be available 
in a timely fashion for model assimilation, which may also be prohibitive to deploy, operate, or 
coordinate with existing capabilities (e.g., Cholia, Varadharajan, and Pastorello 2021). Finally, 
several aforementioned challenges are exacerbated by cross-cutting DAQ themes (Table 10-1), 
necessitating improved data conditioning, data quality control, accessibility to datasets, and high-
resolution modeling outputs for AI/ML training and testing. 
 

10.2.2  DAQ for Developing Training and Test Datasets 
 
An overall challenge in advancing Earth system predictability is to improve the acquisition of 
high-quality datasets and the inference of data products that help develop, parameterize, or 
validate Earth system models (ESMs) (e.g., Cholia, Varadharajan, and Pastorello 2021; 
Devarakonda et al. 2021; Ghate et al. 2021; Serbin et al. 2021; Wu et al. 2021). The development 
of automated frameworks for assessing, processing, and coupling various datasets is key for 
overcoming the above-mentioned challenge, as well as for taking full advantage of the quickly 
increasing resolution, coverage, and diversity of ground-based, airborne, and satellite 
observations capturing atmospheric, surface, and subsurface processes. Particular challenges 
identified during our session included automated data quality assessment and instant feedback to 
the data submitter/provider/user, advanced data analysis for error quantification and data 
discovery by considering historical dataset and physics-based estimations, and assessment of 
where and when additional measurements are needed. 
 
Further, discussions highlighted the requirements for computational frameworks that can help to 
advance the development of data products for model training or testing. Particular challenges 
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include merging datasets with various coverages/resolutions to infer spatially and/or temporally 
resolved products, and interrogating datasets to estimate data product accuracy (Crystal-Ornelas 
et al. 2021). To that end, FAIR frameworks for data (Wilkinson et al. 2016) to ensure findability, 
accessibility, interoperability, and reusability are critical. An additional challenge is to leverage 
both field data and physically based models to improve the analysis of multidimensional 
relationships needed for generating reliable data products. Overcoming these challenges is also 
key to advancing the evaluation and identification of trustworthy datasets, guiding and 
optimizing data acquisition or selection based on physics-based models and prior knowledge, 
and developing emulators of complex processes. It is noted that the above challenges are all 
linked to a range of technical challenges associated with software and hardware. 
 

10.2.3  Data Lifecycle, Discovery and Ontology, Standards and Protocols 
 
Arguably one of the of the biggest challenges and potentially most limiting step to the full-scale 
rollout of an integrated DOE AI/ML framework for improvement of Earth system predictability 
is the management, processing, and dissemination of properly prepared, documented, and 
standardized analysis-ready datasets that have adequate uncertainty information and that adhere 
to FAIR data principles and broader data interoperability (Figure 10-1). To be most impactful, 
the data system needed to support transformation research in AI/ML will also need to effectively 
utilize external datasets from partner agencies (e.g., NASA, NOAA, USGS) such that DOE and 
non-DOE datasets can be efficiently harmonized and incorporated into statistical and 
mechanistic modeling workflows.  
 
The primary challenges (Table 10-1) to the development of the datasystem needed to support 
these AI/ML needs that were identified during our session included managing volume, velocity 
(rate), and veracity of data; inconsistent standards and ontologies; inadequate data lifecycle 
methods to capture data and model artifacts; data quality; and full data error propagation during 
collection to dissemination. A key challenge, but also an important opportunity, for increasing 
the diversity of datasets for AI/ML efforts is the improvement of cross-agency data coordination. 
This would foster enhanced multiscale datasets by integrating data streams across different 
scientific domains. To achieve this, challenges associated with ontologies and standards also 
need to be addressed to remove issues related to ad-hoc or “re-inventing the wheel” efforts to 
generalized workflows that work across agencies and data types. In addition, improved data 
dissemination, including automated AI/ML processing, synthesis, and QA/QC, as well as 
community cloud storage and compute “near” the data system, are needed to overcome data 
volume challenges but also minimize the requirements of moving data packages and facilitating 
the effort of analyzing “in place.” This requires a fundamental shift in the way that data for the 
new lifecycle paradigm are implemented, as well as how ontology, standards, and protocols are 
developed for effective operations. In addition, issues related to provenance and versioning of 
data will need to be addressed. Finally, another challenge and opportunity exists in developing 
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ways for error propagation, much of which could leverage AI/ML methods during the data 
management pipeline and/or during data use. 
 

10.3  State-of-the-Science and Current Challenges 
 

10.3.1  AI/ML-informed Data Collection and Edge Computing 
 
Optimizing the deployment of observational resources is a critical but presently unrealized 
priority in Earth science and atmospheric research. This is because the reduction of uncertainties 
in climate predictions has been hindered by a lack of targeted observations that provide the 
spatially and temporally representative information and surface-atmosphere coupling required to 
inform atmospheric motions, capture the impacts of environmental heterogeneity, and track the 
temporal evolution of key properties and processes (e.g., Reddington et al. 2017). Many large-
scale measurement campaigns intending to target these processes are expensive, time-consuming 
endeavors requiring years of careful planning before an observational facility or site locations are 
identified. While it is critical to maximize the scientific value of the data, these observational 
campaigns largely rely on heuristic planning processes grounded in domain scientists’ intuition. 
It is also exceedingly rare for process models to inform the siting and measurement strategies of 
observational networks during their design phase, although a small number of examples do exist 
(e.g., Lahoz and Schneider 2014; Metzger et al. 2021). Because of this, it is highly likely that 
resources are misallocated, and critical insights are not identified during the lifetime of the 
campaign. This challenge will only be exacerbated with more complex measurement campaigns 
and model needs that are not easy to identify in the project-planning stage. Achieving the goal of 
intelligent data collection is currently limited by a number of factors, including: (1) lack of dense 
observation networks to capture the full spatiotemporal spectrum and heterogeneity in the drivers 
of extreme events; (2) lack of synergistic use of instruments to maximize the information 
available from observations; (3) physical limitations of modern sensor technology, and the 
failure to utilize the full amounts of data available from current sensors; (4) lack of low-cost, 
miniaturized, and easily deployable instrumentation; (5) slower data pipelines that require 
significant human intervention in the acquisition to distribution workflow that limits the ability 
to use AI-guided measurement optimization approaches; and (6) lack of AI-enabled, model-
driven experiments that perform targeted data collection based on different terrain and locations. 
Most campaigns are not optimally designed to inform processes that are critical for improving 
model predictions across space and time, may not efficiently utilize measurement resources for 
informing models, and are rarely set up for rapid model-data assimilation to iteratively inform 
new measurement and model priorities during the lifetime of the campaign. However, these 
issues will need to be addressed to enable widespread AI/ML methods in the climate sciences. 
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10.3.2  DAQ for Developing Training and Test Datasets 
 
Developing training and test data products for physics- or statistics-based models is key to 
improving Earth system processes’ predictability and discovery (Chantry et al. 2021). Many data 
products are provided by large sensor networks (e.g., AmeriFlux, IMPROVE, LTER, NEON) 
and/or remote sensing observations (e.g., aerosol optical depth, cloud fraction, surface 
reflectance, land-surface temperature) that aim at capturing specific ecosystem properties with a 
predefined spatial and temporal resolution. These products are the results of carefully designed 
and applied strategies for data acquisition, QA/QC, processing, management, and dissemination 
(Pastorello et al. 2020). At the same time, a significant fraction of available datasets are produced 
from smaller, short-term, ad hoc, targeted or PI-driven measurement campaigns (e.g., Dafflon et 
al. 2022). Data from these campaigns are then archived in specific agency data systems and later 
used in other synthesis or modeling efforts; however, this process of archiving and use may take 
several years. Despite possible delays in dissemination, the value of these products for improving 
the understanding of ecosystem and convective processes and aerosol properties; quantifying 
energy, water, and carbon cycle fluxes and their trends; and developing and validating AI/ML or 
physically based models have been demonstrated in numerous studies (e.g., Jung et al. 2019; 
Ojha et al. 2021; Shiklomanov et al. 2021). ML techniques have also demonstrated their value, 
including for automated data QA/QC and processing, estimating data at locations or temporal 
periods outside the observation window, and for the evaluation of short- and long-term behaviors 
(e.g., Mylavarapu, Thomas, and Viswanathan 2019; Okafor, Alghorani, and Delaney 2020; 
Sanhudo, Rodrigues, and Filho 2021). Yet, the resolution, coverage, and diversity of the existing 
products; the level of automation to generate/update them; and the potential use of physical-
based models to guide their development constitute areas where improvements are particularly 
needed.  
 

10.3.3  Data Lifecycle, Discovery and Ontology, Standards and Protocols 
 
Data repositories and collection sources use various capabilities and standards for producing 
FAIR-ready datasets that the data analytics platform can readily utilize. In addition, a 
combination of DOE leadership computing and commercial cloud-compute and storage 
capabilities are available to projects for data storage and computation needs. Large observatories 
and data-intensive projects also use many tools and processes to monitor the data flow, perform 
data quality analysis, and create value-added products (Prakash et al. 2021).  
 
The data management communities are currently discussing methods to extend the rubric score 
used by FAIR to evaluate datasets ready for AI analysis (e.g., sessions during 2021 SciDataCon 
and ESIP 2022 January meeting). In addition, there are many opportunities to improve the data 
provenance, globally persistent identifiers, and citation standards for cross-agency federated 
search and discovery (Devarakonda et al. 2021). There is a considerable gap in common 
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standards for managing and generating data from the IoT, sensors, and smart devices, which can 
produce highly diverse data and metadata records (e.g., Dafflon et al. 2022). Additionally, there 
are emerging technologies to gather feedback between collection and distribution facilitated by 
AI/ML, targeted model-data infrastructures, or both, enabling uncertainty quantification using 
complex models and diverse measurements (e.g., Dietze et al. 2014) and self-supervised and 
semi-supervised learning methodologies. However, new difficulties are created by the fact that 
AI models and data or data integration methods are tightly integrated; the AI/ML models drive 
the data collection, which in turn changes the models used for data collection. Currently, there is 
no data standard or protocol that takes into account the iterative nature of data-model 
dependency. 
 

10.4  Experimental, Data, and Modeling Opportunities 
 
Developing a modern data system (Figures 10-1 and 10-2) capable of supporting complex, 
multiscale or “big data” AI/ML approaches would transform our capacity to collect, process, and 
use Earth and atmospheric measurement data to improve our capacity to predict changes to the 
Earth system. We identified a number of future opportunities (Table 10-2) within three main 
thematic areas where AI/ML can be used to enhance current measurement capabilities but also 
provide or improve novel, new capabilities (e.g., edge computing). In Table 10-2, we describe 
these opportunities in more detail. 
 
A major opportunity is to develop an integrated framework (including cyber-infrastructure, 
AI/ML tools, physically based models) for advanced model data experiments (sometimes 
referred as ModEx). The use of advanced data analytics (including AI/ML) can address a wide 
range of challenges associated with quantifying data error during their entire lifecycle, merging 
datasets from various platforms and resolutions into advanced data products, using data products 
for science discovery and parameterization or validation of physic-based models, and improving 
data acquisition (property, sensor, resolution, etc.) based on model data experimentation. 
Importantly, combining AI/ML with physics-based models can revolutionize the model-data 
experiment through identifying where datasets and process representation are trustworthy and 
developing emulators of complex processes (e.g., Fer et al. 2018) for their inclusion in complex 
ESMs (e.g., E3SM) to reduce the computational burdens associated with parameterizing and 
calibrating ESMs. 
 
Table 10-2. Core focal research priority areas and the associated main short-term and long-term goals to 
address 

 Focal	area	 <5-year	Goal	 >5-year	Goals	 10+-year	Goals	
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	 Data	Collection	 Explore	optimal	
experimental	designs	and	
strategies	using	
upcoming	field	
campaigns	

Support	increased	
coordination	between	data	
collection	and	analysis	
methods	

AI	for	ModEx:	from	data	
collection	to	AI	and	back	
again	
	
AI-guided	data	collection	
strategies	based	on	real-
time	observation	needs	

Table 10-2. (Cont.) 

 Focal	area	 <5-year	Goal	 >5-year	Goals	 10+-year	Goals	

	 Data	Processing	 Support	the	development	
of	new	protocols	to	
enable	real-time	data	
processing	
	
Foster	intra-	and	inter-
agency	coordination	on	
data	collection,	
discovery,	and	
distribution	

AI-guided	symbiotic	
framework	for	integrating	
models	and	data	to	enhance	
training	
	
Federated	data	search,	
discovery	and	distribution	
w/	dataset	uncertainties	
	
Cross-agency	collaborations	
on	development	of	data	
standards,	protocols	and	
ontologies	

Instantaneous	data	QC	and	
feedback	to	data	submitters	
	
Quantify	and	control	the	
propagation	of	error	in	
training	datasets	to	AI/ML	
and	AI/ML	in	physical-based	
models	
	
AI/ML	to	identify	
trustworthy	data	
	
Cross-agency	AI/ML-guided	
data	reduction	and	
synthesis	capabilities	across	
domains	and	spatiotemporal	
scales	
	
Integrate	AI/ML	into	
lifecycle	and	QA/QC	to	
identify	gaps	more	quickly		

	 Data	
Distribution	

		 Natural	language	processing	
(NLP)	technologies	for	
ontology	
	
New	standards	and	protocols	
for	beyond	5G	network	and	
edge	computing		

	

	 Data	QA/QC	 Create	working	groups	
with	domain,	field	
scientists	and	
computational	scientists	
focused	on	defining	
needs	for	AI/ML	data	
QA/QC	and	UQ		

	 AI/ML	driven	QA/QC	

	 Data	Standards	 	 New	standards	and	protocols	
for	beyond	5G	network	and	
edge	computing		
	
Standards	for	IOT,	sensors,	
unrepresentative	

Provenance,	globally	
persistent	identifiers	and	
citation	standards	for	cross-
agency	federated	search	and	
discovery	
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data/metadata	
	
Provenance,	globally	
persistent	identifiers	and	
citation	standards	for	cross-
agency	federated	search	and	
discovery	

Table 10-2. (Cont.) 

Focal	area	 <5-year	Goal	 >5-year	Goals	 10+-year	Goals	

	 Computational	
Needs	

Computing	platforms	for	
“big	data”	hosting	
together	with	computing	
resources		

Coordination	with	ASCR	to	
build	out	necessary	dedicated	
computing	continuum	cyber-
infrastructure,	better	
coordinate	of	DOE	flagship	
compute	

Accessible	and	affordable	
community	cloud	compute	
and	storage	
	
Compute	and	data	co-
existing	on	GPU/central	
processing	unit	(CPU)/HPCs	
enabling	rapid	exploration	
of	new	methods	

	 AI/ML	Testbeds	 Leverage	existing	
campaign	data	to	test	
AI/ML	scalability	

Leverage	upcoming	
campaigns	(e.g.,	AMF3	SE	US)	
explore	optimal	experimental	
designs	and	strategies	

Experiment	with	novel	
measurement	and	
processing	technologies		
	
Edge	Computing:	Beyond	5G	
networks,	neuromorphic	
computing,	and	quantum	
sensors	

	 AI-guided	data	
acquisition	
framework	

Explore	optimal	sampling	
based	on	existing	
datasets	

Leverage	AI/ML	to	develop	
adaptive/agile	data	collection	
	
Development	of	emulators	of	
complex	processes	to	help	
define	obs.	needs	for	ESMs	
(e.g.,	E3SM)	

Connect	physical	and	AI	
approaches	with	optimal	
sampling	design	to	optimize	
return	on	investment	(ROI)	
on	measurements	
campaigns	

 
DOE campaigns collect a wide range of datasets, including high-frequency land-surface, cloud, 
and aerosol measurements, often resulting in significant data volumes (e.g., Mather and Voyles 
2013; Miller et al. 2016; Uin et al. 2019; Kollias et al. 2021; Hardin et al. 2021). End-to-end 
ModEx simulations, leveraging AI tools including ML model surrogates, and reinforcement-
learning can be used to develop optimal sampling for upcoming campaigns, including AMF3 
SEUS, and to address key challenges associated with operations design (Hardin et al. 2021; 
Kollias et al. 2021; Serbin et al. 2021). Similarly, these methods can iteratively adapt sampling 
strategies or define optimal measurement frequencies over time (seasonally or annually) by 
proposing new collection or enhanced deployment strategies that target specific improvements in 
model performance, together with hybrid or emulator model UQ (e.g., Cholia, Varadharajan, and 
Pastorello 2021; Hardin et al. 2021; Lu et al. 2021; Mueller et al. 2021). Similarly, AI/ML edge-
computing for rapid data QA/QC, pattern recognition, and/or AI-assisted dimensionality 
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reduction could help inform adaptive atmospheric measurement strategies, reduce data volume 
by rapidly targeting data collection and/or separating observations from background conditions 
(e.g., Balaprakash et al. 2021; Dafflon et al. 2022; Li et al. 2021). This illustrates an added 
pathway wherein model needs are used to iteratively inform measurement requirements 
(e.g., Figure 10-3). DOE campaigns like SEUS are also ideal testbeds to advance AI-assisted 5G 
“smart sensor” networks targeting key variables (e.g., micromet, PM2.5/10) and distributed 
methods for integrating data across multiple facilities. 
 

 
Figure 10-3. Observational and data sources connecting with models and experiments using FAIR and 
direct feedback mechanisms (Source: Reproduced from Prakash et al. 2021). 
 
Sensor instruments with edge AI/ML capabilities deployed in the field can help validate climate 
models emulated and simulated in DOE supercomputing facilities (e.g., Dafflon et al. 2022). 
Quantum sensors that leverage atoms and photons as measurement probes offer high-resolution 
measurements that were not previously feasible. Utilizing AI/ML models running at the edge can 
provide high-level information, for example, detection of objects of interest and forecasting 
short-term events (Balaprakash et al. 2021). This enables any appropriate automated changes in 
the sensing strategy in near-real time at the edge. For example, local weather changes (such as 
cloud cover) can be sensed by local edge devices and be used to assimilate the model for 
accurate short-term forecasts.  
 
Looking beyond 5G, future mobile networks can be a potential game changer for AI/ML-enabled 
data collection. The 6G and beyond networks will enable a higher degree of programmability 
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(Saad, Bennis, and Chen 2020), which can deliver a wide range of new use cases, including 
(1) enhanced mobile broadband (eMBB), to support high-bandwidth, data-driven use cases such 
as ecohydrology and tropospheric water vapor and temperature data collection; (2) ultra-reliable 
low-latency communications (URLLC) to support mission-critical communications, for example, 
remote control of autonomous aerial vehicles such as UASs for targeted data collection; and 
(3) massive machine-type communications, to support dense deployments of sensor devices that 
enable the capture of the full spatiotemporal spectrum and heterogeneity in the drivers of 
extreme events. These new services will leverage the beyond-5G network’s revolutionary design 
of its software-defined core and transport networks and the radio access network that can support 
advanced wireless communication. With its 100-×100-km footprint, highly heterogeneous land 
surface, and world-class instrumentation, ARM’s Southern Great Plains (SGP) site is ripe for the 
implementation of a 5G-enabled observational network. 
 
A comprehensive AI-guided, end-to-end ModEx framework requires the ability to synthesize and 
integrate observations to inform our predictive understanding of ecosystems and climate, address 
uncertainties and advise observation requirements, or test competing hypotheses (e.g., Fer et al. 
2021; Lu et al. 2021; Serbin et al. 2021). Computationally efficient AI/ML tools and processes 
are needed to manage information flows and provide tractable approaches for model UQ and 
assimilation to inform predictions, feeding back to data needs (e.g., Cholia, Varadharajan, and 
Pastorello 2021; Mueller et al. 2021). A key future opportunity to foster much tighter 
relationships between model simulations and forecasting and data collection is the development 
of a FAIR model-data integration cyberinfrastructure (Prakash et al. 2021). Presently, there are 
various examples representing different parts of this much-needed ModEx community 
infrastructure (e.g., Fer et al. 2021); however, scaling up these efforts based on the current 
individual PI or smaller team paradigm is not feasible to support the larger institutional needs 
associated with Earth system predictability through data-informed modeling. Instead, there needs 
to be a more coordinated effort to develop a flexible cyberinfrastructure (Figure 10-1) that can 
facilitate formal, modular model-data integration that tracks data and simulation provenance, as 
well as changes associated with model development efforts (e.g., model versioning tied to 
specific simulations/ensembles); rapidly integrate datasets from new measurement campaigns; 
account for data and model uncertainties; provide more rapid feedbacks to data collection based 
on model needs; and identify and link the most impactful datasets to inform models at the 
appropriate scales (e.g., Lu et al. 2021; Prakash et al. 2021; Serbin et al. 2021). This 
infrastructure would leverage AI/ML as both part of the data-to-model pipeline, but also as a 
means for developing statistical predictors of different phenomenon or model emulators 
(e.g., Hardin et al. 2021; Mueller et al. 2021; Xu et al. 2021). 
 
Earth and atmospheric observations data are well-suited for the application of a modern AI/ML 
cyberinfrastructure and data analytics tools to efficiently curate, harmonize, and synthesize 
diverse, often noisy or of varying quality datasets into analysis-ready, scale-aware observations 
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suitable for multiscale modeling. Working with data communities, developing an extension to 
FAIR principles (Wilkinson et al. 2016) to evaluate AI-readiness, and upgrading data 
repositories could provide easy access to datasets sourced from multiple archives to serve a 
wide-range of AI scientific applications (e.g., Prakash et al. 2021). Given the wealth of data, 
accessible, harmonized, trustworthy, and QA/QC datasets (with quantitative uncertainties) are 
essential for future broad-scale applications of AI/ML and ModEx. Development of AI/ML and 
ModEx testbeds around specific measurement and modeling campaigns (e.g., AMF3 S.E. U.S.) 
could be used to evaluate modern data processing and analytics tools, including globally 
persistent unique identifiers to facilitate provenance tracking across diverse data archives, 
federated data searches, and to maintain standards compliance. In this modern data acquisition to 
distribution framework, data curation informed by AI can be used to identify and/or gap-fill 
missing or erroneous data through clustering across variables and scales. AI’s ability to process 
large data volumes enables the discovery of functional relationships between variables 
(e.g., temperature and evapotranspiration), which are useful for predictive modeling and 
benchmarking (Fer et al. 2021). Integration of ontology into metadata will support 
discoverability in persistent data pipelines and workflows and will ensure interoperability across 
data and analysis (e.g., Python, R) platforms. Supporting end-to-end ModEx, an AI data testbed 
would facilitate hyperparameter sweeps together with the tracking of simulations through 
metadata acquisition to compare ML/process model results and automate model retraining or 
updated simulations, given new data. 
 
Advanced real-time monitoring and access to distributed and remote sensors will be key for 
building modular edge computing for real-time data quality analysis and data processing at the 
source. The real-time analysis would enable detection and flagging of problematic data by cross-
analyzing datasets before their use in a dynamic selection process (Prakash et al. 2021). 
Technologies need to be developed to enable the next-generation monitoring and access to 
distributed sensors that lack power and network. Newer and modular network solutions such as 
satellite-based, high-throughput networks need to be deployed, along with onsite computational 
capabilities to perform the data processing at the source. 
 

10.5  Research Priorities: Short-term (<5 years), 5-year, and Longer-term 
(10-year+) Goals 

 
In recent years, there has been a substantial increase in the amount and diversity of data available 
for improving the predictability of the Earth system, and as such, a commensurate level of effort 
in new methods to efficiently collect, process, quality control, synthesize, and distribute these 
data is required to fully realize the potential for increased ESM fidelity. During our session, a 
number of focal areas were identified as critical for shorter-term (<5 years) and long-term (5+ 
years) investment to both increase the utility and ROI of data collection and measurements 
campaigns, as well as to dynamically target those variables and observations that are most 
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needed for reducing the uncertainty in ESM projections (Table 10-2). These priority areas fall 
within the main areas of data collection, processing, and distribution; computational needs; 
AI/ML testbeds; AI/ML synthesis and data reduction approaches across scales; and the 
development of an AI-guided data acquisition framework.  
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11.1  Grand Challenges 
 
Given the recent advancements and success of neural information processing (especially deep 
learning), three major requirements of advances in NNs from an Earth system predictability 
(ESP) perspective were identified. These NN requirements are true for AI4SP (Artificial 
Intelligence for ESP) in general and for NN4ESP in particular, and they include:  
 

(1) The development of credible and explainable NNs for enabling novel scientific discovery 
and advances in predictive understanding through causal discoveries (rather than 
correlations only). 

 
(2) Development of end-to-end analysis tools that seamlessly integrate NNs and ESP 

simulations to enable actionable predictive insights for stakeholders and decision and 
policymakers for relevant variables at scale. 

 
(3) Integration of physics and domain understanding in NNs, and combining them with data, 

analysis tools, and Earth system models (ESMs) process models to address (1) and (2) 
above by enabling uncertainty quantification and attribution, by developing theoretical 
guarantees of model predictive performance, and finally by enabling NN learning in the 
face of the availability of big and small data.  
 

 
The development of NNs and analysis tools with the above requirements has the potential to 
advance modeling and understanding of ESP processes in major ways, including: 
 

(a) Understanding the conditions for weather and hydrological extremes such as heat waves, 
heavy precipitation events, and the knock-on effects of these extremes is critical. These 
extremes exhibit non-Gaussian (i.e., multimodal or heavy-tailed) data distributions and 
are currently not adequately handled by current-generation ESMs, leading to their 
inability to accurately predict extreme events. State-of-the-art generative models have not 
yet been applied to this task. 

 
(b) With a changing climate and an increase in the frequency of extreme events, there is an 

urgent need to enable the prediction of when regional climate-related tipping points will 
be reached and exceeded. Tipping points are a function of trends and patterns of changes 
at regional scales, and natural variability (deterministic such as sensitivity to initial 
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conditions or even chaos, or stochastic such as low-frequency variability or even 1/f 
noise). Extreme events can have short- and long-term impacts on a huge variety of 
sectors, including public health, emergency management, infrastructure and ecosystem 
resilience, water and energy security, agriculture and food security, biodiversity and 
conservation, and similar. 

 
(c) There is a need to fill gaps in our understanding of physics processes that are currently 

included in ESMs in the form of parametrizations, thus limiting the reliability of the 
predictions made even with the most advanced simulation models. Explainable and 
interpretable NNs have the potential to help us advance our physics understanding and 
thus mechanistic modeling. The development of hybrid models (e.g., using NNs to 
replace parametrizations) improves predictive accuracy and provides uncertainty 
estimates, as well as other data-driven models for predictive understanding of missing 
physics, and is a key grand challenge (see Figure 11-1). 
 

 

 
Figure 11-1. Community Atmospheric Model (CAM/NCAR): NN (NNCAM) replaces state-of-the-art CAM 
(CTRLCAM) and CRM (SPCAM) to demonstrate proof of principle in cloud parameterizations 
(Source: Figure from Rasp, Pritchard, and Gentine 2018 under Creative Commons CC BY-NC-ND 4.0).  
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(d) Non-stationary processes such as changes expected in the Earth’s radiative budgets in the 
future must be reflected in parameterizations and data-driven functional mappings in 
order for NNs to make accurate predictions. A difficulty here is the potentially vast 
spatial and temporal scales that must be bridged when making predictions. Domain 
knowledge could be exploited here and incorporated in the NNs; for example, it is more 
likely that the climate of the U.S. Northeast begins to resemble the current climate in 
southern parts of the U.S. eastern seaboard within the next several decades, rather than 
the western United States. Similarly, the average climate of a region in the future may 
become warmer, but it may resemble outlier observations we have already observed 
occasionally due to natural variability. This kind of constrained nonstationarity should be 
considered when designing parameterizations and NN (including deep learning) 
approaches, as well as when designing systematic evaluation strategies by reflecting 
time- and space-dependent deviations. 

 
(e) Quantifying the uncertainty (model, parameter, data uncertainty) is essential for enabling 

trustworthy predictions with ESP simulations. The computational expense associated 
with UQ on simulations quickly becomes computationally intractable. Here, NNs, in 
particular differentiable models, can serve as emulators of compute-intensive modules in 
ESP simulations, thus allowing for conducting efficient and effective UQ and parameter 
estimation.  
 

 

11.2  State-of-the-Science 
 
In order to fully exploit the abilities of upcoming NN and AI capabilities, advances have been 
made on various fronts, even though significant challenges remain. With the increasing 
popularity of NNs, they have been more frequently used in the Earth sciences for prediction 
(Bonavita et al. 2021), pattern recognition (Camps-Valls et al. 2021), classification (Srivastava, 
Nemani, and Steinhaeuser 2017), and uncertainty quantification (Vandal et al. 2018). NNs, in 
particular DL models, have found broad applicability for predicting groundwater levels 
(Srivastava, Nemani, and Steinhaeuser 2017; Müller et al. 2021), water quality (Solanki, 
Agrawal, and Khare 2015), etc. In the literature, DL models have been shown to be excellent 
replacements of parameterizations (Chattopadhyay, Subel, and Hassanzadeh 2020). DL has been 
used to represent subgrid processes in climate models (Rasp, Pritchard, and Gentine 2018); deep-
learned process parameterizations have been shown to provide better representations of turbulent 
heat fluxes in hydrologic models (Bennett and Nijssen 2021); stochastic deep learning 
parameterizations have been used in ocean momentum forcing (Guillaumin and Zanna 2021) 
(see Figure 11-2). DL models have the advantage that, once trained, they can make predictions 
significantly faster than parametrizations (see, e.g., Brajard et al. 2021). Moreover, when directly 
trained on observation data, DL models can achieve higher prediction accuracy than 
parametrizations (Yuval and O’Gorman 2020), and they can enable the development of new 
parametrizations from long observation records (Yimin Liu, Sun, and Durlofsky 2019). Most 
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applications of NNs in the Earth sciences are, however, still experimental, with practitioners 
often trying out different types of NN models. In order to select the best NN for a given 
application, objective model performance metrics for comparing different models are needed. 
These objectives must align with the science goals, that is, the widely used Euclidean norm may 
not be suitable for all applications. A recent paper (Belkin et al. 2019) attempted to reconcile 
current versus classical practices of deep learning with the bias-variance trade-off. Recent 
research in developing predictive insights with Earth system models, including for ocean-
atmosphere-land coupling, have attempted to use explainable deep learning (Yumin Liu et al. 
2022). Often, only a handful of models are tried and compared due to the computational cost 
required for training, and thus suboptimal solutions are often used. Moreover, most DL 
deployments have not been performed on operational resolutions, for example, in the 
Weatherbench project (Rasp et al. 2020). 
 

 
Figure 11-2. Ocean Model (CM2.6/GFDL): Stochastic parameterization with convolutional neural network 
(CNN) showed that subgrid momentum forcing can be generated with macroscale surface velocities 
(Source: Reproduced from Guillaumin and Zanna 2021 under Creative Commons CC BT 4.0). 
 
The need for R&D has also been appreciated in terms of data acquisition and data availability. 
For example, the ARM (Atmospheric Radiation Measurement) facility is just beginning to 
intensify its activities, including improving their algorithms for filling in missing data, 
classification, and anomaly detection. NASA synchronizes satellite data to enable downstream 
emulation, including Bayesian deep learning, GANs, and VAEs. However, most of the data 
processing does not take place on-satellite, but rather at HPC centers, making an adaptive data 
collection approach hard. 
 
NNs were employed to downscale climate variables circumventing the need for reanalysis 
(Yumin Liu, Ganguly, and Dy 2020; Vandal et al. 2018). Another major use case of NNs in 
climate modeling is the construction of computationally inexpensive surrogates, or emulators, for 
studies that otherwise require prohibitively many model simulations, such as global sensitivity 
analysis, model calibration, or uncertainty quantification. A supervised ML is carried out using 
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perturbed parameter ensembles as training sets to build highly parameterized NNs as 
approximations of input-output relationships in climate models or parts thereof. For example, 
Scher (2018) used deep learning to emulate the complete physics and dynamics of a simple 
general circulation model. Another example of NN surrogate construction is in Lu and Ricciuto 
(2019), where the authors developed NN surrogates for principal components of E3SM land 
model outputs. Surrogate modeling has also been applied in a classification context in Prabhat et 
al. (2021). The authors trained an NN to emulate hand-drawn atmospheric river labels. A major 
challenge as well as an opportunity in NN surrogate modeling is ensuring that physical principles 
are respected, such as, for example, positivity, conservation laws, and output QoI relations. In 
this regard, the state-of-the-art scientific ML methods generally belong to two classes: (1) soft 
constraints that penalize NN training for violation of physical constraints, and (2) hard 
constraints that enforce the constraints exactly by the choice of NN architecture (Karpatne et al. 
2017). A popular framework for soft constraints is the physics-informed NNs (PINNs), 
pioneered by Raissi, Perdikaris, and Karniadakis (2019) where boundary conditions of partial 
differential equations form the penalty during the NN learning of the state evolution. Hard 
constraints, on the other hand, are less straightforward to implement and remain problem 
specific. Beucler et al. (2019) have proposed NN architectural changes to enforce energy 
conservation and further developed the work to incorporate general analytical constraints 
(Beucler et al. 2021). 
 
Another promising avenue of NN application to climate is discovering or learning governing 
equations, such as learning ocean mesoscale closures in Zanna and Bolton (2020). Furthermore, 
two NN flavors are particularly well suited for ESP application due to the spatiotemporal nature 
of Earth system model output quantities of interest. These are recurrent NNs (RNNs) that are 
built to handle temporal predictions and forecasts (Vandal et al. 2017; Shen, Liu, and Wang 
2021; Xu et al. 2020; Lees et al. 2021; Yu et al. 2021) and convolutional NNs (CNNs) that 
efficiently target spatial relationships and patterns (Ise and Oba 2019; Chattopadhyay, 
Hassanzadeh, and Pasha 2020; Weyn, Durran, and Caruana 2020; Steininger et al. 2020; Baño-
Medina, Manzanas, and Gutiérrez 2021). Finally, generative modeling approaches, such as 
GANs (Besombes et al. 2021; Klemmer et al. 2021; Wang, Tang, and Gentine 2021) and VAEs 
(Tibau Alberdi et al. 2018; Scher 2018; Mooers et al. 2020; Zadrozny et al. 2021) have 
demonstrated early promise in the Earth sciences (e.g., Ravuri et al. 2021). The VAEs, in 
particular, show significant potential via their ability to compactly represent and reproduce the 
climate state via careful construction of a nonlinear latent space. 
 

11.3  Experimental, Data, and Modeling Opportunities 
 
There are multiple opportunities to improve and accelerate the state of the art of exploiting NNs 
for advancing ESP. First, in collaboration with agencies such as DOE ARM or NASA, 
investments must be made for conducting field experiments in data-poor regions, such as the 
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arctic. Local conditions and geography may pose accessibility issues that could potentially be 
overcome with autonomous data collection technology, such as drones. As shown in Figure 1 
from Reichstein et al. (2019) data from a variety of sources must be integrated. If multiple 
sensors collect the same type of data, then differences in the provided data products (le Coz and 
van de Giesen 2020) could be an indicator of data uncertainties that can then be exploited in 
parameter estimation and UQ tasks for ESP simulation models. For data-poor applications, there 
is also an opportunity to create synthetic data (e.g., by resampling NNs such as GANs and 
VAEs) or to develop transfer learning approaches that allow us to generate data at an 
undersampled area by using NN models that were trained on similar data-rich areas.  
 
When the goal is to build and use NNs as emulators, relevant data can be generated using ESMs. 
In particular, when extreme events are of interest, there could be opportunities to preferentially 
sample data from the tail ends of the distributions. Data should be collected and generated with 
the FAIR principles (Findability, Accessibility, Interoperability, Reuse) in mind, which will also 
enable the development of AI benchmarks for ESP applications. While there are several common 
benchmarks for ML in computer vision (Venkata et al. 2009; L. Deng 2012; J. Deng et al. 2009), 
it is evident that scientific ML as well as UQ generally lack such datasets. In particular, ESMs 
could use established datasets with unified formatting, both from the modeling side and from 
observational campaigns (Collier et al. 2018), to help hone scientific ML algorithms for 
performance and predictive skill improvements.  

 

Research opportunities also exist on the modeling side. This includes the improvement of 
weather and regional climate simulations, the development of model simulation “testbeds” of 
varying complexity, neural processing of multiscale temporal and spatial processes with UQ, and 
the enabling of interpretability (see Figure 11-3), NNs for causal inference engine testing, NNs 
as computationally tractable emulators of expensive simulations, and NNs in connection with 
active learning strategies to tell us which data to collect in order to reduce model predictive 
uncertainty and improve our trust in model predictions. 
 

 
Figure 11-3. DL models for enabling interpretability of data and supporting decision-making 
(Source: Reproduced from Campos-Taberner et al. 2020 under Creative Commons CC BY 4.0). 
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11.4  Research Priorities 
 
There are a multitude of complementary angles and approaches that can be taken to address 
NN4ESP challenges.  
 
The science barriers they must address are the “constrained nonstationarity” issues outlined 
above, the heterogeneity and complex nonlinearities of the processes involved in Earth system 
modeling, and the missing understanding of certain ESPs. Advancements in NNs and their usage 
and in physics modeling must address the issues with extreme values (extreme events) and 
distributions that are non-Gaussian. The lack of observational data of extreme events makes this 
difficult, but the advance of learning models that do not make assumptions about underlying 
Gaussianity, such as normalizing flows, have the potential to play an important role to further 
our understanding and prediction ability of extremes. A second urgent need and research priority 
should be in accurately predicting regional changes, tipping points, and knock-on effects, which 
can span a large variety of spatial and temporal scales. This will become increasingly important 
for making lasting infrastructure investments in the face of a changing climate.  
 
Research priorities should also focus on the development of theoretical guarantees for NN model 
performance. This is a necessary step for building trust in their predictions and for motivating 
their use as part of decision and policymaking frameworks (rather than using NNs as magic 
wands). Together with performance guarantees, we need uncertainty quantification of the NN 
predictions. Uncertainty can here arise due to multiple factors, including from the data and the 
model choice, and ideally different sources of uncertainty can be controlled independently of 
each other. It is also important to identify the limits of prediction ability of NNs, ESM 
simulations, parameterizations, and hybrid models, in particular with regard to extreme events 
that have not yet been observed: when and which model should be used and trusted? 
Furthermore, developments are needed to endow NN models with expert knowledge and physics 
information such as conservation laws and constraints on physics process interactions. The 
currently widely used approach of adding penalties to the NN model’s loss function (soft 
constraints) cannot capture these constraints well, and there is no guarantee that the final trained 
NN model satisfies the constraints.  
 
Another research priority should lie in the development of tighter collaborations between domain 
scientists, mathematicians, and computer scientists to enable (semi-)automated workflows for 
efficiently using and tuning NN models. In several scientific publications, the authors do not 
report on how their DL model architectures were chosen (Rahmani et al. 2021). Although several 
tools for hyperparameter optimization of DL models exist (Yang and Shami 2020), they are often 
not used by practitioners, perhaps because of the learning curve associated with using the tools or 
not knowing they exist. Further research is needed in the development of tools that allow for the 
extraction of causal relationships and mechanisms, and that offer robust interpretability and 
explainability of the NN model outcomes. Sustainable software development practices are 
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needed as much as community data standards for “AI-ready” data that are created with FAIR 
principles in mind. Model and data repositories are needed to allow the reproducibility of 
scientific analyses. Currently, if not given exactly the same NN model and data, results cannot be 
reproduced, leading to questions about whether the reported results are robust and thus support 
any of the conclusions drawn. Scientific benchmarks of varying complexity must be developed 
together with objective comparison metrics in order to provide a comparison of NN model and 
hybrid model performance. Simulation models and learning algorithms must be developed such 
that they can exploit future HPC facilities. Taken together with the FAIR principles, containers 
(e.g., docker) are sometimes employed. However, depending on the size of the NN model and 
the datasets, this approach for achieving reproducible results may not be sustainable either.  
 
Last, another research priority lies in the data challenges. Some applications are data-rich and 
others are data-poor. NN models are known to require vast amounts of data in order not to suffer 
from overfitting, but not all applications satisfy this necessity. Guidance is required in order to 
decide when to use which type of learning model (Gaussian process models, NN models). 
Transfer learning has shown promise when transitioning from a big data to a small data scenario. 
Questions arise regarding when a model trained for a data-rich region has no longer any 
predictive ability when transferred to a data-poor region. There may also be benefits in 
iteratively augmenting datasets with new measurements. NN models may help us to motivate 
additional data collection by providing a value for new data, which could be measured in reduced 
model uncertainty, for example.  
 

11.5  Short-term (<5 years), 5-year, and 10-year Goals 
 
In the short term (less than 5 years), research efforts should focus on the development of data 
repositories, simulation testbeds, and effective benchmarks. Active learning strategies as often 
used in optimization and uncertainty quantification should be enhanced and applied to ESP 
models in data collection and calibration tasks. Progress can and must be made in the adoption of 
NN architecture optimization and the development of objective comparison metrics. Extreme 
events and non-Gaussian data distributions must be given more consideration, and developments 
of UQ methods for NNs that do not rely on Gaussian assumptions are needed. Attention must 
also be paid to regional changes, which can span large timescales. NNs that are able to ingest 
these long time series and provide predictions of future regional changes and predict the nearing 
of tipping points are essential to provide decision makers with means for effective management 
strategies.  
 
The research focus in the medium term should be on the development of interpretable and 
robust DL models. Causal inference and transfer learning methods must be improved in order to 
enable a broader applicability of the models. UQ of NN model predictions are lacking and must 
be developed. When using NN models to replace compute-intensive parts of mechanistic 
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simulation models, we need the ability to propagate uncertainty through the hybrid-models to 
better understand the final variability of the predictions. Uncertainty attribution is equally 
important, and methods must be developed that can shed light on the sources of uncertainty in 
the model chain, which will thus allow us to quantify and reduce it. For scalability, nonlinear 
dimension reduction methods are needed.  
 
In the long term, many of the research topics outlined above should be further developed and 
refined. In addition, theoretical guarantees and generalization bounds on NN/ML for ESP and 
theoretical guarantees for hybrid physics-NN combinations are needed to improve trust in DL 
models. 

11.6  References  
 

Baño-Medina, Jorge, Rodrigo Manzanas, and José Manuel Gutiérrez. 2021. “On the Suitability of 
Deep Convolutional Neural Networks for Continental-Wide Downscaling of Climate Change 
Projections.” Climate Dynamics 57 (11): 2941–51. https://doi.org/10.1007/s00382-021-05847-0. 

Belkin, Mikhail, Daniel Hsu, Siyuan Ma, and Soumik Mandal. 2019. “Reconciling Modern Machine-
Learning Practice and the Classical Bias-Variance Trade-Off.” Proceedings of the National 
Academy of Sciences 116 (32): 15849–54. https://doi.org/10.1073/pnas.1903070116. 

Bennett, Andrew, and Bart Nijssen. 2021. “Deep Learned Process Parameterizations Provide Better 
Representations of Turbulent Heat Fluxes in Hydrologic Models.” Water Resources Research 57 
(5): e2020WR029328. https://doi.org/https://doi.org/10.1029/2020WR029328. 

Besombes, C, O Pannekoucke, C Lapeyre, B Sanderson, and O Thual. 2021. “Producing Realistic 
Climate Data with Generative Adversarial Networks.” Nonlinear Processes in Geophysics 28 
(3): 347–70. https://doi.org/10.5194/npg-28-347-2021. 

Beucler, Tom, Michael Pritchard, Stephan Rasp, Jordan Ott, Pierre Baldi, and Pierre Gentine. 2021. 
“Enforcing Analytic Constraints in Neural Networks Emulating Physical Systems.” Physical 
Review Letters 126 (9): 98302. https://doi.org/10.1103/PhysRevLett.126.098302. 

Beucler, Tom, Stephan Rasp, Michael Pritchard, and Pierre Gentine. 2019. “Achieving Conservation 
of Energy in Neural Network Emulators for Climate Modeling,” June. 
https://doi.org/10.48550/arxiv.1906.06622. 

Bonavita, Massimo, Rossella Arcucci, Alberto Carrassi, Peter Dueben, Alan J Geer, Bertrand le Saux, 
Nicolas Longépé, Pierre-Philippe Mathieu, and Laure Raynaud. 2021. “Machine Learning for 
Earth System Observation and Prediction.” Bulletin of the American Meteorological Society 102 
(4): E710–16. https://doi.org/10.1175/BAMS-D-20-0307.1. 

Brajard, Julien, Alberto Carrassi, Marc Bocquet, and Laurent Bertino. 2021. “Combining Data 
Assimilation and Machine Learning to Infer Unresolved Scale Parametrization.” Philosophical 
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379 
(2194): 20200086. https://doi.org/10.1098/rsta.2020.0086. 

Campos-Taberner, Manuel, Francisco Javier García-Haro, Beatriz Martínez, Emma Izquierdo-
Verdiguier, Clement Atzberger, Gustau Camps-Valls, and María Amparo Gilabert. 2020. 



 

250 
 

“Understanding Deep Learning in Land Use Classification Based on Sentinel-2 Time Series.” 
Scientific Reports 10 (1): 17188. https://doi.org/10.1038/s41598-020-74215-5. 

Camps‐Valls, Gustau, Devis Tuia, Xiao Xiang Zhu, and Markus Reichstein, eds. 2021. Deep 
Learning for the Earth Sciences. Wiley. https://doi.org/10.1002/9781119646181. 

Chattopadhyay, Ashesh, Pedram Hassanzadeh, and Saba Pasha. 2020. “Predicting Clustered Weather 
Patterns: A Test Case for Applications of Convolutional Neural Networks to Spatio-Temporal 
Climate Data.” Scientific Reports 10 (1): 1317. https://doi.org/10.1038/s41598-020-57897-9. 

Chattopadhyay, Ashesh, Adam Subel, and Pedram Hassanzadeh. 2020. “Data-Driven Super-
Parameterization Using Deep Learning: Experimentation With Multiscale Lorenz 96 Systems 
and Transfer Learning.” Journal of Advances in Modeling Earth Systems 12 (11): 
e2020MS002084. https://doi.org/https://doi.org/10.1029/2020MS002084. 

Collier, Nathan, Forrest M Hoffman, David M Lawrence, Gretchen Keppel-Aleks, Charles D Koven, 
William J Riley, Mingquan Mu, and James T Randerson. 2018. “The International Land Model 
Benchmarking (ILAMB) System: Design, Theory, and Implementation.” Journal of Advances in 
Modeling Earth Systems 10 (11): 2731–54. 
https://doi.org/https://doi.org/10.1029/2018MS001354. 

Coz, Camille le, and Nick van de Giesen. 2020. “Comparison of Rainfall Products over Sub-Saharan 
Africa.” Journal of Hydrometeorology 21 (4): 553–96. https://doi.org/10.1175/JHM-D-18-
0256.1. 

Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. “ImageNet: A Large-
Scale Hierarchical Image Database.” In 2009 IEEE Conference on Computer Vision and Pattern 
Recognition, 248–55. https://doi.org/10.1109/CVPR.2009.5206848. 

Deng, Li. 2012. “The MNIST Database of Handwritten Digit Images for Machine Learning Research 
[Best of the Web].” IEEE Signal Processing Magazine 29 (6): 141–42. 
https://doi.org/10.1109/MSP.2012.2211477. 

Guillaumin, Arthur P, and Laure Zanna. 2021. “Stochastic-Deep Learning Parameterization of Ocean 
Momentum Forcing.” Journal of Advances in Modeling Earth Systems 13 (9): e2021MS002534. 
https://doi.org/https://doi.org/10.1029/2021MS002534. 

Ise, Takeshi, and Yurika Oba. 2019. “Forecasting Climatic Trends Using Neural Networks: An 
Experimental Study Using Global Historical Data.” Frontiers in Robotics and AI 6. 
https://www.frontiersin.org/article/10.3389/frobt.2019.00032. 

Karpatne, Anuj, Gowtham Atluri, James H Faghmous, Michael Steinbach, Arindam Banerjee, Auroop 
Ganguly, Shashi Shekhar, Nagiza Samatova, and Vipin Kumar. 2017. “Theory-Guided Data 
Science: A New Paradigm for Scientific Discovery from Data.” IEEE Transactions on 
Knowledge and Data Engineering 29 (10): 2318–31. 
https://doi.org/10.1109/TKDE.2017.2720168. 

Klemmer, Konstantin, Sudipan Saha, Matthias Kahl, Tianlin Xu, and Xiao Xiang Zhu. 2021. 
“Generative Modeling of Spatio-Temporal Weather Patterns with Extreme Event Conditioning,” 
April. https://doi.org/10.48550/arxiv.2104.12469. 



 

251 
 

Lees, T, S Reece, F Kratzert, D Klotz, M Gauch, J de Bruijn, R Kumar Sahu, P Greve, L Slater, and S 
Dadson. 2021. “Hydrological Concept Formation inside Long Short-Term Memory (LSTM) 
Networks.” Hydrology and Earth System Sciences Discussions 2021: 1–37. 
https://doi.org/10.5194/hess-2021-566. 

Liu, Yimin, Wenyue Sun, and Louis Durlofsky. 2019. “A Deep-Learning-Based Geological 
Parameterization for History Matching Complex Models.” Mathematical Geosciences 51 
(March). https://doi.org/10.1007/s11004-019-09794-9. 

Liu, Yumin, Kate Duffy, Jennifer G. Dy, and Auroop R. Ganguly. 2022. “Explainable Deep Learning 
for Insights in El Nino and River Flows,” January. https://doi.org/10.48550/arxiv.2201.02596. 

Liu, Yumin, Auroop R Ganguly, and Jennifer Dy. 2020. “Climate Downscaling Using YNet: A Deep 
Convolutional Network with Skip Connections and Fusion.” In Proceedings of the 26th ACM 
SIGKDD International Conference on Knowledge Discovery &amp; Data Mining, 3145–53. 
KDD ’20. New York, NY, USA: Association for Computing Machinery. 
https://doi.org/10.1145/3394486.3403366. 

Lu, D, and D Ricciuto. 2019. “Efficient Surrogate Modeling Methods for Large-Scale Earth System 
Models on Machine-Learning Techniques.” Geoscientific Model Development 12 (5): 1791–
1807. https://doi.org/10.5194/gmd-12-1791-2019. 

Mooers, Griffin, Jens Tuyls, Stephan Mandt, Michael Pritchard, and Tom Beucler. 2020. “Generative 
Modeling for Atmospheric Convection,” July. https://doi.org/10.48550/arxiv.2007.01444. 

Müller, Juliane, Jangho Park, Reetik Sahu, Charuleka Varadharajan, Bhavna Arora, Boris 
Faybishenko, and Deborah Agarwal. 2021. “Surrogate Optimization of Deep Neural Networks 
for Groundwater Predictions.” Journal of Global Optimization 81 (1): 203–31. 
https://doi.org/10.1007/s10898-020-00912-0. 

Prabhat, K Kashinath, M Mudigonda, S Kim, L Kapp-Schwoerer, A Graubner, E Karaismailoglu, et 
al. 2021. “ClimateNet: An Expert-Labeled Open Dataset and Deep Learning Architecture for 
Enabling High-Precision Analyses of Extreme Weather.” Geoscientific Model Development 14 
(1): 107–24. https://doi.org/10.5194/gmd-14-107-2021. 

Rahmani, Farshid, Chaopeng Shen, Samantha Oliver, Kathryn Lawson, and Alison Appling. 2021. 
“Deep Learning Approaches for Improving Prediction of Daily Stream Temperature in Data-
Scarce, Unmonitored, and Dammed Basins.” Hydrological Processes 35 (11): e14400. 
https://doi.org/https://doi.org/10.1002/hyp.14400. 

Raissi, M, P Perdikaris, and G E Karniadakis. 2019. “Physics-Informed Neural Networks: A Deep 
Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial 
Differential Equations.” Journal of Computational Physics 378: 686–707. 
https://doi.org/https://doi.org/10.1016/j.jcp.2018.10.045. 

Rasp, Stephan, Peter D Dueben, Sebastian Scher, Jonathan A Weyn, Soukayna Mouatadid, and Nils 
Thuerey. 2020. “WeatherBench: A Benchmark Data Set for Data-Driven Weather Forecasting.” 
Journal of Advances in Modeling Earth Systems 12 (11): e2020MS002203. 
https://doi.org/https://doi.org/10.1029/2020MS002203. 



 

252 
 

Rasp, Stephan, Michael S. Pritchard, and Pierre Gentine. 2018. “Deep Learning to Represent Subgrid 
Processes in Climate Models.” Proceedings of the National Academy of Sciences of the United 
States of America 115 (39): 9684–89. 
https://doi.org/10.1073/PNAS.1810286115/SUPPL_FILE/PNAS.1810286115.SAPP.PDF. 

Ravuri, Suman, Karel Lenc, Matthew Willson, Dmitry Kangin, Remi Lam, Piotr Mirowski, Megan 
Fitzsimons, et al. 2021. “Skilful Precipitation Nowcasting Using Deep Generative Models of 
Radar.” Nature 597 (7878): 672–77. https://doi.org/10.1038/s41586-021-03854-z. 

Reichstein, Markus, Gustau Camps-Valls, Bjorn Stevens, Martin Jung, Joachim Denzler, Nuno 
Carvalhais, and Prabhat. 2019. “Deep Learning and Process Understanding for Data-Driven 
Earth System Science.” Nature 566 (7743): 195–204. https://doi.org/10.1038/s41586-019-0912-
1. 

Scher, S. 2018. “Toward Data-Driven Weather and Climate Forecasting: Approximating a Simple 
General Circulation Model With Deep Learning.” Geophysical Research Letters 45 (22): 12, 
612–16, 622. https://doi.org/https://doi.org/10.1029/2018GL080704. 

Shen, Jiangrong, Jian K Liu, and Yueming Wang. 2021. “Dynamic Spatiotemporal Pattern 
Recognition With Recurrent Spiking Neural Network.” Neural Computation 33 (11): 2971–95. 
https://doi.org/10.1162/neco_a_01432. 

Solanki, Archana, Himanshu Agrawal, and Kanchan Khare. 2015. “Predictive Analysis of Water 
Quality Parameters Using Deep Learning.” International Journal of Computer Applications 125 
(September): 29–34. https://doi.org/10.5120/ijca2015905874. 

Srivastava, Ashok N., Ramakrishna Nemani, and Karsten Steinhaeuser, eds. 2017. Large-Scale 
Machine Learning in the Earth Sciences. Boca Raton : Taylor & Francis, 2017. | Series: 
Chapman & Hall/CRC data mining & knowledge discovery series ; 42 | “A CRC title, part of the 
Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of 
T&F Informa plc.”: Chapman and Hall/CRC. https://doi.org/10.4324/9781315371740. 

Steininger, Michael, Daniel Abel, Katrin Ziegler, Anna Krause, Heiko Paeth, and Andreas Hotho. 
2020. “Deep Learning for Climate Model Output Statistics,” December. 
https://doi.org/10.48550/arxiv.2012.10394. 

Tibau Alberdi, Xavier-Andoni, Christian Requena-Mesa, Christian Reimers, Joachim Denzler, 
Veronika Eyring, Markus Reichstein, and Jakob Runge. 2018. “SupernoVAE : VAE Based 
Kernel PCA for Analysis of Spatio-Temporal Earth Data.” In: 
https://www.researchgate.net/publication/330984865_SupernoVAE_VAE_based_kernel_PCA_f
or_analysis_of_spatio-temporal_Earth_data. 

Vandal, Thomas, Evan Kodra, Jennifer Dy, Sangram Ganguly, Ramakrishna Nemani, and Auroop R 
Ganguly. 2018. “Quantifying Uncertainty in Discrete-Continuous and Skewed Data with 
Bayesian Deep Learning.” In Proceedings of the 24th ACM SIGKDD International Conference 
on Knowledge Discovery &amp; Data Mining, 2377–86. KDD ’18. New York, NY, USA: 
Association for Computing Machinery. https://doi.org/10.1145/3219819.3219996. 

Vandal, Thomas, Evan Kodra, Sangram Ganguly, Andrew Michaelis, Ramakrishna Nemani, and 
Auroop R Ganguly. 2017. “DeepSD: Generating High Resolution Climate Change Projections 



 

253 
 

through Single Image Super-Resolution.” In Proceedings of the 23rd ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining, 1663–72. KDD ’17. New 
York, NY, USA: Association for Computing Machinery. 
https://doi.org/10.1145/3097983.3098004. 

Venkata, Sravanthi Kota, Ikkjin Ahn, Donghwan Jeon, Anshuman Gupta, Christopher Louie, 
Saturnino Garcia, Serge Belongie, and Michael Bedford Taylor. 2009. “SD-VBS: The San Diego 
Vision Benchmark Suite.” In 2009 IEEE International Symposium on Workload 
Characterization (IISWC), 55–64. https://doi.org/10.1109/IISWC.2009.5306794. 

Wang, Cunguang, Guoqiang Tang, and Pierre Gentine. 2021. “PrecipGAN: Merging Microwave and 
Infrared Data for Satellite Precipitation Estimation Using Generative Adversarial Network.” 
Geophysical Research Letters 48 (5): e2020GL092032. 
https://doi.org/https://doi.org/10.1029/2020GL092032. 

Weyn, Jonathan A, Dale R Durran, and Rich Caruana. 2020. “Improving Data-Driven Global Weather 
Prediction Using Deep Convolutional Neural Networks on a Cubed Sphere.” Journal of 
Advances in Modeling Earth Systems 12 (9): e2020MS002109. 
https://doi.org/https://doi.org/10.1029/2020MS002109. 

Xu, Wei, Yanan Jiang, Xiaoli Zhang, Yi Li, Run Zhang, and Guangtao Fu. 2020. “Using Long Short-
Term Memory Networks for River Flow Prediction.” Hydrology Research 51 (6): 1358–76. 
https://doi.org/10.2166/nh.2020.026. 

Yang, Li, and Abdallah Shami. 2020. “On Hyperparameter Optimization of Machine Learning 
Algorithms: Theory and Practice.” Neurocomputing 415: 295–316. 
https://doi.org/https://doi.org/10.1016/j.neucom.2020.07.061. 

Yu, M, F Xu, W Hu, J Sun, and G Cervone. 2021. “Using Long Short-Term Memory (LSTM) and 
Internet of Things (IoT) for Localized Surface Temperature Forecasting in an Urban 
Environment.” IEEE Access 9: 137406–18. https://doi.org/10.1109/ACCESS.2021.3116809. 

Yuval, Janni, and Paul A O’Gorman. 2020. “Stable Machine-Learning Parameterization of Subgrid 
Processes for Climate Modeling at a Range of Resolutions.” Nature Communications 11 (1): 
3295. https://doi.org/10.1038/s41467-020-17142-3. 

Zadrozny, Bianca, Campbell D. Watson, Daniela Szwarcman, Daniel Civitarese, Dario Oliveira, 
Eduardo Rodrigues, and Jorge Guevara. 2021. “A Modular Framework for Extreme Weather 
Generation,” February. https://arxiv.org/abs/2102.04534. 

Zanna, Laure, and Thomas Bolton. 2020. “Data-Driven Equation Discovery of Ocean Mesoscale 
Closures.” Geophysical Research Letters 47 (17): e2020GL088376. 
https://doi.org/https://doi.org/10.1029/2020GL088376. 
  
 
 
  



 

254 
 

12  Surrogate Models and Emulators 

Authors: Kenny Chowdhary (SNL), Nathan Urban (BNL), Dan Lu (ORNL), Earl Lawrence 
(LANL), Vanessa Lopez-Marrero (BNL), Panagiotis Stinis (PNNL), Draguna Vrabie (PNNL), 
Shinjae Yoo (BNL), Mira Berdahl (Univ. of Washington), Chad Sockwell (SNL), Simon Topp 
(USGS), Tarun Verma (Princeton Univ.) 
 
A cross-cutting theme in artificial intelligence and machine learning for Earth system 
predictability is the concept of emulators or surrogate models. These terms, used in different 
communities, refer to replacing a complex representation of a physical system (e.g., a 
computationally expensive computer model) with a simpler and computationally efficient 
representation. This representation is often, but need not always be, a data-driven statistical or 
machine learning model. Reduced order modeling is a related concept that may refer to 
mechanistic or dynamical surrogates, and digital twins may refer to data-driven or physics-based 
simulators of real-world observations or instruments. 
 
Emulators have a variety of applications: 
 

● Fast surrogates for uncertainty quantification (enabling large ensemble studies) 
● Emulation of Earth system processes for scientific understanding and model 

improvement 
● Generative models of synthetic data for impacts and predictability studies 
● Reduced models for integrated multisector dynamics modeling 
● Model-data fusion, multimodel/multimodal synthesis, downscaling, and bias correction 
● Surrogates for observing systems or instrument simulators 
● Surrogates for scientific workflows or computational pipelines 

 
In what follows, we outline the three main challenges with surrogate modeling for Earth system 
predictability (ESP), followed by a discussion of the current state of the science, future data and 
research opportunities, and a timeline of long- and short-term goals. 
 

12.1  Grand Challenges 
 

12.1.1  Data and Computational Challenges 
 
While individual samples of simulation or observation data (e.g., Earth system model [ESM] 
state vectors) may contain millions of degrees of freedom, the total number of samples or 
training set sizes (number of statistically independent snapshots, e.g., days, months, or simulation 
runs) are oftentimes orders of magnitude smaller (e.g., dozens or even less for very high-
resolution model runs). This makes emulating data at multiple scales in space and time very 
difficult. Furthermore, data can be highly dynamic (e.g., turbulent flows) and not easily reducible 
(e.g., projection onto some fixed basis). Therefore, it is essential that (1) our training methods 
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can perform well in both data-sparse and data-rich environments; (2) are scalable with high-
dimensional quantities of interest, large training sets, and multimodal data; and (3) we employ 
more computational resources to generate larger training set sizes.  
 

12.1.2  Uncertainty Quantification 
 
Can we build surrogates for scenarios that are not (well) represented in training data: different 
model structures (e.g., parameterization schemes), different boundary conditions, or rare or no-
analog events, etc.? Many surrogate techniques that take a purely data-driven approach are 
physics-agnostic, which can lead to predictions that are not realistic. How do we hybridize 
physics and ML machinery to improve model predictability, leveraging existing methods, tools, 
and software? Furthermore, can we characterize or bound the uncertainties in such an 
extrapolation, especially in cases where accuracy is poor? We need surrogates that can account 
for multiple sources and types of uncertainty (parametric, boundary condition, initial condition, 
model structural error/multimodel).  
 

12.1.3  Actionable, Trustworthy Surrogates 
 
As a natural follow-up to the previous discussion, building actionable and trustworthy surrogates 
that are both meaningful and interpretable is of great importance for future advancements in 
Earth system predictability. This challenge, perhaps, represents the culmination of the previous 
two, where generalizability is crucial. We need surrogates that can adapt, for example, correcting 
biases and scale mismatches, imputing missing data, combining hierarchies of models and data, 
fusing multimodel/multimodal data, adding prediction error bars, etc. While there is no one-size-
fits-all surrogate method, we need approaches that are reproducible and generalizable to more 
than a single application. To accomplish this, we need more automated training tools and meta-
learning approaches for surrogate construction that can adapt to, for example, data-rich or data-
sparse environments. Furthermore, in a very sparse data setting, it may even be necessary to 
combine expert decision-making with ML and/or physics information for the greatest impact. 
 

12.2  State of the Science 
 
In this section, we discuss past and current approaches in surrogate modeling for ESP. This is an 
active area of research, and while many advancements have been made, there are common 
pitfalls and roadblocks, such as resource limitations, lack of reproducibility and generalization, 
inadequate quantification of uncertainty, and interpretability issues. Nonetheless, progress is 
ongoing, and it is gaining speed given the advent of scalable software tools and the sheer 
momentum of the machine learning world. 
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12.2.1  Reduced Order Modeling (ROM) 
 
ROMs represent a class of surrogates that use dimension reduction techniques in combination 
with classical machine learning approaches to reduce the burden of training high-dimensional or 
multi-objective targets. They do this, primarily, by learning low-dimensional structure from 
covariance information of samples or snapshots of the solution space. There are generally two 
types of ROM approaches: (1) an intrusive approach which requires a reformulation of the 
simulation code in terms of the reduced order ROM basis, similar to a spectral or FEM approach, 
and (2) a purely data-driven ROM approach (DDROMs) where the surrogate construction is 
performed in a separate offline stage. The latter is often more practical, especially with complex 
simulation code such as those in global climate models. But like any data-driven approach, its 
accuracy is heavily dependent on the training data sample size, which requires repeated 
simulations of the underlying physical system. Lu and Riccuito (2019) have shown these 
approaches to be effective, especially in the limited data realm, applied to a simplified version of 
E3SM. Salter et al. (2019) demonstrated the scalability and accuracy of these approaches to the 
Canadian atmosphere model, CanAM4. Chowdhary et al. (2021) have successfully applied these 
surrogate techniques to high-fidelity exascale simulations in aerodynamics, which have similar 
computational resource burdens to large-scale climate models. 
 

12.2.2  Stochastic Emulators  
 
Stochastic emulators represent a different class of surrogates that provide a probabilistic, rather 
than a deterministic, prediction model. That is, the predictions are given in terms of the statistical 
properties of the system (e.g., means and variances). Perhaps the most widely known and 
commonly used stochastic emulators are Gaussian process (GP) models. They are flexible in that 
they can emulate linear trends, periodic information, wave-like behavior, etc., all by choosing an 
appropriate covariance kernel. While these approaches have been around for decades and are 
well understood, they traditionally scale poorly in the presence of large amounts of training data. 
Recent advancements, however, have broken through this barrier with the advent of scalable GP 
training methods like GPyTorch (Gardner et al. 2018). Alternatively, Bayesian neural networks 
(BNNs) and ensemble deep learning approaches represent a more modern class of stochastic 
emulators that scale very well with large amounts of data but are not as well understood. 
Ensemble deep learning methods provide a conceptually similar but alternate probabilistic 
approach by generating a suite of ensembles for the quantity of interest, similar to a random 
forest type approach. While these approaches scale well with large amounts of data, training 
these probabilistic neural network models can be cost-prohibitive for very large networks. 
Methods like variational inference techniques, which constrain the probabilistic form of the 
target to standard normal distributions, can greatly reduce this cost, but at the expense of 
explainability and expressivity. Many of these methods are aimed at quantifying epistemic 
uncertainty (such as emulator and model errors). Generative models, a different class of 
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stochastic emulator, seek to quantify aleatoric uncertainty (such as internal/chaotic natural 
variability) and sample random realizations of this uncertainty. These may include statistical 
models (Vesely et al. 2019; Link et al. 2019; Mészáros et al. 2021; Verdin et al. 2019), 
dynamical reduced models (Foster, Comeau, and Urban 2020), variational autoencoders (Tibau 
et al. 2021), and normalizing flows (Groenke, Madaus, and Monteleoni 2020). Dunbar et al. 
(2021), Berdahl et al. (2021), and Beusch, Gudmundsson, and Seneviratne (2020) have all 
utilized a Gaussian process emulator approach for the calibration of an idealized global climate 
model (GCM) and for the CISM ice sheet model, respectively (see Figure 12-1), Cleary et al. 
(2021) also proposed a calibrate-emulate-sample approach using GPs, and Watson-Parris et al. 
(2021) have released open-source software for Earth system emulation, which is built on top of 
GPyTorch. Yang, Zhang, and Karniadakis (2018) and Warner et al. (2020) have explored the 
intersection of physics-informed networks and general adversarial networks (PIGANs) for 
stochastic models in stochastic PDEs and solid mechanics, respectively. In summary, stochastic 
emulators are able to provide a measure of uncertainty and trustworthiness that their 
deterministic counterparts cannot, but at the expense of increased training time and model 
complexity. 
 

 
Figure 12-1. Gaussian process emulation for the global temperature field for four different Earth system 
models. (a) shows a simulation test run for each ESM (indexed by columns) and (b) shows two 
realizations of the emulated field (Source: Reproduced from Beusch, Gudmundsson, and Seneviratne 
2020 under Creative Commons CC BY 4.0).  
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12.2.3  Physics Informed Machine Learning 
 
Physics-informed machine learning, in general, is a type of ML technique that utilizes prior 
knowledge of the physics of a particular system to help train surrogates. In the broadest sense, 
using data generated from a physics simulation to train a surrogate or emulator is a basic 
example of a physics-informed ML approach. A more advanced and increasingly popular type of 
approach is to add physics constraints directly into the training procedure (e.g., the loss 
function). This can lead to significantly better extrapolative model performance (e.g., predicting 
events well outside the scope of the training data). The caveat is that adding physics constraints 
into the training process is not easy, especially when the constraints are in the form of 
differential equations. However, with the advent of automatic differentiation-enabled software, 
e.g., Tensorflow (Abadi et al. 2016), PyTorch (Pazske et al. 2019), and JAX (Bradbury et al. 
2018), these types of constraints, which at one point were nearly impossible to implement, are 
now fairly easy to encode. This has led to significant advancements in physics-informed neural 
networks (PINNS) (Karniadakis et al. 2021). Most of the work in this field has been concentrated 
on idealized CFD and climate simulations and has not been applied to more complex or real-
world GCMs (Beucler et al. 2019; Raissi, Perdikaris, and Karniadakis 2019), in particular, 
because of the difficulty and code-complexity of the respective systems. Kashinath et al. (2021) 
has a comprehensive survey of physics-informed machine learning methods where the key 
takeaways are the need to properly quantify uncertainty, improve interpretability, and encourage 
reproducibility. Oftentimes these approaches are too narrow in their focus and need to be built 
for broader applications and more general use.  
 

12.2.4  Multifidelity / Multiresolution Modeling  
 
Multifidelity approaches are becoming increasingly necessary when the training data sizes are 
small, oftentimes due to the heavy computational burden of state-of-the-art climate models such 
as E3SM (E3SM Project 2019). In these cases, efficient sampling approaches and adaptive 
surrogates can be used, but when data are extremely sparse, even these methods can fail. In 
extremely data-sparse settings, using data from both low-fidelity and high-fidelity simulations, 
where the former is in much greater abundance, is a better option. Fletcher, McNally, and Virgin 
(2021) and Anderson and Lucas (2018) have shown that multifidelity training is feasible and can 
lead to improvements in accuracy for CAM4 and CAM5 examples. More recent approaches by 
Liu, Pareschi, and Zhu (2021) and Xu and Narayan (2021) seek to find efficient and 
mathematically rigorous ways of learning a surrogate model with bi- or multifidelity training 
sources, but these approaches have not yet been tested on global climate models.  
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12.2.5  Neural Networks and Deep Learning  
 
Neural networks continue to play an important role in the advancement of surrogate models for 
applications in climate due to their flexibility to fit many types of quantities of interest, from 
single scalar targets to multi-objective spatially varying fields (Fletcher, McNally, and Virgin 
(2021; see Figure 12-2), the ubiquity and availability of automatic differentiation-enabled 
software tools like tensorflow (Abadi et al. 2015), and the ability to incorporate complicated 
physics constraints (Karniadakis et al. 2021). These approaches with respect to climate modeling 
are still in their infancy, and trustworthiness and interpretability can be lacking. Rasp, Pritchard, 
and Gentine (2018) have shown the feasibility of applying deep learning surrogates on a smaller 
scale to replace subgrid physics processes, but they also note difficulties when extrapolating far 
beyond the training data—a common problem with data-driven machine learning methods. For a 
more complete discussion, see Neural Networks (chapter 11).  

 
Figure 12-2. Convolutional neural network surrogate model for multitarget (spatially varying fields), 
multiresolution, and multimodal (7 different climatological fields) prediction for CESM (Source: 
Reproduced from Fletcher, McNally, and Virgin 2021 under Creative Commons CC BY 4.0). 
 

12.2.6  Automated ML and Metalearning  
 
Model tuning, hyper-parameter tuning, or meta-learning is an often-overlooked challenge in 
training a robust and trustworthy surrogate model. Without proper model tuning, for example, 
exploration of different layer widths and depths for neural network models, how do we know we 
are selecting the best model architecture for the task at hand? The most practical and clearest 
approach is through trial and error using model selection criteria such as cross-validation. This is 
oftentimes neglected, because training is much more expensive, i.e., requiring multiple fits with 
different models. Swischuk et al. (2019), Chowdhary et al. (2021), and Penwarden et al. (2021) 
are among few authors addressing this problem, and even fewer provide automated ML tools and 
software to implement methodologies such as tesuract (Chowdhary 2022). Furthermore, hyper-
parameter tuning can sometimes reveal surprising results—taking existing approaches like 
multivariate polynomial regression and showing that, in some cases, it can be competitive with 
or even better than state-of-the-art approaches like neural networks (Chowdhary 2022). 
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Automated ML and meta-learning may also result in more robust and generalizable models, 
making it a critical component of model training.  
 

12.3  Experimental, Data, and Modeling Opportunities 
 
There are three major opportunities that can lead to significant technological advances in the use 
of surrogate models for AI4ESP. First, a new paradigm must be adopted by the climate 
modeling world, in which data generation is tightly integrated with model development. 
Similar to how resources are allocated for regression and unit testing of code bases, resources 
should be strictly allocated to running perturbed parameter simulations for the purposes of 
enriching surrogate training data. Too often, running uncertainty quantification or machine 
learning studies have been low on the priority list, but this must change. The greatest advances in 
deep learning, for example, have occurred when scalable models meet huge amounts of training 
data, as with AlexNet (Krizhevsky, Sutskever, and Hinton 2017); DALL-E (Ramesh et al. 2021); 
and CLIP (Radford et al. 2021). In lieu of more training datasets, however, we should look to 
enrich existing datasets with different modes of solutions. For example, generating 
spatiotemporal data instead of time-averaged datasets would allow researchers to utilize different 
types of surrogates, such as ROM-based or operator neural networks, which could lead to 
significant improvements in understanding the dynamics of the problem (Kovachki et al. 2021; 
Lu et al. 2021) or characterization of non-parametric (e.g., structural) uncertainties (DeGennaro 
et al. 2019). 
 
But how do we determine what data to generate and which modes to collect? This brings us to 
the second major data and experimental opportunity, which is the creation of a comprehensive 
database of benchmark test problems for surrogate modeling in ESP. Upon consultation with 
ML and climate experts, and under the guidance of the FAIR (Findability, Accessibility, 
Interoperability, Reuse) principals, we should develop a suite of test problems for assessing the 
accuracy and effectiveness of different surrogate approaches. These test problems should test the 
range of surrogate models outlined in the previous State of the Science section (12.2). A unified 
test bed of experiments will also prevent overlapping discovery and progress in surrogate 
methodologies. Furthermore, this can mitigate the need to recreate methods from scratch, and 
instead, build upon existing approaches. Oftentimes surrogate approaches are developed and 
validated independently of one another, and it is difficult to make fair comparisons between 
different approaches. 
 
The third major modeling opportunity involves the implementation of adjoint-based or 
automatic/approximate derivative calculations or differentiable programming for future Earth 
system models, if at all possible. This could significantly improve surrogate construction 
methods by enabling adaptive sampling, adjoint-based error estimation (Jakeman and Wildey 
2014), parameterization learning (Yang, Aziz Bhouri, and Perdikaris 2020; Melland, Albright, 
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and Urban 2021), and utilization of ROM-based projection methods via existing software tools 
like Pressio (Rizzi et al. 2020), which could potentially speed up existing GCMs by an order of 
magnitude or more.  
 

12.4  Research Priorities 
 
In this section, we outline four main research priorities for the advancement of next-generation 
surrogate modeling for ESP.  
 

12.4.1  Scalable (HPC-exploiting) Surrogates for Very Small or Large Training Sets 
 
One of the grand challenges in Earth system predictability is that surrogate training may involve 
very small training set sizes, where ensembles are limited or even impossible, or simulation or 
observation durations are too short to provide many independent data points. Correspondingly, 
ML approaches are needed that work in the low data or data sparse regime (small training sets), 
requiring generalization from “few-shot learning” techniques. The needed advances may not 
come purely from computer science, but also from using physics knowledge as a regularization 
or constraint (knowledge-informed ML), or otherwise exploiting aspects of the problem structure 
in ML modeling and training. Surrogates with quantified uncertainties may become particularly 
important in the low-data regime. Data imputation or generative synthetic data approaches may 
be needed to augment sparse training sets, including scenarios where data are proprietary 
(situations where federated learning and differential privacy may also come into play). On the 
other end of the spectrum, the more traditional big data or data-rich regime also exists in Earth 
science, where datasets can be so large they cannot even be stored to disk, potentially requiring 
online/streaming/in situ training. 
 

12.4.2  Domain-aware Surrogate Models 
 
New types of surrogate models may be needed to tackle grand challenges related to Earth system 
predictability, customized to be either more reliable or more efficient on particular applications 
in this domain. This includes the whole scope of physics- or knowledge-informed AI, as well as 
hybrid physics-ML modeling; ML models that respect physical symmetries, conservation laws, 
locality, causality, and so on may be not only more accurate but also more efficient to train, by 
exploiting a known problem structure. “Surrogate models” in this context need not be limited to 
ML surrogates but could also be mechanistic or dynamical reduced-order models that might be 
informed or improved by ML. Completely different types of surrogates might be needed to 
model coupled natural-human systems, including the possibility of modeling decision-making 
endogenously to the model by treating humans as anticipatory, goal-seeking agents. 
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12.4.3  Information-fusing, Uncertainty-aware Surrogates 
 
Most surrogates to date are surrogates of a single information source, usually an expensive 
computer model, and (if used for uncertainty quantification) only designed to treat a single 
source of uncertainty, usually model parametric uncertainty. Surrogates will increasingly be 
asked to make projections about the real Earth system, combining information from hierarchies 
of models and data across multiple modalities, rather than simply replicating the behavior of one 
imperfect representation of the Earth system. These may extend to “digital twins” of entire 
scientific workflows or observational campaigns in order to prioritize the active collection of 
new observational or simulation data. Surrogates may be inherently probabilistic in nature, 
incorporating epistemic uncertainties (such as model error) and stochastic generative models of 
aleatoric uncertainties (such as internal or chaotic natural variability), and they may be designed 
to compose and propagate high-dimensional probability distributions across system components. 
 

12.4.4  Software Ecosystems and Workflow for Surrogate Development and Deployment  
 
To enable more extensive use of surrogate models, it will be necessary to improve workflow and 
productivity. Automated (e.g., self-tuning) machine learning and meta-learning or reinforcement 
learning approaches may reduce both developer time, particularly among non-expert domain 
scientists, as well as computational time (e.g., by devising intelligent or adaptive training 
protocols). Better user guidelines and meta-heuristics may be used to decide what type of 
surrogate would be appropriate for a given problem. Generative models or other approaches may 
be used as synthetic data augmentation or missing data imputation for training. High-level 
programming environments for surrogate model development, inspired by probabilistic 
programming languages and potentially interacting with compiler technology, may allow users to 
spend more time on problem formulation (specifying data relationships, distributional 
assumptions, physics constraints, etc.) while allowing software to generate efficient 
implementations. Software frameworks may facilitate closer integration of ML surrogates with 
physical simulation codes, including online coupled training and prediction (see Figure 12-3 for 
an example workflow for climate model calibration using GP emulators). New advances in 
interpretability and reproducibility will be needed to facilitate user trust in surrogate model 
approximations, working closely with uncertainty quantification methods to self-critique their 
trustworthiness and domain of applicability. 
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Figure 12-3. Watson-Parris et al. (2021) outline a general-purpose workflow (ESEm) for surrogate model 
calibration that can integrate into existing GCMs. Model data comes from simulations, after which a 
surrogate or emulator is used to infer model parameters for calibration (Source: Reproduced from 
Watson-Parris et al. 2021 under Creative Commons CC BY 4.0). 
 

12.5  Short-term (<5 years), 5-year, and 10-year Goals 
 
Immediate and short-term goals (< 5 years) should focus on reproducibility (publishable and 
testable code, open-source datasets) of current surrogate methodologies. This would be followed 
by the creation of interdisciplinary working groups composed of experts in both AI and climate 
science to better understand specific data needs in order to create a set of benchmark validation 
problems and datasets for surrogate model development and testing. Furthermore, these working 
groups would also help develop a taxonomy of scalable, domain-aware, and multimodal 
surrogate models under different types of model and structural uncertainties to act as a roadmap 
for long-term goals.  
 
An intermediate/5-year milestone should be the development of a comprehensive set of 
benchmark problems and datasets for validation surrogate methods in ESP. This should be 
pursued in parallel with the development and testing of rigorous surrogate methodologies that 
address the research priorities described in section 12.4, on a variety of Earth system models 
(e.g., regional, global, and/or fully coupled). Software design workflows and automated tuning 
algorithms should also be leveraged. Equally important, tighter integration between ML data 
generation and climate model development should be made, as outlined in Experimental, Data, 
and Modeling Opportunities, section 12.3. And pursuit of new numerical features like adjoint-
based derivatives and hybrid ML/physics approaches should be well underway.  
 
In the long term, somewhere near the 10-year mark, a comprehensive testbed and a rigorous 
exploration of surrogate approaches should be complete, for example, with a clearer 
understanding of the advantages, limitations, trustworthiness, and mathematical properties. In 
particular, surrogate capabilities should include multiple modalities, multiresolution/ 
multifidelity, uncertainty quantification of different structural forms, both data-sparse and data-
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rich environments, and quantifiable out-of-distribution or rare event predictions, and meta-
learning approaches would automatically select the right approach for the task at hand. 
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13.1  Introduction 
 
Artificial intelligence (AI) has the potential to revolutionize climate science by providing tools to 
bridge information from raw scientific datasets (experiments/observations/simulations) to 
machine-readable representations of scientific knowledge. Maximizing the positive impact of AI 
on climate will require going beyond a purely data-driven approach and integrating information 
and knowledge of various disparate forms of data along the way to deep human understanding of 
processes. This knowledge-informed machine learning approach, or KIML, confers several 
benefits to “traditional” data-driven learning algorithms. For example, domain knowledge can be 
used effectively to enhance data-sparse situations. These situations occur in complex systems, 
such as climate. Domain knowledge (i.e., physics constraints in terms of symmetries and 
equations) can act as a regularization for the loss function in training, leading to improved 
generalization and better performance guarantees (stability, constraints satisfaction, optimality 
conditions). Such knowledge also ensures that the learned model is consistent and respects the 
laws of physics. In addition, domain knowledge improves the interpretability of the learned 
model through parsimonious and human-readable representations. Carefully chosen prior 
information—gleaned from parameter initialization, warm-starting, or domain-informed update 
strategies—also can significantly improve the convergence of model training. 
 
Domain knowledge can be added in these various forms during multiple stages of the learning 
process. Augmenting data with this “extra” information is important because for complex 
systems, data alone may not be enough to construct good machine learning (ML) algorithms 
(predictors, classifiers, etc.). Integration of the aforementioned multimodal knowledge types can 
occur via gray box digital twins, physics-informed ML, or graphical models (among others). 
Options for integrating all such knowledge into ML models include loss functions, pretraining, 
architecture design, learning with constrained optimization solvers, ensemble/federated learning, 
meta-learning, transfer learning, and inductive/learning bias. Unsurprisingly, there is 
considerable overlap with other topics covered by this AI4ESP report, spanning knowledge 
discovery, knowledge representation, explainability, uncertainty quantification (UQ), surrogate 
models, bias, ethics (human-in-the-loop), and interfaces/standards. 
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The following considers three types of domain knowledge. Notably, there are multiple variations 
where these domain knowledge representations can be developed (Figure13-1), including: 
 

● Scientific knowledge that focuses on incorporating information about a domain captured 
in the form of various mathematical relationships (partial differential equations [PDEs], 
integro-differential equations, etc.) and constraints. 

● World knowledge that seeks to integrate information from a broader set of external data 
sources beyond traditional scientific datasets, including spatial invariances, logic rules, 
qualitative information, causal dependencies, and knowledge graphs. 

● Expert knowledge that arises from combining information across different modeling 
paradigms to simulate and predict natural phenomena with higher fidelity. This includes 
probabilistic relations and human feedback. 

 

 
Figure 13-1. Taxonomy of informed ML (Source: Pacific Northwest National Laboratory. Adapted from 
von Rueden et al. 2021). 
 

13.2  Grand Challenges 
 
Contributors in this session identified the following Grand Challenges. 
 

13.2.1 Extracting Actionable Climate Insights from Vast Open-source Data, including 
Climate Literature  
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Due to the inherent volume of literature growth, it is difficult for researchers to master all 
available climate-related information. The logical relationships or causation in climate 
communities are represented in literature text, tables, and figures. Named entities and their 
relationship findings could help to infer logical relationships. Sometimes, they are also 
represented in figures or tables. Natural language processing (NLP) and computer vision tools 
may help to extract valuable knowledge. 
 

13.2.2 Creating Causal Inference Algorithms on Climate/Earth Datasets, Which Are Often 
Sparse 
 
Causal inference algorithms in other scientific disciplines (e.g., medicine or economics) are not 
designed to scale or to detect the challenges in climate/Earth system science (ESS) data. Brute 
force application of such algorithms would either produce spurious causation or be unable to 
scale the problems. Although there is preliminary work in these areas, opportunities remain to 
further develop causal inference algorithms, including, for example, robust, nonlinear causation 
and UQ. 
 

13.2.3 Utilizing Transfer and Self-supervised Learning as Tools to Store and Incorporate 
Parsimonious Representations of Climate Data  
 
The inherent size of spatial resolution and potentially temporal context size makes it difficult to 
have a compressed representation of climate data. As the compressed representation model is 
trained on a domain, the ability to quickly adapt to a different domain without significant 
retraining would be critical for sharing the knowledge. 
 

13.2.4  Guaranteeing Faster Convergence of KIML Methods 
 
Integration of domain knowledge, while beneficial, potentially can make ML models complex 
and difficult to implement. Therefore, providing theoretical guarantees on optimality and 
constraints satisfaction and analytical bounds on convergence becomes important. While 
knowledge inclusion often can lead to lower requirements for data, theoretical estimations and 
guarantees on the amount of data are important Grand Challenge components.  
 

13.2.5  Incorporating Uncertainties and Errors in Domain Knowledge 
 
Epistemic and aleatory uncertainties from the inclusion of domain knowledge need to be 
carefully considered and propagated through the ML models. Uncertainty estimates and bounds 
on downstream inference tasks encompass an important Grand Challenge. Uncertainties are also 
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generated when knowledge is exploited for data generation purposes, which consequently leads 
to uncertainties in learned models. 
 

13.2.6  Choice of Models, ML Frameworks, and Algorithms 
 
Although there is a large body of literature regarding combining knowledge and ML methods, 
such as physics-informed neural networks (PINNs) or DeepONet, there is no guidance or “rule 
of thumb” for choosing the amount of knowledge (e.g., mathematical models), ML architectures, 
or data needed to efficiently train and infer quantities of interest (QoI). The main challenge is to 
analyze these techniques mathematically and test on a set of benchmark problems and datasets.  
 

13.2.7  Developing Standardized Benchmark Problems, Datasets, and Metrics 
 
The success of ML methods for many applications, such as image classification, stems from the 
availability of large benchmark datasets and standardized metrics to assess new algorithms on 
the test data. Currently, development of a similar set of data, benchmark problems, and 
standardized metrics that can potentially help accelerate research in this direction does not keep 
up with the fast-evolving KIML field.  
 

13.2.8  Using KIML to Discover New Physics/Mathematics/Theory 
 
Currently, KIML methods are being developed to combine knowledge, while ML methods infer 
the QoI in a physical phenomenon. Given a set of observations/data and partial knowledge, is it 
possible to discover new physics/mathematics (e.g., governing equations) that govern the 
physical phenomenon? The development of new algorithms, tools, and mathematical frameworks 
that systematically combine traditional physics with data-driven models will be needed to tackle 
this challenge.  
 

13.2.9  Augmenting Unknown Physics and Incomplete Data 
 
In disciplines such as biological and behavioral sciences, observational data are incomplete, and 
the underlying physical phenomena are not completely understood. A major challenge is to 
integrate knowledge and ML algorithms in such a way that the ML algorithm can explore design 
spaces and identify correlations, while knowledge (mathematical equations; domain expertise) 
can accurately predict system dynamics and identify causality. There are several challenges that 
KIML can address, including solving ill-posed problems, identifying missing information, 
creating surrogate models, automating/eliminating space-time discretization, supplementing 
training data, quantifying uncertainty, exploring massive datasets, elucidating unknown 
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mechanisms, preventing overfitting, minimizing data bias, and increasing rigor and 
reproducibility.  
 

13.2.10  Determining Sufficiency and Optimality of Domain Constraints in KIML Methods 
 
Another key challenge that arises is the necessity and sufficiency of knowledge, that is, how 
much knowledge is sufficient? Imposing equality and inequality constraints on the ML model, for 
example, in the form of algebraic equations, can provide feasibility and consistency checks of the 
modeled phenomena. On the other hand, inclusion of domain knowledge in the form of hard 
constraints potentially can lead to conservativeness or loss of expressivity of the ML model. New 
methods will need to be developed for integration and performance analysis of ML models with 
complex domain constraints. 
 

13.3  State of KIML Science 
 
While there has been recent work to integrate knowledge of the three categories described in the 
Introduction—namely, scientific, world, and expert knowledge—into modern ML methods, even 
more must be done to achieve the full potential for climate science. The reviews by Willard et al. 
(2020), Kashinath et al. (2021), and von Rueden et al. (2021) contain up-to-date and 
comprehensive sets of references. 
 
To ensure that KIML achieves maximum impact, additional advances in mathematics and 
computer science are needed, such as faster, scalable algorithms for mathematical optimization 
(including constrained optimization solvers), improved numerical solvers for differential 
equations, and numerical analysis (adaptivity; stability). 
 
As most climate systems of interest are based on dynamical systems theory, advances in model 
reduction for infinite dimensional systems also will be needed. Given the goal-driven nature of 
many climate KIML problems, there must be added research and development (R&D) in mixed-
precision computation, especially for training large neural network models. In addition, 
improvements to stochastic gradient descent (SGD) and more R&D involving scalable 
randomized algorithms likely will be required, along with advances in software development, 
workflow design, and data management.  
 
The following sections summarize the current state of the science for each of the preceding 
Grand Challenges.  
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13.3.1 Extracting Actionable Climate Insights from Vast Open-source Data, including 
Climate Literature 
 
Extracting information and actionable insights from vast amounts of multimodal data in the form 
of text, images, videos, equations, and scientific simulations broadly falls in the general class 
called foundation models (Bommasani et al. 2021). These models enable advanced 
functionalities, such as in-context learning through large-scale pretraining with the popular 
Transformer architecture (Vaswani et al. 2017; Devlin et al. 2018). While these models are 
trained with zero supervision on unlabeled data (via self-supervised learning), they can be easily 
adopted to solve various downstream tasks via fine-tuning. There are few attempts on developing 
multimodal foundation models to jointly learn across language and vision data, such as FLAVA 
(Singh et al. 2021) and Perceiver (Jaegle et al. 2021). For example, all relevant information can 
be fused from a domain (e.g., medical images, patient databases, and clinical text in healthcare) 
into the model pretraining. Then, this model can be adopted to solve tasks that span multiple 
modalities, such as electronic health records and medical images for clinical outcome prediction.  
 
There are potential avenues in the development of climate-related multimodal foundation models 
for intelligent transportation systems (e.g., mobile sensor data or public transit times), smart 
energy consumption systems (e.g., gas emissions or electricity consumption), and disaster 
management tools (e.g., aerial imagery or social media) (Rolnick et al. 2022). On the other hand, 
scholarly publications provide abundant data to augment the learning process in multimodal 
foundation models.  
 
Given the untenable computational and energy costs of foundation models (Strubell, Ganesh, and 
McCallum 2019), considerable work remains to be explored to adapt the technology for specific 
climate domain needs. 
 

13.3.2 Creating Causal Inference Algorithms on Climate/Earth Datasets, Which Are Often 
Sparse 
 
Climate data are essentially spatiotemporal data. Thus, spatiotemporal causal analysis 
algorithms, such as a regression-based approach, such as Granger Causality (Yao, Yoo, and Yu 
2015), information-theoretic approach (e.g., Transfer Entropy, Lobier et al. 2014), dynamic 
Bayesian approach (Ghahramani 1998), PCMCI (Runge, Nowack, et al. 2019), etc., are widely 
adapted. There are several limitations on these causal inference algorithms to apply to complex 
and nonlinear dynamics systems (i.e., non-stationary causal structure, nonlinear causal link, 
various direct/indirect lagged causal links, etc.). To overcome these limitations, some have used 
an autoencoder (Ramachandra 2019; Varando, Fernández-Torres, and Camps-Valls 2021), or 
low-rank causal structure learning has been incorporated directly to the deep learning algorithms 
(Huang, Xu, and Yoo 2019). However, still there is no single algorithm that detects complex 
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causal inference robustly. Causal inference requires careful interpretation, as well as 
understanding the limitations of each approach. Applying large-scale causal inference within the 
climate community remains in the development stage. In the interim, the climate community has 
adopted the PCMCI approach and has evaluated its effectiveness on Arctic climate (Nichol et al. 
2021) or El Niño Southern Oscillation (ENSO) (Zhang et al. 2020), while Varando, Fernández-
Torres, and Camps-Valls (2021) use Granger causal inference on autoencoder space. Some have 
evaluated the difference of causal structures between the observation and simulation, such as the 
Energy Exascale Earth System Model (E3SM), which could be a good use case for improving 
the E3SM simulation model.  
 

13.3.3 Utilizing Transfer and Self-supervised Learning Methods as Tools to Store and 
Incorporate Parsimonious Representations of Climate Data 
 
Current state of knowledge shows that the inherent size of spatial resolution and temporal 
context make it imperative to have compressed representations of climate data (Kadow, Hall, and 
Ulbrich 2020). The compressed representation models need the ability to adapt quickly to new 
domains with different spatial or temporal context without significant retraining, which is also 
critical for sharing the knowledge (Notarangelo et al. 2021). Transfer learning methods have 
shown promising results for filling observational gaps in climate model data (Hu, Zhang, and 
Zhou 2016; Notarangelo et al. 2021). Recently developed self-supervised learning (SSL) 
methods (Devlin et al. 2018) have shown the ability to capture underlying structure in data by 
masking part of the data and using the remainder for predicting the masked sample. Furthermore, 
the multiphase training strategy in SSL allows for learning a generalized data representation 
during the pre-training phase, which later can be fine-tuned for task-specific outcomes. Adapting 
such SSL architectures and multiphase strategies for transfer learning across different spatial and 
temporal contexts has the potential to vastly expand and enable more efficient, effective use of 
typically sparse data and potentially compressed models in climate science.  
 

13.3.4  Guaranteeing Faster Convergence of KIML Methods 
 
Integration of domain knowledge into ML models has been shown to provide faster solutions for 
PDEs (Raissi, Perdikaris, and Karniadakis 2019), learn surrogate models for PDEs (Li et al. 
2020), support learning with hard constraints for optimization problems (Donti, Rolnick, and 
Kolter 2021), and solve constrained optimal control problems (Drgona, Tuor, and Vrabie 2020). 
While beneficial, the infusion of domain knowledge can make ML models more complex and 
difficult to implement, and providing theoretical guarantees on optimality and analytical bounds 
on convergence becomes important (Li and Orabona 2018). While knowledge inclusion often 
can lead to lower requirements for data, theoretical estimations and guarantees on the amount of 
data will be an important Grand Challenge. 
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13.3.5  Choice of Models, ML Frameworks, and Algorithms 
 
Although there is a large body of literature regarding combining knowledge and ML methods 
(Paullada et al. 2021), such as physics-informed neural networks (PINNs) (Karniadakis et al. 
2021) or DeepONet, there is no guidance or “rule of thumb” for choosing the amount of 
knowledge (e.g., mathematical models), ML architectures, or data needed to efficiently train and 
infer QoI. The deep learning community has broadly converged to some guiding principles for 
ML architectures (Zbontar et al. 2021; Sanchez-Gonzalez et al. 2020; de Brouwer et al. 2019), 
while developing systematic approaches for engineering training datasets has become an 
important focus area in the ML community (Paullada et al. 2021). However, it is important to 
analyze these mature ML frameworks mathematically and test on a set of datasets and 
computational tasks that represent key challenges in climate science. While efforts such as 
Cachay et al.’s (2021) are representative of such ambitions, these benchmarks need to be 
expanded significantly and swiftly to cover the range of climate science applications. 
 

13.3.6  Developing Standardized Benchmark Problems, Datasets, and Metrics 
 
To advance research in KIML, standardized, high-quality, and large-scale datasets that form a 
comprehensive suite of real-world benchmarks are needed. These benchmarks should facilitate 
scalable, robust, and reproducible KIML research across different application domains and 
different types of tasks using a diverse set of datasets. The performance needs to be evaluated 
with meaningful metrics to measure the research progress in a consistent and reproducible way.  
 
Domain experts have identified that mitigation (reducing emissions) and adaptation (preparing 
for unavoidable consequences) techniques developed for addressing climate change are well 
suited for ML research (Rolnick et al. 2022; Rasp 2021). The problems can be prioritized in 
high-impact application domains (e.g., electricity systems; Perera, Aung, and Woon 2014; 
Ramchurn et al. 2012), transportation (Davis et al. 2018), and urban infrastructure (Kreider et al. 
1995) with a standard benchmark suite across both mitigation and adaptation techniques. They 
can be further grouped according to the interest of different practitioners (e.g., local and national 
governments, corporate leaders, entrepreneurs).  
 
There are many potential problems in the respective application domains. For example, 
forecasting supply and demand in electricity systems could inform real-time electricity 
scheduling and longer-term system planning (Rolnick et al. 2022). In the transportation sector, 
KIML can be useful in modeling demand and planning new infrastructure, freight routing and 
consolidation, and for electric vehicles (e.g., charge scheduling, congestion management, and 
improving vehicle-to-grid algorithms). Another potential avenue would be to improve and 
accelerate climate models (e.g., clouds and aerosols, ice sheets, and sea-level rise) via KIML 
research.  
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13.3.7  Using KIML to Discover New Physics/Mathematics/Theory  
 
Currently, KIML methods are being developed to combine knowledge, while ML methods infer 
the QoI in a physical phenomenon (Brunton, Proctor, and Kutz 2015). Given small datasets and 
partial domain knowledge, some authors have shown it is possible to discover new governing 
equations for various physical systems (Brunton, Proctor, and Kutz 2015; Xu, Zhang, and Wang 
2021). Others have shared that learning coordinate transformations can map complex nonlinear 
problems to their simpler linear representations in higher dimensions. This method, known as the 
Koopman operator approach (Budišić, Mohr, and Mezić 2012), is of particular interest in control 
theory (Korda and Mezić 2018). Combining these two powerful principles, coordinate 
transformation and equation discovery, provides a promising tool for automated scientific 
discovery (Champion et al. 2019). Despite encouraging preliminary results, more applied 
research must be conducted in this direction, especially dealing with the development of software 
tools that provide domain scientists with user-friendly and scalable solutions for a range of 
domain-specific tasks. The development of new algorithms, tools, and mathematical frameworks 
that systematically combine traditional physics with data-driven models will be needed to tackle 
this challenge. 
 

13.4  Experimental, Data, and Modeling Opportunities 
 
There are three areas where the opportunities exist for the broader community to both 
standardize and demonstrate the process of expert-driven combinations of multiple modeling 
paradigms: (1) combining scientific knowledge and data-driven knowledge (Rasp et al. 2020), 
(2) propagating uncertainty across multiple events, and (3) modeling across different time-spatial 
scales. 
 
The ability to extrapolate beyond observed data is a natural expectation that often rises from end 
users. However, providing performance guarantees is always a challenge for these capabilities. 
Integrating scientific knowledge into data-driven models via expert supervision can provide an 
intermediate path to realize these goals. Using this method, the scientific knowledge captured in 
the form of equations or property constraints ensures that an ML model’s prediction respects the 
essential rules of the underlying domain. Such complementary integration is ideal when 
predictive models purely based on scientific considerations can be further improved by 
exploiting additional data sources or settings where data-driven predictive models cannot provide 
high-performance guarantees when input variables are drawn from sparser regions of the domain 
of all input variables. Overall, the community identified two important objectives for this focus 
area: 
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1. Generation of synthetic data for training models that use the knowledge of physics to 
constrain model architectures and make the model learn its inductive biases. 

2. Integration of different knowledge representations, such as knowledge graphs and 
Bayesian networks, to yield a new flexible class of “Uncertainty-aware Knowledge 
Graphs” that treat uncertainties as a first-order feature. 

 
Integrating predictive models from different spatial and temporal scales is both an important 
need for the climate science community and a driver for science-inspired AI research. Also, 
results generated by models may not match observational data for a number of well-understood 
technical factors (Stephens et al. 2010). A good approach would be to follow paradigms, such as 
DOE’s ModEx (U.S. Department of Energy Environmental System Science Program 2022), to 
identify where new data need to be collected through experiments or simulations, or models need 
to be improved for higher fidelity. Such identification is likely to be semi-automated, including a 
combination of automated data analysis with human supervision. However, opening up the 
process to human supervision requires model development to be aware of the cognitive biases of 
those driving the process. This amplifies the challenges already described for the extrapolation 
objective (summarized as follows): 
 

● Development of methodologies to unify computational models, where each targets 
different temporal or spatial scales. 

● Such unification needs to be cognizant of its potential technical challenges, such as the 
propagation of uncertainties across varied input domains, as well as the human cognitive 
biases of different communities developing individual models, including confirmation 
biases, prioritization for causation (Runge, Bathiany, et al. 2019), etc. 

 
In terms of KIML, several opportunities for the AI community were identified during the 
workshop that involve advances in differentiable programming: 
 

● Algorithmic. Development of more computationally efficient automatic differentiation 
(AD) tools and methods for higher-order derivatives. New solvers for KIML models 
inspired by classical constrained optimization theory and algorithms.  

● Theoretical. Progress in combining learning theory with mathematical optimization, 
dynamical systems, optimal control, and physical/chemical theories. 

● Software development. Development of new tools for user-friendly and scalable 
solutions of KIML models, including but not limited to neural differential equations, 
differentiable constrained optimization, constrained graph neural networks, and large-
scale PINNs coupled with domain simulation models (Figure 13-2). 

● Using NLP and computer vision for meta-analysis of the literature 
(e.g., Intergovernmental Panel on Climate Change [IPCC] reports).  

● Computational graphs of models are especially useful for interpretability. 
● Transfer learning can be interrogated to obtain insights not only on model 

interpretability but the data itself. 
● Knowledge graph and logic rule-constrained differentiable programming can be used 

in online learning for PDE emulators as surrogates.  
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Figure 13-2. Generic structure of physics-inspired recurrent neural dynamics model architecture  
(Source: Reproduced and adapted from Drgoňa et al. 2021 under Creative Commons CC BY 4.0). 

13.5  Research Priorities 
 
Overall, the AI/climate research community recognizes two sets of goals aimed at tangible 
impacts in a five- and 10-year timeframe. The following research priorities will enable and 
accelerate the adoption of scientific knowledge in AI/ML methods: 
 

13.5.1  Five-year Goals 
 
Mid-term goals include:  

● Development of scalable, computationally efficient techniques for KIML. Fundamental 
improvements in KIML algorithms for inverse, surrogate, reduced-order models, 
equation discovery, and parameter calibration will need to be prioritized for scaling and 
wider adoption of KIML techniques.  

● Development of inter/cross-disciplinary teams with expertise in multiple domains 
working together closely. Tools and practices, such as agile programming, need to be 
adopted for effective integration of KIML techniques. 

● Tools for effective collaboration across different communities. Tools for enabling 
collaboration and sharing of knowledge must be prioritized (e.g., ontologies for KIML). 

● Articulation of laws and constraints that ML models should be compliant to for a given 
domain. 
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● Development of KIML tools for easy accessibility for experts and non-experts. Tools will 
include software libraries, trained and untrained models, standard datasets, and clearly 
written documentation of best practices.  

● Establishment of new cross-domain conferences, journals, workshops, and special issues 
focused on KIML and its maturation. 

● Articulation of failure modes, gaps, and explainability of a model’s behavior. 
● A scalable, nonlinear causal interaction inference with UQ for climate data is a Grand 

Challenge, but it will accelerate scientific discovery and build additional knowledge 
graphs. Current causal methods make assumptions on “no latent confounders,” yet this 
can be improved with KIML, i.e., blend scientific knowledge with causal inference 
methods.  

● Fast, accurate surrogate models that blend AI and scientific knowledge for several PDEs 
of climate/Earth science relevance. 

● Balanced, physics-based mechanistic models and data-driven ML models. 
● Development of mathematical frameworks to integrate multiple spatial and temporal 

scales and account for heterogeneous phenomena within the same model. 
 

13.5.2  10-year Goals 
 
Long-term goals include the following:  

● AI must be able to do a “quick pass” to represent copious information/academic literature 
in a succinct manner. Climate literature has math and equations that are much more 
difficult to parse in NLP than pure text. New techniques are needed to understand these 
data. NLP and computer vision also can be used to digitize old journals and scientific 
records to feed these data to modern models. 

○ Multidisciplinary teams, spanning theoretical ML/computer science to climate 
modelers, are necessary to frame a common “language” and terminology and 
make such collaborations easier.  

○ Any absolute limitations—not only with ML methods, but also what can be 
accomplished with available climate/Earth data—must be identified. This is 
especially important for causal inference, where algorithms typically require large 
datasets to make an assessment.  

○ For dimensionality reduction, can multi     model data be reduced to a few key 
parameters and sensitivity by mapping everything to low-dimensional space? 
Transfer learning does this in an implicit manner, but it requires interpretation. 

● Knowledge graph and logic rule-constrained differentiable programming have 
bottlenecks that can prevent deployment to scale, such as computational cost of a forward 
pass in a climate model, differentiability, and smoothness constraints. These need to be 
addressed. 

○ Building models from climate data that generalize across multiple spatial-
temporal scales with awareness of factors such as cognitive and inductive biases 
and uncertainty propagation. 

○ AI/ML methods for connecting the climate modeling community with the 
observational community will be standardized beyond today’s exploratory 
research efforts.   
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14  Knowledge Discovery and Statistical Learning 

Authors: Xingyuan Chen (PNNL), Richard Tran Mills (Argonne), Juan M. Restrepo (ORNL), 
Michael Wehner (LBNL), Julie Bessac (Argonne), Shashank Konduri (NASA-Goddard), 
Youzuo Lin (LANL), Emil Constantinescu (Argonne), Forrest M. Hoffman (ORNL), 
Muralikrishnan Gopalakrishnan Meena (ORNL), Chandrika Kamath (LLNL), Juliane Mueller 
(LBNL), Zachary Langford (ORNL), John Jakeman (SNL), Elias Massoud (UC-Berkeley) 

14.1  Introduction 
 
Statistical and classical machine learning methods originating in various fields 
(e.g., geostatistics, data mining, statistical learning, pattern recognition, etc.) have a long history 
in the Earth sciences for regression, supervised and unsupervised classification, model reduction, 
density estimation, and other applications. Although researchers have had great success recently 
using deep neural networks (DNNs) for supervised and reinforcement learning, classical methods 
remain relevant because they can be less computationally expensive, more interpretable, and 
better suited to small training datasets than DNNs. Furthermore, as available datasets continue to 
grow in size and richness, unsupervised methods that enable automatic knowledge discovery in 
these large datasets are increasingly important. The paradigm of Bayesian statistics provides a 
unifying framework for knowledge discovery and statistical learning in the context of Earth 
system prediction. It enables critical work in multisensor data fusion, uncertainty quantification, 
data assimilation, and scale-bridging, and it has taken on special relevance in the DNN era: it is 
central to quantifying epistemic uncertainty in large DNNs while, in turn, DNNs aid statistical 
inference by enabling fast approximation of posterior distributions. 
 

14.2  Grand Challenges 
 
The challenges we identified for knowledge discovery and statistical learning in Earth system 
prediction can be categorized into (1) issues of data acquisition, assimilation, fusion, sparsity, 
and reduction; (2) inherent challenges in representing multiscale processes and model-data 
integration (see Penny et al. 2019); (3) quantification of the uncertainty propagated from various 
sources to the end prediction through increasingly more complex modeling structure, as well as 
in machine learning assisted components; and (4) unsupervised learning for automated 
knowledge discovery–including estimation of strongly non-Gaussian distributions and discovery 
of causal relationships and governing equations–from large datasets. 
 

14.2.1  Data Acquisition, Assimilation, Fusion, Sparsity, and Reduction 
 
There are needs to develop new representations, augmentation, and standardization of data from 
various sources at various scales and resolutions in order to improve the extraction of knowledge 
and their use in standard methodologies in AI/ML by providing benchmark datasets. Many fields 
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in the Earth science discipline, such as soil sciences, generate many sparse and isolated datasets 
that would benefit from being merged and enriched from one another in order to enable large-
scale, standardized analysis. Instrument and simulation data are typically “skinny” and lack 
information and context resulting from the acquisition. In particular, the metadata are generally 
not informative enough to allow for a straight harmonization across multiple sources. 
Provenance tracking and tightly related uncertainty or confidence intervals are likely one of the 
top challenges to overcome, especially with datasets associated with publications.  
 
The data harmonization process is performed manually and is labor intensive. It is also error 
prone and subject to investigator biases. Physics-informed neural networks (PINNs) and other 
ML strategies like hierarchical temporal memory have been used to infer data nonstationarity 
and guard against out-of-sample errors; however, the lack of standards for data collection is a 
significant challenge. A secondary aspect is related to the extrapolation of certain datasets 
(e.g., resulting from data assimilation and assuming climate stationarity), which pose significant 
challenges for harmonization of various simulation and instrument data sources and products. 
For nonstationary dynamic problems, a major challenge is in finding practical data assimilation 
methods that can handle the nonlinear/non-Gaussian estimation problem (see Majda and Harlim 
2012; Särkkä 2013; van Leeuwen, Cheng, and Reich 2015). Reanalysis data have been created in 
that regard and successfully used in atmospheric applications; however, the concept is less 
developed in other fields. 
 
Interpolation and extrapolation routines with limited data availability for highly nonlinear and 
multiscale problems (e.g., turbulent flows in the atmosphere and ocean) are a common challenge, 
including choice of variable being used in models (e.g., appropriate variable needed in flux-
based models), geographical locations, limited time, and bottlenecks and biases from other 
geophysical processes (e.g., cloud cover hindering satellite data). Tying sampling techniques 
with geometrical attributes to take advantage of spatial auto-correlations can be helpful. The 
advancement of sparse linear algebraic techniques from dynamical systems theory can be used 
for optimizing sparse locations. Limited data also pose a challenge for reduced-order modeling. 
Choosing the appropriate dimensionality can be challenging in this scenario. 
 
Lack of quality data can also arise when modeling processes which can only be measured 
indirectly, like using radiance for capturing ecology physics. Frameworks for effectively 
capturing such processes involve clearly identifying the processes, which ones are missed, and 
the scales at which their effects are relevant. When integrating instrument data with data from 
other sources like simulations to create reanalysis data, the provenance is typically lost; 
moreover, there is no confidence interval associated with the final product, which hampers the 
use of data product in projections, model development, and other analyses. 
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14.2.2  Multiscale Modeling and Model-data Integration 
 
Subgrid-scale variability (unresolved processes at scales finer than the discretization resolution) 
modeling and parameterization is a significant challenge in representing multiscale processes. 
Subgrid-scale issues are naturally under-determined and require adequate treatment such as 
regularization and a stochastic treatment when scales are not separated. Subgrid-scale 
parameterizations often introduce new types of errors and uncertainty that are hard to 
characterize and quantify. 
 
As high-fidelity and high-resolution simulations are computationally prohibitive, there is a need 
to develop surrogate models for fine-scale processes to alleviate these computational costs and in 
particular in multiscale applications. Associated challenges arise from accessing fine-scale or 
high-fidelity training data and in the embedding of fine-scale surrogate models within other 
components (this is linked to some stability issues discussed in the Hybrid Modeling session, 
chapter 16). Last but not least, there are workflow challenges with high-volume data streams or 
high-dimensional models.  
 

14.2.3  Uncertainty Quantification and Propagation 
 
Some grand challenges in statistical learning (Bayesian methods, statistical inference, uncertainty 
quantification, etc.) for AI applications in Earth system models (ESMs) consist of dealing with 
uncertainty in deep learning methods and data products for ESMs. For example, satellite-based, 
radar-based, and model-derived precipitation data products often do not agree (Kim et al. 2020), 
and methods are needed that can incorporate this data uncertainty into ESMs. Deep learning 
techniques are inherently over-parameterized, making them great interpolators; however, this 
creates large parameter spaces that are challenging for their associated uncertainty quantification, 
and this limits their generalizability. We must accurately quantify uncertainty in coupled ESM 
predictions that are computationally expensive to generate and are subject to a large number of 
uncertainties. 
 

14.2.4  Unsupervised Learning 
 
Grand challenges for unsupervised learning center around moving beyond assumptions of 
linearity, statistical stationarity, and Gaussianity, as well as automatic discovery or improvement 
of model equations or causal relationships of underlying processes. Effective techniques for 
working with very large datasets – many of which combine data with different sources, 
modalities, and spatiotemporal distribution – are also an important challenge. 
 
Explicit data reduction techniques can be very helpful in scenarios with insufficient high-quality 
data. The variability of the ML/DL models in the reduced space is a great challenge when using 
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reduced representation of the data (or system). One solution is to implicitly reduce the dimension 
of the data rather than using explicit methods. This involves coupling the data reduction 
technique with the ML model. The low-dimensional features in a system are learned in the 
“middle” layers of an ML model, and thus learning needs to be done in a reduced or latent space 
where variability would be limited. Nonetheless, the challenge for such implicit data reduction 
methods is the requirement of high-quality data. Moreover, the structure of the data considering 
the geometrical attributes is also important. The issue is with those geometrical attributes that 
cannot be transferable using a change of basis, which lie on a union of subspaces. Possible 
solutions to effectively capture the structure of data can be sparse representation using 
compressed sensing, use of a manifold representation rather than various subspaces, and tractable 
optimization techniques with better relaxation techniques. The latter would add an additional 
challenge of the computational complexity trade-off. 
 

14.3  State-of-the-Science 
 
Unsupervised methods have a long history of application in the Earth sciences, with linear 
methods such as principal components analysis (PCA) or empirical orthogonal functions (EOF) 
(Lorenz 1956) commonly applied for dimensionality reduction and trend identification, and 
various clustering methods used for applications such as quantitative identification of ecoregions 
(Hoffman et al., 2013; see an example in Figure 14-1 from Langford et al. [2019] and watershed 
zonation in Wainwright et al. [2022]). In some cases, these methods have been successfully 
scaled to the solution of “big data” problems on large parallel computing resources (Kumar et al. 
2011; Mills et al. 2013; Sreepathi et al. 2017; Mills et al. 2018), although most existing tools are 
suited for use only on single workstations. 
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Figure 14-1. Map produced using a combination of linear dimension reduction (principal components 
analysis), unsupervised classification (parallel k-means clustering), and convolutional neural networks 
applied to data fused from multisensor sources (Source: Reproduced from Langford et al. 2019 under 
Creative Commons CC BY 4.0). 
 
Datasets spanning a huge range of variables are being generated at unprecedented rates and at 
global scales, largely driven by remote sensing, models, and computational power. This includes 
instrument measurements, numerical simulations using measurements, combining measurements 
with numerical simulations into products, or combining datasets. However, there is no standard 
and metadata information that can be easily used to harmonize datasets in general. 
 
Time-dependent data assimilation is now an established forecasting and analysis tool in weather, 
and with increasing capabilities, in climate. In applications, data assimilation has also been used 
to estimate parameters (see Lunderman et al. 2020), it is used to incorporate complex 
heterogeneous physics such as vegetation and hydrological elements, and it is thought to be 
relevant to working out seamless predictions of weather/climate. In data assimilation models and 
data, their inherent errors are taken into account to construct Bayesian distributions wherein the 
likelihood is informed by data and the prior by models. Note that the methods of data 
assimilation for spatially dependent problems or stationary problems are usually Gauss-Markov 
estimation. In applications, especially those that combine dynamics at different scales, research 
into ways to remove biases as well as ways to couple the scales in a Bayesian framework have 
received a great deal of attention (see Penny et al. 2019; Berry and Harlim 2017; Cych, 
Morzfeld, and Tauxe 2021). How to deal with parametrizations of phenomena that are not well 
understood, and the formulation of statistical parametrizations of epistemic errors, are also very 
current topics of research. A great number of data assimilation methods are variance-minimizing 
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estimators; however, it is becoming clear that other estimators may be useful (e.g., Rosenthal et 
al. 2017; Restrepo 2017). 
 
Modern reanalysis products such as ERA5, MERRA2, and NCEP-CFSR, produced by 
computationally intensive data assimilation of observations, are among the most critical 
resources available to climate change scientists. Often considered as a proxy for actual 
observations, reanalyses provide highly constrained values of unobserved fields, whether that be 
in poorly observed regions and even for unobservable quantities. These highly cited datasets 
serve many purposes, including in model evaluation, detection and attribution of trends, and 
understanding climate variability, among others. Of particular interest to the DOE are 
understanding climate change trends. The three state-of-the-art, high-resolution products 
mentioned above are useful in that regard only in the satellite era (1979–present), as the sudden 
increase in observations with the introduction of satellites tends to introduce discontinuities. The 
DOE-supported “20th Century Reanalysis” project (https://psl.noaa.gov/data/20thC_Rean/) 
circumvents this problem by assimilating only synoptic pressure, sea surface temperature, and 
sea ice concentrations to produce a homogenous reanalysis product from the early 19th century 
to nearly present day, but is at a lower resolution than the state of the art due to the much longer 
period of interest and the high computational costs. How can machine learning help? If a fast 
proxy AI-based reanalysis tool, trained on ERA5 (and others) using observed synoptic pressure, 
sea surface temperature, and sea ice concentrations, could be developed, a higher-resolution 20th 
century reanalysis could be performed aiding the analysis of changes in extreme weather events 
and other applications that require high spatial resolution. 
 
Current generation atmospheric dynamical cores in ESMs operate at resolutions too coarse to 
capture fine-scale cloud processes such as convection, and therefore must represent these 
subgrid-scale processes using statistical parameterizations, which contribute substantially to 
uncertainty in climate projections. Although high-resolution, physics-based, cloud-resolving 
models exist, the high computational cost of running multiyear simulations makes this an 
infeasible option for the foreseeable future (Yuval and O’Gorman 2020). Recently, subgrid 
modeling strategies employing ML and deep learning methods have been proposed to learn 
subgrid statistics and predict the unresolved part of quantities based on resolved solutions (Bode 
et al. 2019; Fukami, Fukagata, and Taira 2019; Rasp, Pritchard, and Gentine 2018). Such data-
driven approaches have been shown to be fast and accurate and to greatly enhance the spatial 
resolution with as few as 50 training data shots (Fukami, Fukagata, and Taira 2019). Simulations 
generated using such ML methods have been shown to more or less obey the law of energy 
conservation and reproduce both the mean and variance of the climate system. Machine learning 
is presently being considered as a means to address the curse of dimensionality via surrogates 
and by replacing computationally expensive aspects of the dynamics. In addition to surrogates, 
other reduced-order representation include manifold learning for representing vector fields and 
an operator acting on vector fields.  
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Model benchmarking is the process of critically evaluating the performance of ESMs by testing 
the fidelity of their outputs against a set of defined standards (Luo et al. 2012). ESMs typically 
simulate several biophysical and biogeochemical variables over large spatiotemporal scales, and 
obtaining access to gridded data products at such diverse scales can be quite challenging. 
However, the availability of global-scale remote sensing data spanning multiple decades, as well 
as data from eddy covariance towers from observation networks such as FLUXNET, open up 
exciting avenues for creating new benchmark data products. One of the first examples of creating 
a global gridded benchmark product uses ML methods such as tree-based approaches and ANNs 
to infer relationships between environmental variables measured by flux towers at the site-level, 
which were extrapolated and applied at the global-scale using global-grids of satellite-derived 
vegetation indices and climate variables (Beer et al. 2010). 
 
Existing sensitivity analysis and uncertainty quantification efforts have focused on regional case 
studies, studies involving a subset of model components, or coarse fully coupled models (Tezaur 
et al. 2021; Urrego-Blanco et al. 2016; Rasch et al. 2019; Isaac et al. 2015). These restrictions in 
scope were adopted to reduce the cost of running models, which were needed for Monte Carlo 
estimation of statistics or sensitivity indices, and/or to reduce the number of uncertain variables 
needed for practical use of surrogate approaches. Current methods use deep learning (DL) in a 
Bayesian framework in order to provide uncertainty estimates of the learned model. Bayesian DL 
methods have also been applied to model-data integration for global parameter optimization to 
improve the model performance and computational complexity of ESMs (Lu, Liu, and Ricciuto 
2019). New approaches will need to investigate state-of-the-art DL approaches applied to time 
series datasets (e.g., LSTMs) and ways to incorporate DL models that address uncertainties in 
data products. Deep Bayesian active learning could provide a framework to address uncertainties 
for efficient data acquisition by selecting points that bias data acquisition toward regions with 
overlapping support to maximize sample efficiency (Jesson et al. 2021). Normalizing flows 
(Kobyzev, Prince, and Brubaker 2019) and information-preserving dimensionality reduction are 
being explored for dealing with non-Gaussian distributions. Moreover, improvements in 
Gaussian process (GP) model scalability are underway and enable their application to larger 
datasets (https://gpytorch.ai).  
 
The use of self-supervised models has been prevalent to address some of the implicit data/system 
reduction challenges. Recently, reinforcement learning has been in the forefront for identifying 
model/data biases. Along with techniques like Q-learning, these techniques can be used for 
exploitation of currently available data to aid further data exploration. A great effort has been 
focused on standardizing the right notion of validation for datasets and reduced order models. 
This involves identifying the metrics used for validation, making the process independent of 
ML/DL frameworks, and setting standards for multidisciplinary datasets and models. 
Furthermore, use of edge computing to aid the data workflow of incoming data from 
experimental and observational sources has been actively pursued.  
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14.4  Experimental, Data, and Modeling Opportunities 
 
Experimental, data, and modeling opportunities include improving the quality and ease of the use 
of data and observations to make ML models informative, workflow tools that can handle larger 
problems, exploitation of machine learning for data reduction, and ML methods that address 
physics and computation across scales (see Boukabara, et al. 2021). 
 

14.4.1  Employing ML Techniques to Ease the Use of Data 
 
Much of the rapidly growing body of Earth system science datasets—from sources such as 
NASA remote sensing products and GCM simulation ensembles—is relatively unexplored, and 
there is an opportunity to employ clustering and other unsupervised techniques at large scale to 
effectively sift through these massive and often high-dimensional datasets to discover 
meaningful patterns and statistical relationships. Furthermore, there is an opportunity to bring 
some of the recent success with deep neural networks (DNNs) by applying semi-supervised 
techniques to what are often label-poor datasets. 
 

14.4.2  Utilizing the Model-Experiment (ModEx) Approach 
 
Opportunities exist in developing AI/ML techniques to integrate multiscale, multisource 
data/observations into physics-based models, using multiscale modeling to inform experimental 
design and field data collection, and generalizing the methods and tools from a limited set of 
testbeds to much broader geographical regions. Specific opportunities exist in dissecting the 
intricate features in the data from noise and leveraging advancements in online data curation 
from edge devices to aid smart data collection. Opportunities exist in recreating Earth system 
events, developing probabilistic approximations for validation of reduced order models, and 
creating robust benchmark datasets, which are updated and improved periodically (e.g., using 
new data releases, reanalysis data). Identifying outliers in datasets is another big opportunity for 
effective data and model reduction. Increased collaborations across disciplines under a shift in 
research culture toward the FAIR-ICON principles are essential for the community to succeed in 
ModEx. 
 

14.4.3  Development of Surrogate Models 
 
Multifidelity (MF) statistical estimation (Gorodetsky et al. 2020; Peherstorfer, Willcox, and 
Gunzburger 2018; Giles 2015) and surrogate modeling (Kennedy and O’Hagan 2000; Narayan, 
Gittelson, and Xiu 2014; Jakeman et al. 2020) offer a powerful balance between cost and 
accuracy. These methods combine an ensemble of models with varying cost and accuracy of data 
to produce accurate surrogates or statistics at potentially orders of magnitude smaller cost. The 
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existing DOE simulations with cloud-resolving capacities (~3–4km) (SCREAM (Caldwell et al. 
2021) present unique opportunities to develop surrogate models.  

14.4.4 Development of ML Techniques to Improve Estimates of Model Predictive Uncertainty 
 
Current state-of-the-art approaches for uncertainty quantification use Bayesian frameworks 
(e.g., Bayesian networks) to weight ESMs by accounting for model dependencies and changing 
biases (Sunyer et al. 2014). Future research could focus on ways to incorporate Bayesian deep 
learning approaches into ESMs for incorporating uncertainties in model predictions (Geer 2021). 
New UQ methods that do not make assumptions about Gaussian distributions must be developed 
in order to truthfully capture the data distribution, thus improving the prediction ability of 
outliers and extremes. Another important need is the access to data uncertainty, which is 
traditionally not provided with the data products, and so data are commonly used at face value. 
Close collaborations with data-collecting agencies is needed to provide these uncertainty 
estimates, thus enabling the improvement of model predictive uncertainty. 
 

14.4.5  Addressing Scalability Issues in Software Libraries 
 
There is a need for software libraries that can scale on large clusters for ESM integration. GPs 
have been used for model emulation due to their simple formulation and robust uncertainty 
estimates (Watson-Parris et al. 2021). However, their O(n^3) computation and O(n^2) storage 
requirements limit GPs to small datasets. GPyTorch is an efficient and general approach to GP 
inference based on Blackbox Matrix-Matrix multiplication (BBMM) that addresses scalability 
issues with Cholesky factorization required by GPs (Gardner et al. 2018). 
 

14.5  Research Priorities 
 
One of the critical priorities identified is the development of AI-ready benchmark data for 
development and testing of different ML methods. Developing a standardized framework for 
evaluating and validating ML fidelity is another area of priority. Moreover, providing reference 
implementations of the various knowledge discovery methods for specific Earth and 
environmental system science applications would be useful for the domain science experts to use 
and further develop these techniques. 
 
A barrier to exploring environmental datasets with unsupervised learning tools and to developing 
suitable benchmarks for various ML tasks is that it is difficult to assemble and properly process 
datasets into suitable form. Google Earth Engine represents a good attempt at making remote 
sensing data more accessible, but no corresponding platform exists for ESM outputs, and 
processing is still a challenge because it often requires significant expert knowledge. If we can 
provide platforms that make it easy for both Earth system scientists and AI/ML researchers to 
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explore the growing body of ESS data with AI/ML techniques, there is potential to enable many 
new lines of research in both finding undiscovered patterns and relationships in ESS datasets and 
in the development of new AI/ML techniques suitable for use with large and high-dimensional 
geo-spatiotemporal data. Enabling the involvement of AI/ML researchers is important, since the 
development of approaches that can scale to the large size and dimensionality of these datasets is 
needed. There is also a clear need for developing data collection standards and metadata 
representation that can be easily used by ML algorithms—including the data provenance 
information that is critical for establishing confidence intervals—as well as ML methods that can 
automatically ingest datasets with suitable metadata information. To harvest/digitize historic 
datasets, we should explore the potential of leveraging NLP algorithms that can extract not only 
the data points but also ancillary metadata. 
 
Even when barriers to assembling large ESM datasets have been overcome, there is still the 
problem that, for many applications of interest, labeled training data may be scarce, and labeling 
by human experts may be an impractical task. In such cases, semi-supervised or active learning 
techniques (closely related to optimal experimental design in statistics) may provide a practical 
path forward. Such approaches are relatively unexplored in the geosciences and should be 
prioritized in light of our current data-rich, label-poor situation era. 
 
As ML or reduced-order models are developed to reduce the cost of running components of 
ESMs, we must develop algorithms that explicitly quantify the impact of all sources of error and 
uncertainties including those arising from unknown model parameters, noisy data, missing 
physics (Harlim, et al. 2021), discretization errors in the solution of model equations, and 
approximations in reduced-order models or ML models. We then must invest in algorithms that 
can determine the fidelity needed for each component to balance these sources of error and 
incorporate experimental data needed to reduce uncertainty. Special attention needs to be paid to 
the aspect of error and uncertainty quantification when using emulators/surrogate models: what 
are the errors and uncertainty associated with the emulators and how do they propagate across 
scales? 
 
Applying statistical learning frameworks to ESMs is not trivial because of the challenges 
imposed by the computational expense of running large ensembles and the nonlinear interactions 
of climate system processes (Qian et al. 2016). For example, changing model parameters that 
improve one model component can have major consequences on another model component 
(Qian et al. 2016). Next steps to address challenges in statistical learning for AI applications in 
ESMs include understanding relationships between UQ in data products and model behavior, 
performing sensitivity analyses that remove unimportant variables, generating fast UQ methods 
that can scale with ESMs, using DL approximation methods to help accelerate UQ, and 
integrating DL UQ methods with ESMs. Accounting for uncertainty in the data and the models 
will allow us to achieve robust and trustworthy predictions. The sensitivity of outcomes to 
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parameters and to dynamic conditions is generally highly dependent on context and the nature of 
the problem itself for their proper interpretation. ML approaches to tackling the sensitive 
dependence of outcomes to parameters of typical models for environmental/climate dynamics 
(see Restrepo and Venkataramani 2016) have yet to be formulated, but they might be useful in 
circumventing the completely ad-hoc nature of a stochastic approach to the same. There is a need 
to develop theoretical foundations around the use of stochastic parameterizations (e.g., how to 
use a physics-based model with stochastic components) through samples or summary statistics. 
We must also develop statistical and probabilistic models to quantify the intrinsic uncertainties 
associated with scale-bridging problems.  
 

14.6  Short Term (<5 years), 5-year, and 10-year Goals 
 
Some of the identified short-term goals (< 5 years) are: 
 

● The construction and run of hybrid models within the coming 5 years, and their 
integration to ESMs. In the near- and medium-term, developing the modular approaches 
of these hybrid models is desirable where physics-based models can be easily swap with 
AI/ML components; and in the long-term, building modularity and transferability across 
ESMs should be considered. 

● The establishment of Earth system science benchmark datasets that can be used in 
developing and improving machine learning approaches. We are thinking of something 
analogous to the ImageNet database that has enabled rapid advances in the use of AI/ML 
techniques for visual object recognition but for Earth system science applications. Since 
ESS datasets are rapidly evolving, it is important that any platform/framework developed 
for building curated ESS datasets for AI/ML be integrated into existing model 
benchmarking efforts such as ILAMB (Collier et al. 2018). A standardized ML-friendly 
metadata format needs to be developed, and novel ML fusion strategies along with NLP 
methods that can parse advanced metadata formats and generate confidence intervals are 
on the critical path.  

● The development of methods for out-of-sample, adversarial datasets. Generating samples 
and workflows for tractable methods can be useful to tackle this goal. Furthermore, 
adaptive techniques need to be developed, which could involve a hierarchical flow 
tracking larger problems first and then concentrating on smaller (finer-scale) problems to 
identify key features.  

● The reference implementation of the various knowledge discovery techniques. This can 
help domain science experts in Earth and environmental sciences start implementing 
these techniques for their problems. 

 
Short-term goals in statistical learning for AI4ESP include: 

● Good communication between disciplines (e.g., mathematicians and Earth scientists) as 
UQ crosses disciplinary boundaries. Exascale algorithms and software must be 
developed and problems with data products must be addressed by the collaboration of the 
modeling community and agencies. 

● Development of effective benchmarks for comparing UQ analyses.  
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● The setting of strategies aimed at addressing the curse of dimensionality in current 
algorithms, which is posed when fusing data from different sources. Alongside, we need 
to develop and be able to enforce complete and partial physics constraints, which are 
poorly addressed by current algorithms. 

● Exploration of new neural network approaches for density estimation of non-Gaussian 
distributions. 

○ Developing ESM output-like gridded and gap-filled (across different space and 
time scales) datasets based on multiple observational sources and aligned with 
resolution and units of ESM outputs. In the same vein, observation-informed 
interpolation tools should be developed to interpolate model outputs in space, 
time, and across scales.  

○ Developing subgrid-scale parameterizations based on stochastic and deep learning 
principles, and their extension to physics-informed and physics-constrained as 
well as scale-aware capabilities, should be a next step to ensure operationality of 
these models. 

○ Uncertainty quantification tools and techniques should be developed and should 
accompany new parameterizations in order to assess errors and uncertainties and 
their propagations in ESMs running with new parameterizations.  

○ Development of tools for unsupervised learning that are scalable to large datasets 
but also interoperable with existing AI/ML workflows in Python, R, and Julia. 

○ Research into techniques to address data sparsity from missing data or data that 
are not collocated in the same place and time. 

 
Finally, development of tools for unsupervised learning that are scalable to large datasets but 
also interoperable with existing AI/ML workflows in Python, R, and Julia is another near- to 
medium-term goal, as is research into techniques to address data sparsity from missing data or 
data that are not collocated in the same place and time. 
 
Mid-term goals (5–10 years) aim for a standardized validation framework for the models and 
datasets and developing robust AI-ready benchmark datasets. It is essential to incorporate UQ in 
DL models by “default” by developing new algorithms that can handle various versions of data 
distributions. Automated methods that provide uncertainty estimates with DL model predictions 
must become the norm. We note that some of this requires development of means to solve 
difficult (non-Gaussian) probability density estimation problems. In addition, exploring how to 
use causal learning to gain insight into causal relationships addressing data sparsity challenges 
are important mid-term targets. 
 
For a long-term goal, a completed pipeline and feedback loop should be developed, from data 
collection to UQ, modeling and data acquisition by actively learning where data should be 
collected to reduce prediction uncertainty and improve model accuracy. The availability of such 
a pipeline will make it possible to routinely deploy automated AI methods to exploit full data 
records. Data sampling workflows built around edge devices can attribute such efforts and can 
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also be a long-term goal. Such opportunities open up a platform where close collaboration 
between domain experts in Earth science and computer science can take place.  
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15.1  Introduction 
 
Artificial intelligence and machine learning (AI/ML) have emerged as important methods of 
scientific discovery in Earth and environmental systems (EES). Observation capabilities 
developed at DOE have enabled the collection of large data archives (Environmental System 
Science Data Infrastructure for a Virtual Ecosystem [ESS-DIVE]; Earth System Grid Federation 
[ESGF]) for which these methods can be applied for improved predictions and the discovery of 
vulnerabilities to extreme events. Increasingly complex methods used for EES, such as deep 
learning, currently trained on gigabytes of data, include millions of parameters, especially when 
running on high-performance computing (HPC) systems. Active learning techniques and 
generative models are also being used for data fusion and the development of hybrid and 
physics-informed process models (Stevens et al. 2020) for ESP. In spite of these advances, 
society might not benefit from the full potential in applying these data-driven methods if 
scientists cannot understand why and how certain outcomes have been predicted and 
communicate model uncertainty to the general population.  
 
Interpreting the results of ML models in a scientific context and with tools that make sense to 
domain scientists is a huge challenge across all AI/ML application areas, let alone explaining 
predictions with wide societal implications to a broader constituency impacted by model results, 
as could be the case for EES applications (e.g., regarding natural hazards). Alongside the 
challenge of implementing interpretability and explainability methods, the definitions of 
Explainable and Interpretable AI are many, some of which are orthogonal along various 
dimensions or otherwise conflict with each other (Barredo Arrieta et al. 2020; Arya et al. 2019; 
Longo et al. 2020; Murdoch et al. 2019), which introduces additional challenges for integration 
with AI/ML approaches in EES. If methods for explainable/interpretable ML are proposed and 
classified along specific goals, for instance, Trustworthy AI (Wing 2021), the question becomes, 
What is trust? Are model outcomes reproducible with a given confidence level, and to what 
extent is it important for the expected goal of model development? Reaching consensus on 
definitions of AI/ML implies formalizing AI explainable/interpretable methods in a rigorous 
framework that includes metrics for explainability that quantify why a particular explanation is 
better than another.  
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15.2  Grand Challenges 
 
Numerous challenges face the development of Explainable/Interpretable/Trustworthy (EIT) AI 
that will affect the adoption of promising AI methods in Earth systems science. If not addressed 
in a timely manner, these challenges will reduce a potentially large, beneficial impact on 
findings, the mitigation of natural disasters, the management of hazards, and their consequences 
on human populations. 
 

15.2.1 Grand Challenge: The Discovery of Forward Models from Data Enabling Human 
Understanding in Domains of Previously Intractable Complexity 
 
Using explainable and interpretable AI for the discovery of first-principles or forward models 
has been demonstrated in simple physical systems. However, Earth systems are highly complex, 
and the parameters that are relevant for control – system drivers – are not always known a priori. 
We need techniques that are capable of revealing organizing principles, ecosystem control 
points, and forward models in systems where the relevant spatiotemporal scales and parameters 
are unknown. This is a radically more challenging problem than has been solved or even 
approached by the AI community thus far. Such advancements would enable the data-driven 
discovery of first principles and forward models for complex systems that have, prior to the 
emergence of explainable and interpretable AI, remained recalcitrant to concise, human-
accessible models and representations. An organized effort at scale is required, one that the DOE 
(perhaps uniquely) is poised to deliver.  
 

15.2.2 Grand Challenge: Reproducibility, Robustness, and Confidence for AI Models 
Compatible with Forward Models 
 
While impressive advances have been made in AI/ML techniques, the reproducibility of the 
prediction outcomes obtained by such data-driven models are often questioned in scientific 
domains. Concerns regarding robustness and reproducibility of AI-based predictions become 
more salient when dealing with complex and dynamic systems with substantial uncertainty, 
especially with Earth science data (e.g., in situ observations, satellite measurements, and citizen 
science data) for which there may not be sufficient data for reliably training AI/ML models for 
predictive tasks. As a result, concerns regarding the lack of robustness and reproducibility of 
AI/ML models are common in ESP and other sciences. This negatively impacts the adoption of 
AI/ML techniques despite their potential to advance ESP research and accelerate novel scientific 
discoveries in relevant fields. The lack of reproducibility of AI-based applications, especially in 
ESP, can also slow the progress of the field since new research is often built on existing research 
and tools (Peng and Hicks 2021). Reproducibility can also significantly reduce researchers’ 
efforts to recreate previous research and accelerate new development and discovery. 
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There are various factors affecting the robustness and reproducibility of AI/ML (or lack thereof) 
in ESP. The biggest challenges include the absence of community-wide guidelines for ensuring 
the robustness and reproducibility of AI/ML, as well as the lack of standard metrics and 
computing infrastructure for quantifying the robustness and reproducibility of AI/ML models 
and their outcomes. Metrics generally applicable across topic areas of Earth and environmental 
sciences as well as across the multiple data archives are lacking, preventing quantification and 
understanding of the robustness and reproducibility of AI/ML models. Key components to 
ensure the reproducibility, including well-preserved data, clearly documented workflow and code 
(from data preparation to model training and evaluation), and description of the computing 
environment, are often lacking in AI-based applications, as authors tend to privilege accuracy 
over trustworthiness in most publications (Gundersen, Gil, and Aha 2018; Haibe-Kains et al. 
2020).  
 

15.2.3 Grand Challenge: The Capacity to Invert Prediction Intervals to Obtain Confidence 
Regions for ESP and EES 
 
We currently lack a rigorous definition of uncertainty quantification (UQ) in ML. Different 
papers provide diverse and sometimes non-overlapping motivations for UQ and offer several 
notions of uncertainty and confidence. Existing uncertainty-aware ML methods are mostly 
designed for and evaluated under ideal scenarios (e.g., noise-free setting, single modal/scale data, 
etc.). On the other hand, ESP applications face multifidelity, multiresolution, and multimodal 
data that are high dimensional and spatiotemporal in nature. Existing uncertainty-aware ML 
methods are not suitable for these scenarios and are expected to face major challenges in terms of 
accuracy, robustness, and scalability. To make this even more complex, benchmarks and 
workflows that can identify the shortcomings of existing methods when applied to ESP 
applications do not exist. Solving this grand challenge will require a close collaboration between 
domain scientists and ML researchers.  
 
Recent advances in conformal prediction have enabled the ascertainment of prediction intervals 
with finite sample guarantees for black box AI learning machines, a significant advance. The 
capacity to invert prediction intervals to obtain confidence regions would have seismic impacts 
on data science. The capacity to conduct inference has remained the domain of “statistical” and 
mathematical models with imposed statistical constraints. If the same can be done with highly 
predictive AI models, the way we think about using such models will fundamentally change.  
 
Combining the accessibility of confidence regions with parameter discovery from representation 
learning would enable “hypothesis discovery” from AI models with detailed insights into how 
and why the model functions on par with forward models.  
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15.2.4 Grand Challenge: Pervasive Environmental Observatories and Trustworthy AI for 
Impacted Communities 
 
When working to predict many climate and weather phenomena, using observational data is 
critical. However, there are many areas of the world, even within the United States, where there 
is a lack of the observational data (a data desert) needed to study the phenomena of interest. For 
example, air pollution sensors are not well distributed in many cities, and DOE is currently 
working to expand this network and address the bias of home-based sensors. For this grand 
challenge that would address the needs of climate and environmental justice, we propose to 
facilitate the development of sensors and models reliable on a global scale. Then we could 
responsibly use AI to create synthetic data that would help address the needs of the locations and 
populations with significant data underrepresentation.  
 
A related challenge is to create trustworthy AI for use by the communities whose needs it 
addresses. It is crucial that the communities impacted by AI, as well as those who will use it 
(as they may not necessarily be the same), are involved in the development of the AI from the 
beginning. As a part of this grand challenge, we need to develop community-centered data 
collection methods and approaches to explainable AI for a variety of audiences. This will require 
developing standards of explainability and trust. Finally, there is a need to work on causal 
discovery, which can be used to identify new scientific knowledge for the impacted 
communities.  
 

15.2.5 Grand Challenge: A Common Language and Development of Best Practices between 
Computational, AI, and Domain Scientists 
 
Explaining AI for Earth systems that enables domain scientists to trust and understand 
predictions and their predicates requires us to find a common language that AI, computational, 
and domain scientists understand. While experts in their domains, Earth scientists may not be 
well versed in the technicalities, jargon, and methods of AI. As such, additional effort must be 
made by all parties to foster communication with patience and open-mindedness. This represents 
an additional challenge and points to a need for support in the fast-paced research environment 
common within the DOE. One place to start is to begin to develop best practices of AI 
implementation within ESP. For example, the use of the appropriate modeling techniques, 
metrics and diagnostic tools adapted to the various problems and data specificity needs to be 
normalized. Trustworthy and Explainable AI plays a central role in this development.  
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15.2.6 Grand Challenge: Domain-informed Development of Interpretable and Explainable AI 
Methodology 
 
The integration of domain knowledge in the development and research lifecycle for interpretable 
and explainable AI methodology is another grand challenge facing Interpretable and Explainable 
AI for Earth systems applications. It is important to understand the context in which an EIT 
methodology will be used and the questions regarding interpretability or explainability of model 
behavior that are most critical for EES applications. Currently, EIT methods must be adapted or 
extended for use in domain applications. By incorporating domain knowledge directly into 
development of new methodologies, the development of applicable methods can be both 
optimized for Earth systems’ needs, constraints, and opportunities but accelerated.  
 
Domain-informed development can incorporate not only the necessary context for greatest 
impact of interpretable and explainable methods but also reduce the workload required to 
introduce interpretability and explainability for the AI used in EES applications. For example, 
domain-informed methods should be more easily used by domain experts (whose needs the 
methods were explicitly designed for). This should reduce the barriers to wider adoption within 
the community. 
 

15.3  State of the Science 
 
The state of the science in Explainable and Interpretable AI and related fields is vast and 
growing. We present it using the room discussion categories, complemented by a summary table 
(Table 15-1) at the end of this section. 
 

15.3.1  Interpretable and Explainable AI (XAI) 
 
The current state of interpretable and explainable AI is vast and rapidly evolving. To help 
organize the field, we divided this section into three subsections. These subsections are: theory 
(what justifies a good explanation), techniques (methods and tools for evaluating explanations), 
and XAI uses currently in ESP. The theory and techniques sections purposely cover the entire AI 
community and are not restricted to environmental sciences.  
 

15.3.1.1  Theory 
 
Theoretical work on XAI applications to science has been explored in the social sciences, where 
what justifies a “good” explanation is more naturally defined. The survey (Miller 2019) 
highlights four major findings across these fields:  
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1. Explanations are contrastive – they are sought in response to a particular counterfactual 
case, rather than seeking route cause. 

2. Explanations are selected in a biased manner – an explanation is not expected to fully 
explain the full cause of an event. 

3. Probabilities do not matter – referring to probabilities as the explanation is not as 
effective as referring to the route cause. 

4. Explanations are social – an explanation is a transfer of knowledge between two 
individuals and is dependent on the explainer’s and explainee’s beliefs. 

 
More recently, theory from Mahoney et. al have revealed how and why deep neural networks are 
able to self-regularize and achieve the extraordinary performance they manage, and this has led 
to a new class of regularization techniques that is possible even in the absence of access to 
training data (Martin, Peng, and Mahoney 2021). The revelation of the mechanisms of implicit 
self-regularization in deep networks is an important result, as it illustrates that even industry-
grade deep networks with millions of parameters are not impossibly complex. In parallel, 
Donoho and colleagues illustrated the form of decision boundaries that a widely applied class of 
neural networks inevitably learn (Papyan, Han, and Donoho 2020). These are foundations on 
which we can build techniques to extract locally low-dimensional models – human-
understandable models and knowledge – from fitted networks, as Mahoney and colleagues from 
across the DOE complex pointed out in a recent review, which made use of the meeting report 
from ASCR’s AI4SCI meeting series in 2019 (Pion-Tonachini et al. 2021). 
 

15.3.1.2  Techniques 
 
Techniques within XAI can be broken down into two categories: (1) methods—tools used to 
provide an explanation, and (2) evaluations—tools used to evaluate the explanation. Here we 
briefly outline the state of the art for each of these fields. 
 
Methods: The broad state of the science for interpretable and explainable AI encompasses many 
methods, including Shapley values, integrated gradients, expected hessians, locally interpretable 
model-agnostic explanations (LIME), counterfactual explanations, and many more. For an 
extensive review, see Molnar (2020). However, these methods were predominantly constructed 
to function in regimes with high signal-to-noise ratios, with the majority focus on the impact of 
individual “variables” or “pixels,” without consideration for interactions with other features. A 
variety of methods, including integrated hessians, multivariate Shapley values, partial 
dependence plots, and, more recently, Accumulated Local Effects (ALE) plots attempt to capture 
lower-order interactions, e.g., between pairs of covariates, or, in some cases, higher-order 
interactions based on prior hypotheses. At present, there is no general approach to discover or 
map higher-order interactions for arbitrary learning machines – only in special cases, such as 
Random Forests, is this tractable (Basu et al. 2018). 
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The pursuit of local marginal importance is largely synonymous with “Saliency Maps,” 
visualizations of important pixels in image data. Radiology has long been held up as an example 
of where these maps are useful, yet the utility of such maps has recently been called into question 
by leaders in the field (Arun et al. 2021), and this is not surprising. These methods were 
developed in regimes where the cost of being wrong is very low. For applications where the cost 
of being wrong is high, for applications in science and engineering where certainty is valued and 
essential, new methods are needed.  
 
While saliency maps and related techniques attempt to provide explanations for black box 
AI/ML models, another class of techniques attempts to build explainability and interpretability 
directly into the learning framework. The discovery of physics and conservation laws directly 
from data has been demonstrated in many systems (Liu and Tegmark 2021). However, such 
demonstrations are thus far confined to low-noise or noiseless systems in very low dimension 
(e.g., three dimensions of space and one of time—i.e., very few degrees of freedom). Earth 
systems do not fit this framework, and more advanced methods are needed.  
 
Also intriguing has been the use of AI models for hypothesis discovery and prioritization in 
mathematics (Davies et al. 2021). Novel theory has been originated by close collaboration 
between AI models and human mathematicians. This is an important advancement, and perhaps 
the most compelling example of a “self-driving lab,” albeit a purely in silico lab, yet advanced. 
Indeed, the proposal of theory by AI models is precisely what we need in the climate and 
environmental sciences – the rub, of course, is that Earth systems cannot be written in clean 
closed forms like much of mathematics. 
 
This is to say there is currently a zoo of methods branded as XAI. However, most of these fall 
into one of two categories: intrinsically explainable models or post hoc methods for interrogating 
a “black box” model. Intrinsically explainable models usually include cleverly designed latent 
spaces that are physically or otherwise interpretable to domain scientists, such as tensor 
factorization techniques. Interrogation procedures further segregate into three primary classes: 
(1) saliency maps/feature importance measure, (2) local approximations/local models, and 
(3) indirect or heuristic explanations. We refer to these as Type 1, 2, and 3 explanations, 
respectively. There is a strong commonality between methods, often differing only in minor 
ways (e.g., how a gradient is computed).  
 

● Type 1 - saliency maps/feature importance: Saliency/attribution maps and feature 
importance measures provide methods to describe the decision of a classifier by 
highlighting regions (features) of “importance.” There are many such methods, which are 
among the oldest and most widely used interpretation techniques. Methods such as 
Layerwise Relevance Propagation (LRP) and its numerous spin-offs measure importance 
by propagating information from the prediction back to neurons in earlier layers in a 
neural network (Montavon et al. 2019). Approximate Shapley values (e.g., SHAP) are 
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widely used, but have recently been shown to be qualitatively inaccurate approximately 
of actual Shapley values in important use cases (Lundberg and Lee 2017). DeepLift falls 
into the same category as LRP and SHAP, and indeed the three methods differ principally 
only in how they center neural activation functions during layer-wise propagation 
(Shrikumar, Greenside, and Kundaje 2017). Gradient-based methods measure the value 
or importance of a feature by evaluating the partial derivatives of the network’s output 
with respect to the input variables (Janizek, Sturmfels, and Lee 2021). Integrated and 
expected gradients are widely used techniques in this family, as are integrated and 
expected Hessians, which attempt to capture pairwise interactions between features. 
Work has also been done to identify components of larger networks responsible for 
classification and prediction problems, such as groups of neurons or entire layers (Olah 
et al. 2020).  

● Type 2 - local approximations/local models: Partial dependence plots, ALE plots, and 
related methods attempt to identify marginal response surfaces, where marginalization is 
done over all but a few features, yielding low-dimensional response surfaces suitable for 
human interrogation. These methods have yielded important discoveries in the biological 
sciences (Basu et al. 2018), and applications in the environmental sciences are promising 
and on the horizon. H-statistics use the framework of partial dependence plots to develop 
statistically rigorous tests of dependence between features – but are computationally 
expensive to compute, and intractable for high-dimensional settings. In some sense, all 
these methods are “bottom up” – they can be viewed as forward testing procedures 
analogous to t-tests and the principle of marginality in linear statistical models. “Top 
down” procedures exist as well – LIME and related procedures attempt to fit local models 
that approximate the behavior of the method they aim to explain and leverage classical 
statistical regularization. However, a principal challenge with existing top-down 
procedures is that they are used to fit to the data, and not the parent learning machine they 
aim to explain – and therefore do not necessarily capture information about the learned 
data representation (Pion-Tonachini et al. 2021). 

● Type 3 - indirect or heuristic explanations: Methods here can be further subdivided into 
counterfactuals and examples. Given a black-box model, if a perturbation to input is 
performed in such a way that we know what the consequences should be, analysis can 
then be performed to see if the model’s actions correspond with reality. For example, in 
Ates et al. (2021), the authors generate counterfactuals on time series data to show which 
time series needs to be modified, and how, to change the classification result in a desired 
way. Often models are trained to detect extreme events (e.g., tornadic storms), which are 
inherently rare. When a less extreme event occurs, these models can classify as a novel 
observation and relate to the analogous examples the model has seen. Hase et. al. (2019) 
use a taxonomic organization of classes within a vision model to produce explanations by 
examples. For instance, if the model has only been trained on images of rifles, and is 
given an image of a handgun, it can learn from past exposure that the handgun is a “novel 
object,” but should still be classified as a “weapon.”  

 
Evaluations: The ability to evaluate an explanation can be as valuable, if not more valuable, than 
the explanation itself. If an explanation’s evaluation is poorly justified, it can prevent the user 
from post hoc justifying misleading results. Approaches for evaluation include automatic, as well 
as human study designs. Case studies have been performed to compare the human evaluations 



 

310 
 

and automatic explanations generated (Chu, Roy, and Andreas 2020; Nguyen 2018). Yu and 
colleagues propose the “Predictability, Computability, Stability” (PCS) Framework (Yu and 
Kumbier 2020) and suggest study designs and inference procedures to ensure that results are 
interpretable and useful to domain scientists and therefore for scientific discovery and the 
furtherance of the scientific method. To test saliency methods, Adebayo et. al. (2018) test the 
sensitivity of eight different saliency map techniques to the underlying model and input labels. 
Benchmarks for interpretability methods have been investigated; however, the scope has largely 
been devoted to image classification and natural language processing (DeYoung et al. 2019; 
Hooker et al. 2018).  
 

15.3.1.3  XAI ESP Applications 
 
While XAI is itself a relatively new field, it has already found numerous applications within 
ESP. Methods such as saliency maps have been employed across a range of problems to 
interrogate the underlying ML model. Examples include tornado predictions (McGovern, 
Lagerquist, and Gagne 2020) and SST anomalies (Barnes et al. 2020). Feature importance has 
also been used, for instance in Jergensen et al. (2020) to ensure trust in storm classification. 
More recently, Mamalakis et. al. (2022) developed a method for evaluating XAI method efficacy 
on geoscience data.   
 

15.3.2  Robustness and Reproducibility 
 
Currently, there is increasing awareness of the need to establish standardized guidelines and 
benchmarks across the scientific community to promote robust and reproducible AI/ML, both in 
their training process as well as their application to scientific predictions. Definitions of 
Reproducibility and Replicability in science have been adopted by the National Academies of 
Sciences, Engineering, and Medicine (National Academies of Sciences Engineering and 
Medicine 2019). Case-by-case and full-factor reproducibility studies are being performed 
without overall frameworks or guidelines for the evaluation of reproducibility and robustness of 
AI/ML models, in Earth, environmental, and other sciences (Alahmari et al. 2020; Pouchard, 
Lin, and van Dam 2020; Plale and Harrell 2021). However, interest in a more principled 
approach is emerging. For example, the Research Data Alliance (RDA) is forming FAIR4ML, a 
new Interest Group, whose aim is to establish FAIR (findable, accessible, interoperable, and 
reusable) principles for machine learning (Katz et al. 2020; Psomopoulos 2021). 
 
The Neural Information Processing System (NeurIPS), one of the leading international ML 
conferences, established a reproducibility challenge in 2019 and adopted a reproducibility 
checklist for conference submissions (Pineau et al. 2020). This information checklist is more 
comprehensive than the ACM Artifact Detection/Artifact Evaluation appendices in use at the SC 
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(Super Computing) conferences. In particular, in addition to reproducibility, authors are asked 
questions about ethics and explainability of the AI models discussed in their submissions. To 
ensure research reproducibility, the American Statistical Association implemented a 
reproducibility review process for journal article submission to ensure that data, code, and 
workflow are clear and available (JASA Applications & Case Studies 2019). This review process 
and guidelines can be adopted by the Earth science community to enhance the reproducibility for 
ESP. The adoption of FAIR principles for AI/ML, while not the goal in itself, would help toward 
increasing transparency and establishing a detailed provenance trail for models used in ESP. 
 
Recent work concludes that common ML platforms (e.g., Amazon Sagemaker, Azure ML, 
Google Cloud ML, Kaggle, etc.) do not support reproducibility out-of-the-box, in an experiment 
testing the reproducibility of digit classification using a standard CNN (Gundersen, Shamsaliei, 
and Isdahl 2022). A series of reproducibility metrics quantifying support for reproducibility in 
these platforms is also proposed, applicable to each documentation type required for Data, 
Method, and Experiment in publications and platform documentation (Gundersen and Kjensmo 
2018). Additionally, recent advancement of open-source science projects, such as Project 
Jupyter, Pangeo, and Binder Project, can facilitate the documentation, sharing, and preservation 
of workflow and research output. These projects can be used to enable the reproducibility of AI-
based applications with proper curation process. The scientific community is moving in this 
direction by establishing templates and guidelines on how to share workflow and research 
outcomes using interactive notebooks (e.g., EarthCube Jupyter notebook template; EarthCube 
2021) and AGU’s guidelines for authors on Jupyter notebooks (Erdmann and Stall, et al. 2021) 
and R scripts/markdowns (Erdmann and Meyer, et al. 2021).  
 
Due to the complex nature of AI-based ESP applications, it might be very difficult to reproduce 
the results to machine precision. While well-developed tools in statistics (e.g., for hypothesis 
testing) and uncertainty quantification (Ghanem, Owhadi, and Higdon 2017) may be used to 
assess and enhance the reproducibility of AI/ML predictions, they are not actively utilized in the 
AI/ML community for verification. Objective-based UQ frameworks based on MOCU (mean 
objective cost of uncertainty) are promising but will need to be adapted to serve the purpose of 
reproducibility and use appropriate criteria ( Yoon, Qian, and Dougherty 2021; Yoon, Qian, and 
Dougherty 2013). Statistical reproducibility of model simulations of large ensembles such as 
E3SM has been measured, and new multivariate tests have been designed that apply to 
traditional simulations on hybrid architectures, but these have not yet been applied to AI models 
(Mahajan et al. 2019; Mahajan 2021). Further research is needed for the application to ESP of 
statistical tools, the design of metrics, and the production of benchmarks. 
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15.3.3  Benchmarking/Verification/Uncertainty Quantification 
 
Statistical inference methods are important to enable UQ in ML. However, the computationally 
expensive nature of both training and inference in these methods makes it infeasible to scale 
these methods to modern ML methods, such as deep neural networks (DNNs) applied to high-
dimensional data. Recent advances in approximate Bayesian inference hold significant promise 
for addressing these concerns. Methods inspired from “Infinitesimal Jackknife” (Giordano et al. 
2019) and “Deep Ensembles” (D’Angelo and Fortuin 2021) are pushing the boundaries of 
Bayesian inference in deep learning. Desiderata for post hoc uncertainty calibration is as follows: 
accuracy-preserving, data-efficient, and high expressive power. Innovative methods to 
simultaneously achieve these objectives are proposed in Zhang, Kailkhura, and Han (2020). 
Reliable methods to evaluate the calibration error are also proposed in Kumar, Liang, and Ma 
(2019). Please refer to Abdar et al. (2021); Li, Xie, and Li (2020), and Zhang et al. (2019) for 
more detailed surveys of relevant literature on uncertainty quantification, verification, and 
benchmarking methods in deep learning, respectively. 
 

15.3.4  Ethics and Responsible AI 
 
The state of science for ethical and responsible AI is new enough that the study of it for ESS is 
even more nascent. We can look to the study of ethical AI and ethical algorithms (e.g., Kearns 
and Roth 2019; Benjamin 2019; O’Neil 2016) to influence the development of ethical and 
responsible AI for ESS. We can also look to the study of ethical behavior in social sciences 
(e.g., Pidgeon 2021) to inform the development and use of AI for ESS. Other existing 
approaches for responsible AI include manual solutions, such as model cards (Mitchell et al. 
2019), data statements (Bender and Friedman 2018), data sheets (Gebru et al. 2021), and 
extensions that build on these techniques, such as DAG Cards (Tagliabue et al. 2021). Moreover, 
responsible AI principles include rigorous model validation and benchmarking, including the 
evaluation of model robustness, fairness, accountability, and transparency 
(https://www.pnnl.gov/projects/trusted-and-responsible-ai). Understanding why humans will 
trust AI for weather and climate predictions and measuring the appropriate level of trust needed 
to ensure community adoption is a complex task, and the NSF AI Institute for Research on 
Trustworthy AI in Weather, Climate, and Coastal Oceanography (ai2es.org) is actively working 
to understand this (McGovern et al. 2021).  
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Table 15-1. Synthesis of recent advances in Explainable, Interpretable, and Trustworthy AI. 

Topic	 AI	Application(s)	and	Related	Work(s)	

Interpretable	and	
Explainable	AI	

● Attention-based	model	interpretability	techniques,	such	as	saliency	maps/.	
● Functional	explainability	and	exploratory	error	analysis	tools,	such	as	AI	

Explainability	360	(Arya	et	al.	2020),	Crosscheck	(Arendt	et	al.	2021),	
IntepretML	(Nori	et	al.	2019,	Kaur	et	al.	2020).		

● Counterfactual,	what-if	analyses,	e.g.,	the	What-If	Tool	(Wexler	et	al.	2019).	
● Surrogate	model-based	techniques,	such	as	LIME	(Local	Interpretable	Model-

agnostic	Explanations)	(Ribeiro,	Singh,	and	Guestrin	2016),	SHAP	(SHapley	
Additive	exPlanations)	(Lundberg	and	Lee	2017),	and	variants.	

● Molnar	(2020)	Interpretable	Machine	Learning	book.	

Robustness	and	
Reproducibility	

● Case-by-case	reproducibility	studies	(Alahmari	et	al.	2020;	Pouchard,	Lin,	and	
van	Dam	2020;	Plale	and	Harrell	2021).	

● Survey	of	publications	and	ML	platforms	for	reproducibility	(Gundersen,	
Shamsaliei,	and	Isdahl	2022;	Gundersen,	Gil,	and	Aha	2018;	Haibe-Kains	et	al.	
2020;	Peng	and	Hicks	2021).	

● Multivariate	approaches	for	statistical	reproducibility	for	traditional	
simulations	(but	not	AI)	on	hybrid	architectures	(Mahajan	et	al.	2019).	

● Mahajan	(2021).	
● Decision-making	frameworks	that	can	be	adapted	to	reproducibility	in	AI/ML	

(Yoon,	Qian,	and	Dougherty	2021;	Yoon,	Qian,	and	Dougherty	2013).	

Uncertainty	
Quantification	

● Ghanem,	Roger,	David	Higdon,	and	Houman	Owhadi,	eds.	Handbook	of	
uncertainty	quantification.	Vol.	6.	New	York:	Springer,	2017.	

● Scalable	Bayesian	Inference:	Methods	inspired	from	“Infinitesimal	Jackknife”	
(Giordano	et	al.	2019)	and	“Deep	Ensembles”	(D’Angelo	and	Fortuin	2021).	

● Post	hoc	Uncertainty	Calibration	Methods	and	Metrics:	“Mix-n-Match”	(Zhang,	
Kailkhura,	and	Han	2020)	and	“Verified	Calibration”	(Kumar,	Liang,	and	Ma	
2019).	

● Relevant	survey	papers:	uncertainty	quantification	(Abdar	et	al.	2021),	
robustness	verification	(Li,	Xie,	and	Li	2020),	and	benchmarking	methods	
(Zhang	et	al.	2019).	

Ethics	and	
Responsible	AI	

● Study	of	ethical	AI	and	ethical	algorithms	(e.g.,	Kearns	and	Roth	2019;	
Benjamin	2019;	O’Neil	2016).	

● Need	for	ethics	in	AI	for	ESS	(McGovern	et	al.	2021).	
● Documentation	frameworks	for	model	and	dataset	development	and	bias:	

model	cards	(Mitchell	et	al.	2019),	data	statements	(Bender	and	Friedman	
2018),	data	sheets	(Gebru	et	al.	2021),	and	extensions	that	build	on	these	
techniques,	such	as	DAG	Cards	(Tagliabue	et	al.	2021).	

● Responsible	AI:	fairness,	accountability,	transparency,	security	and	safety,	
inclusivity	(McGovern	et	al.	2021).	

 

15.4  Experimental, Data, and Modeling Opportunities 
 
In this section, we introduce the experimental, data, and modeling opportunities for advancing 
the development and use of AI/ML approaches in Earth and environmental sciences, and in 
particular to address the grand challenges described above. In Figure 15-1, we present a 
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summary of responses from workshop participants to the question “What are some short-term 
opportunities (low-hanging fruit)?” for Explainable, Interpretable, and Trustworthy AI for ESP. 
Several key themes emerge in the word cloud: effective usage of EIT methodology and the 
definition of community standards, the benefit of (narrow) use cases, and the scale of data.  
 

 
Figure 15-1. Word cloud summarizing the pre-workshop responses for “What are some short-term 
opportunities (low-hanging fruit)?” for Explainable, Interpretable, and Trustworthy AI for ESP. 
 

15.4.1  Interpretable and Explainable AI 
 
AI models currently predict environmental processes for which we have no first-principle 
models: biomass production; couplings across scales; the impact of rare events; and cloud 
physics, to name a few. Do these AI models contain within them knowledge that humans at 
present lack? Explainable and interpretable methods are needed to understand what it is that such 
models have “understood.” There is an opportunity to build upon XAI methods in regimes where 
the physics does have first-principle models, and leverage these developments into new, 
uncharted scientific discoveries.  
 
Earth systems datasets are sparse. In the Watershed SFA, we have hundreds, not thousands, of 
soil organic matter and microbiome datasets. Weather stations, snowfall measurements, and 
groundwater measurements are sparse. Earth systems datasets have been, heretofore, designed to 
meet the needs of mechanistic models by humans with a limited understanding of systems for 
which they develop hypotheses. AI built to be explainable and interpretable constitutes a parallel 
and equally valid system for understanding the natural world—though it requires far more data, 
and far more complex experimental designs. Our experience underscores the importance of 
supporting, in parallel, this new paradigm, in that it stands to augment and enhance human 
intuition with insights derived from data and “superhuman” intuition and insight.  
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Further, ESP provides a valuable opportunity to provide benchmarks for AI models leveraging 
domain knowledge about complex, nontrivial systems. Such benchmarks would be extremely 
valuable as we develop new and more advanced tools, just as classical physics has provided 
useful benchmarks for explainable AI tools such as AI Feynman, AI Poincare, and inductive 
graph networks (Udrescu and Tegmark 2020; Liu and Tegmark 2021). Can explainable and 
interpretable AI tools recover known relationships about hydrological forcings, or the couplings 
between reaction-diffusion and reactive transport processes across spatiotemporal scales? Deep 
hidden physics models have already demonstrated the recoverability of fluid dynamics. 
PFLOTRAN, ATS, and related codes provide exciting next-generation benchmarks for these 
methods.  
 
In short, the “ModEx” paradigm should be expanded to include experimental design based on AI 
models. Interpretable and explainable AI methods can leverage existing concepts for ESP-
focused development of AI/ML approaches to increase the usability of explanations or simplify 
explanations, which should increase the adoption of XAI methods. Building on existing 
approaches such as OSSE (observing system simulation experiment), interpretable and 
explainable AI approaches could be used to guide the identification of where more data are 
needed for ESP applications, for example, due to poor sampling or undersampling of most 
informative features. 
 

15.4.2  Robustness and Reproducibility 
 
The creation of community-wide standards, guidelines, and benchmarks to promote and verify 
the robustness and reproducibility of AI/ML models and their predictions in ESP can have 
significant and lasting impacts on improving the robustness and reproducibility of AI/ML 
research in the field, as well as other scientific fields that deal with real-world systems with 
immense complexity and uncertainty. Not only will these efforts improve the reliability of 
AI/ML outcomes in ESP, they are expected to enhance the trustworthiness of AI/ML-based 
scientific predictions and conclusions, thereby facilitating the adoption of AI/ML in ESP 
applications. 
 
The envisioned standards and guidelines should inform researchers who develop and/or adopt 
AI/ML models in ESP research of the minimum requirements (1) for training/testing AI/ML 
models to ensure the robustness of the trained models as well as the predictions obtained from 
the trained models, as well as (2) for making models and the predictions reproducible. These 
include, but are not limited to, guidelines for dataset size/split for training/testing, AI/ML 
training procedure, performance metrics to be used, and sharing of data/metadata. Unlike typical 
performance benchmarks, robustness/reproducibility benchmarks should be designed to assess 
the robustness and reproducibility of AI/ML training procedure, training outcomes, and the 
predictions made by the trained AI/ML models. Furthermore, these benchmarks should help end-
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users better understand the limitations of the models, procedures, and predictions and point out 
the primary factors affecting robustness and reproducibility (or the lack thereof).  
 

15.4.3  Benchmarking/Verification/Uncertainty Quantification 
 
Solving these grand challenges will likely require drawing inspirations from many diverse 
research areas and a close collaboration between domain scientists and ML researchers. Three 
specific research areas that will play a major role in achieving this are: (1) verification, 
(2) statistics, and (3) ML benchmarking.  
 
DNN verification (Albarghouthi 2021) is a process of verifying whether for every possible input, 
the neural network output satisfies the desired properties. Popular verification approaches draw 
motivations from formal methods and can now verify robustness to additive perturbations (Xu 
et al. 2020) or semantic changes in the data (Li et al. 2021).  
 
Probabilistic modeling and inference are critical for achieving uncertainty-awareness in ML/deep 
learning. Normalizing flows (Papamakarios et al. 2019) provide a general mechanism for 
defining expressive probability distributions, only requiring the specification of a (usually 
simple) base distribution and a series of bijective transformations. There has been much recent 
progress on normalizing flows, ranging from improving their expressive power to expanding 
their application. 
 
Properly curated datasets and rigorous benchmarks are critical for evaluating the progress of a 
research field and identifying gaps and shortcomings. A limited number of efforts have been 
carried out in traditional computer vision applications to achieve this (Nado et al. 2021). Similar 
efforts and evaluation practices are desired for ESP applications.  
 

15.4.4  Ethics/Responsible AI 
 
Solving the grand challenges presented here from a perspective of ethical and responsible AI 
requires a community-centered approach to data collection and model creation (Renn et al. 1995; 
National Research Council 1996; Chilvers 2009; Voinov et al. 2016; Pidgeon, 2021). The data 
must be collected in conjunction with local leaders, and there must be clear guidelines on what 
data are collected, how it is to be used for AI, and how the data must be stored or shared. Data 
are key to the success of AI models, and there must be clear guidelines on what to collect and 
store. Data collection should take into account underrepresented populations and geographic 
regions to reduce model biases and generalizability. AI problems and tasks must be driven by 
diverse populations and local communities to ensure models developed address the needs of 
diverse communities.  
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There must also be a focus on transparency and communication of the AI models with a variety 
of end-users. While this includes the need to develop and enhance explainable and interpretable 
AI models (e.g., Molnar 2020), we also need to develop a standard for sharing AI models and 
data. This will facilitate reproducible research and also help to minimize biases in the models. 
However, easy and broad access to AI models might also trigger misuse by adversaries. 
 

15.5  Research Priorities 
 
In this section, we outline what research must be conducted as next steps for addressing the 
Grand Challenges, and what the research priorities are. 
 

15.5.1  Interpretable and Explainable AI 
 
We have identified several key steps to be taken for XAI within ESP. These can be summarized 
as developing XAI libraries; training, integrating, and developing new XAI methods; developing 
explainable models; and involving stakeholders:  
 

1. Development of easy-to-use XAI libraries. The mass adoption, automation, and 
integration of XAI into the ESP framework will require a standard library of tools for the 
scientific community.  

2. Training XAI ethos for Earth Scientists. Alongside the development of standard 
libraries, workforce development should be emphasized. New scientists entering the 
sphere need to be trained in these practices, while the old guard needs to have this 
framework updated as standard.  

3. XAI exploration for ESP. While many XAI methods have been tested within ESP, the 
tools used thus far are far from exhaustive. Scientists need to explore options already 
developed by the other sciences to open the possibility of improvement within the Earth 
sciences.  

4. ESP-Specific XAI tools. Most implementations of XAI methods for ESP have arisen 
from directly importing tools developed for other purposes. The Earth sciences need to 
produce more XAI methods designed for problems within the Earth sciences. Examples 
here could include ML that attempts to reveal relevant spatiotemporal scales such as in 
DeSantis et al. (2020). 

5. Explainable models to learn first-principles. This can only be accomplished by 
assembling relevant spatiotemporal representations and the physics that bind them to 
measurable Earth system outcomes. 

6. Get stakeholders involved. What is deemed important and worth understanding within a 
model is largely a function of those who are impacted by its success. It will be important 
to leverage domain knowledge and engage stakeholders early and often in the 
development of novel approaches that can take advantage of the opportunities provided 
by ESP applications.  
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15.5.2  Robustness and Reproducibility 
 
The next steps for addressing the challenges to develop robust and reproducible AI/ML methods 
in ESP include the following.  
 

1. Establish reproducibility standards for AI-based ESP research. The ESP research 
community should develop a common standard of reproducible ESP research by 
incorporating the unique challenge of the complexity of ESP and dynamic Earth science 
data. 

2. Develop community-wide guidelines and recommended practices to promote robust and 
reproducible AI/ML in ESP. Inspired by FAIR guiding principles, these guidelines and 
recommended practices should include, but are not limited to, clear documentation of the 
availability and provenance of data, code availability, instructions on how to implement 
the code with critical information (e.g., version of software used, model hyperparameters, 
and model training strategy), and expected outcomes. These guidelines could also be 
leveraged to address the challenge of preserving large Earth science data for robust and 
reproducible ESP. 

3. Create benchmarks for robust and reproducible ESP research. The ESP community 
should develop benchmark frameworks including data, community-adopted metrics, and 
assessment tools that can be used to assess and validate the robustness and reproducibility 
of an AI/ML model and its predictions. Especially, the tools and procedures for 
evaluating the robustness and reproducibility of AI/ML should be based on the intended 
scientific objectives of ESP research. To support the aforementioned next steps, it would 
also be important to develop standard metrics for quantifying the reproducibility of 
AI/ML models, i.e., both their training, as well as their predictive outcomes based on its 
impact on the scientific goals, similar to unit testing in software development. Statistical 
tools for hypothesis testing and objective-based UQ techniques—e.g., based on the 
concept of mean objective cost of uncertainty (MOCU)—for quantifying the impact of 
uncertainties on robustness and reproducibility may provide a useful means for achieving 
this goal. 

 

15.5.3  Benchmarking/Verification/Uncertainty Quantification 
 
To solve the grand challenge of uncertainty quantification in AI4ESP, cross-pollination of ideas 
between verification, statistics, and ML benchmarking communities is highly desired.  
 
First, we need to extend existing uncertainty-aware ML methods, such as Bayesian deep 
learning, to support the complexity of ESP application data. This will bring unique modeling and 
scalability challenges for UQ methods due to the multifidelity, multiresolution, and multimodal 
nature of the data that are high dimensional and spatiotemporal. Next, in such a setup, supporting 
accurate and robust uncertainty quantification will require the development of reliable evaluation 
metrics and efficient design/training methods. Another potentially worthwhile priority direction 
is to leverage DOE advances in the areas of quantum/neuromorphic/exascale computing and 
explore software-hardware co-design strategies for next-generation, uncertainty-aware AI 
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methods for ESP. Finally, the development of reproducible workflows and UQ benchmarks 
(inspired from FAIR principles) will likely be a worthwhile investment advancing the AI4ESP 
field. To facilitate the trust in AI4ESP, there is also an urgent need to understand the user 
interpretation of prediction uncertainty and improve how to communicate uncertainty to the 
public and data users.  
 

15.5.4  Ethics/Responsible AI 
 
To support the development of ethical and responsible AI, we need a focus on both policy and 
research. For example, we need to support the development of standards for what it means for an 
AI to be trustworthy. This is something that the research community should work on and in 
conjunction with agencies who can set standards, such as the National Institute of Standards and 
Technology (NIST). Likewise, the research community needs to develop standards for ethical 
and responsible development and use of AI. Funding agencies need to ensure that all of their 
calls for AI-related proposals also require that the AI be developed and used in an ethical and 
responsible manner.  
 

15.6  Short-term (<5 years), 5-year, and 10-year Goals 
 
In this section, we order the priorities outlined in the previous section, starting with the low-
hanging fruit. However, we believe that many long-term goals should be attacked as soon as 
possible. For instance, efforts to address the lack of a rigorous framework for Explainability, 
while a long-term goal, should start right away to increase chances of success of XAI in ESP. 
 

15.6.1  Interpretable and Explainable AI 
 
Short term: We have narrowed down two key short-term goals for XAI. 
 

1 Explainable, interpretable, and trustworthy AI systems and codes for multiscale Earth 
systems science. Although developing easy-to-use frameworks with accurate UQ (with 
finite sample guarantees, e.g., via conformal prediction) for the integration of models 
across scales (and where boundary conditions are intractable or computationally 
expensive to evaluate) will require a significant effort; all of the pieces are present. 
Focused efforts could produce codes for the specific task of model coupling across scales 
with sufficient generality to be applied broadly across the Earth and environmental 
sciences. Demonstration projects might include improved coupling between reaction 
diffusion and reactive transport models or improved use of biological data (plants and 
microbial communities) and metabolic processes to augment Earth systems models. A 
few distinct pilot projects would be useful to reveal broader commonalities and potential 
synergies across multiscale (and multidomain) modeling problems. Such projects could 
lead to a new foundational capability with broad benefits across the BER mission space.  



 

320 
 

2 Proof-of-principle, explainable and interpretable models for complex systems along 
with benchmarks. Well-understood Earth systems processes should be used as initial 
targets for the discovery of complex physics from observational data. Especially useful 
would be systems that require multiple modes of observation at more than one scale to 
define physical processes, e.g., seasonal water quality in a well-studied watershed. These 
systems would then be integrated into a standard ML workflow, whereby the practitioner 
would develop XAI methods to measure against expert interpretations. It is imperative 
that these models cover the wide spectrum of processes observed within the Earth system 
across multitudes of scales to ensure trust within the benchmarks.  

 
Long term: While the following two goals may only be achieved in the long-term, their 
importance and complexity warrants starting to address them as soon as possible. 
 

1. The development of domain-informed guidelines and discoveries that directly inform 
and transform domain science – on where, when, and how interpretable and 
explainable methodology can and should be used. At what point in the process should 
this methodology be suggested versus required? Evolving stakeholder input at evolving 
stages of the interpretable and explainable AI/ML methodology development will 
necessitate shared understanding of ESP applications and incorporation of 
interpretable/explainable AI/ML practices. 

2. AI frameworks. We currently lack a rigorous framework for explainability in machine 
learning. For example, there are no methods to measure the value of explanations, leading 
one to be unable to falsify the hypothesis of any individual method. Consequently, it is 
not possible to judge the value of one interpretability method over another. Furthermore, 
explanations are hard to falsify and can be post hoc justified, resulting in misleading 
results. While some progress has been made clarifying weakly defined terminology on 
the philosophy, psychology, and cognitive science front, there is still plenty of debate 
about the ultimate purpose and function of interpretability in ESP and ML broadly. Those 
working in ESP cannot tackle this task alone, and it will require joint effort across STEM 
and the social sciences.  

 

15.6.2  Robustness and Reproducibility 
 
Short term: One of the near-term goals for robust and reproducible AI/ML is establishing 
community-wide standards and guidelines for better provenance of AI/ML models developed for 
ESP, which will promote the development and application of more robust and reproducible 
AI/ML techniques in ESP applications. Furthermore, creating benchmarks for assessing the 
robustness and reproducibility of AI/ML models for ESP, developing standard metrics for 
evaluation, and designing software tools that make assessing the robustness and reproducibility 
of AI/ML in ESP applications streamlined and relatively straightforward would lead to 
meaningful improvements in the robustness and reproducibility of AI/ML models for ESP in the 
short term. 
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Long term: An important long-term goal would be the development of highly reproducible and 
trustworthy AI/ML models for scientific research in ESP that will lead to AI-driven acceleration 
of scientific discoveries in ESP applications. To facilitate such development, sustained 
investment will be required in interlinked data facilities across labs and relevant agencies and 
accessible computing infrastructures that can enable robust and reproducible AI4ESP research. 
Such long-term investment can also facilitate equitable participation from historically 
underrepresented communities and institutions in ESP research. Ultimately, we desire to develop 
automated and streamlined training/testing procedures for AI/ML models based on standardized, 
quantifiable, distribution-based metrics that can verify and enhance the robustness and 
reproducibility of AI/ML models and outcomes in ESP applications. 
 

15.6.3  Benchmarking/Verification/Uncertainty Quantification 
 
Short term: Efforts toward standardization of definitions and metrics to evaluate the quality of 
UQ are much needed. The community should extend existing UQ methods in ML to support the 
unique features of the ESP application data. These features include the multifidelity, 
multiresolution, and multimodal nature of the data, along with high dimensional and 
spatiotemporal challenges. Development of reliable benchmarks and autonomous workflows 
should also be carried out in the near future. 
 
Long term: The community should exploit DOE advances in the areas of 
quantum/neuromorphic and exascale computing and explore software-hardware co-design 
strategies for next-generation, uncertainty-aware AI methods for ESP. Application of 
uncertainty-aware ML methods to understand extreme events and seasonal to decadal predictions 
will likely be a potentially worthwhile direction. Development of uncertainty propagation 
schemes applied to complex ESP workflows where ML is not a stand-alone component but 
tightly integrated to the ESP pipeline is another challenge that needs to be overcome in the long 
term. 
 

15.6.4  Ethics/Responsible AI 
 
Near term: In the near term, we need to ensure that the community is involved in the 
development of the AI development and lifecycle from the beginning. We also need to 
immediately begin the development of standards for sharing data and AI models; understand the 
trade-off between data and model sharing and potential misuse; and develop an open-source 
approach that facilitates easy communication of models, their data, and any limitations.  
 
Short term: Within the five-year timeframe, there needs to be a publicly accepted definition of 
trustworthy, ethical, and responsible AI for environmental sciences, and all AI researchers 
should be focusing on ensuring that their AI projects follow the accepted standards. Research 
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should be more convergent, including both AI researchers, social scientists, and environmental 
scientists. Additional students are needed to measure and identify areas where there is a lack of 
data, and approaches to address the missing data should be developed. Finally, there needs to be 
a continued focus on the development of explainable and interpretable AI methods.  
 
Long term: By the end of the 10-year time frame, most AI methods should be either explainable 
or interpretable. This will facilitate additional trust in the methods as well as the ethical and 
responsible use of AI for ESP. Given the changing climate and associated extreme weather 
events, AI tools should be facilitating decision-making around climate resiliency and climate and 
environmental justice.  
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16  Hybrid Modeling  

Authors: Sivasankaran Rajamanickam (SNL), Prasanna Balaprakash (Argonne), Peishi Jiang 
(PNNL), Jiali Wang (Argonne), Nathan Urban (BNL) 
 

16.1 Grand Challenges 

16.1.1  Use of the Diverse and Multiscale Data for Training AI/ML Methods  
 
Crucial to the effectiveness of many AI/ML methods is the data. A major challenge that is 
specific for modeling in general and hybrid modeling in particular is the diversity and multiscale 
nature of the data sources. For example, there are a wide range of simulation and observational 
data that can differ in spatial-temporal scales and are available at various fidelity and resolution 
levels. The observational data are often sparse, and they are not available at the spatial-temporal 
scale required for various predictive modeling tasks. This difficulty is further exacerbated by the 
fact that the observation instruments are noisy and thus provide noisy data. Consequently, there 
is an inherent noise in the data that needs to be carefully handled when used for training AI/ML 
methods.  
 

16.1.2  Data Preparation for AI/ML Training  
 
Given the advancement of AI/ML software stack and open-source libraries, AI/ML model 
training is increasingly becoming an easier task. However, the most challenging aspect is the 
data preparation. Often overlooked is how much effort is required to prepare the data that are 
ready for AI/ML training. In fact, in many AI/ML tasks, the data preparation is the bottleneck 
and can take a significant amount of time and prevent scientists from leveraging the AI/ML 
methods for various datasets. While standard data preprocessing methods do exist, they cannot 
be used out of the box for the climate and weather datasets. On the other hand, there is not a 
single data processing method that will work for all the settings. One cannot make advances in 
hybrid modeling without making progress in domain-informed data processing methods. 
 

16.1.3  Combining Data from Multiple Sources 
 
Combining data from multiple sources is one of the central aspects of hybrid modeling. 
However, developing such multimodal fusion strategies in the face of Earth system data is a 
challenging task. First, the heterogeneity and nature of the data sources (simulations, 
observations, derived products such as satellites) make it harder to learn representations that are 
common across different modalities. The datasets can exhibit long-range dependencies among 
different modalities and learning teleconnections are difficult across such spatial-temporal scales. 
We have to bridge the scaling and resolution for both models and data, thus accounting for the 
heterogeneity needed to simulate processes accurately. Moreover, hybrid models include hyper-
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resolution, very fine-scale modeling (e.g., soil respiration, moisture, etc., and scale differences in 
microbial processes require multiple steps to connect to climate). There can be different levels of 
interactions based on hierarchies that take advantage of both high-resolution simulation and 
ensembles of lower-resolutions runs. To that end, developing a hybrid-model for all these fine 
scales, transferring information between scales, and identifying where high-resolution (regional) 
model runs are needed for informing coarse-resolution (global) ones, including short- and long-
term human impacts, are open research avenues. Noise, resolution, and missing data can vary 
across the modalities. Creation and curation of diverse and multiscale datasets create additional 
difficulties in preparing combined data for hybrid modeling.      
 

16.1.4  Bridging the Gaps between Short- and Long-term Forecasting  
 
While data-driven forecasting is typically short term and physics-based models are for long term, 
there is a huge gap in the medium-range forecasting. Hybrid modeling methods that can combine 
AI/ML models with the PDE-based models are promising, but the best ways to perform 
interpolation between these models is open research. To that end, real-time data assimilation for 
short-term models, online hybrid model tuning, and calibration need significant advancement. 
 

16.1.5  Uncertainty Quantification and Propagation  
 
Uncertainty quantification will be key to the effective use and deployment of hybrid models. 
There are various forms of uncertainty that the hybrid models need to face. The uncertainty in 
the data due to noise, measurement errors, and low resolution needs to be captured in the 
predictions appropriately. The AI/ML-based hybrid models are dependent on the training data, 
and therefore it is critical to capture the model uncertainty or epistemic uncertainty. Moreover, 
the modeled uncertainties need to be propagated across models, spatial-temporal scales, and 
resolutions. This is quite challenging in many ways.  
 

16.1.6  Out of Distribution 
 
Out of distribution will be a key challenge for hybrid modeling. Despite simulation, modeling, 
and observational capabilities, the hybrid models that we train will slowly become obsolete as 
the state of the Earth system changes. For example, the data and simulation for a hydrologic 
regime in a particular region can change over time, and thus hybrid models trained with 
simulation and observational data have to deal with out-of-sample/distribution phenomena. 
Consequently, hybrid models require tuning and calibration based on observations. It has been 
acknowledged that such tuning and calibration are performed manually and in an ad hoc way. 
Currently, there is no systematic approach for dealing with the out of distribution, tuning, and 
calibrating the hybrid models to reduce thousands of compute core-hours’ waste and the sheer 
time required for tuning the simulation.  
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16.1.7  Physics-informed AI/ML and Computational Cost 
 
Physics-informed AI/ML rely on expert knowledge to incorporate physics into loss functions and 
constraints. Under these settings, the AI/ML models are trained by enforcing known physics and 
data. The challenges are associated with high computational cost. Realistic applications require 
large DNNs to approximate space-time varying states, parameters, and constitutive relationships. 
Physics-informed training of these DNNs requires a large number of “collocation” points where 
the PDEs’ residuals are minimized. The large number of collocation points and coefficients in 
DNNs leads to large minimization problems that are also nonconvex, and, therefore, non-unique, 
leading to additional model uncertainty. Moreover, there are multiple scenarios in which the 
physics is unknown (e.g., artificial viscosity, heterogeneous permeability fields). To that end, we 
need to advance our ability to extract unknown physics from the data.  
 

16.1.8  Hybrid Model Stability 
 
Hybrid model stability will be a crucial factor in the use and deployment of the models. 
Specifically, when ML surrogates, which are trained offline, are plugged within the simulation, 
due to distribution shifts the efforts can propagate and make the models unstable. Offline training 
can potentially induce more issues as they are not informed by physics constraints.  
 

16.1.9  Trustworthiness and Validation of Hybrid Models 
 
Trustworthiness and validation of hybrid models will be a major challenge to wider adoption. 
Most of the ML models are either overfit or underfit. Although physical constraints can improve, 
we need domain-specific methods to establish trustworthiness and validation. The standard 
metrics from the ML literature can help to an extent, but model validation and trust for 
timescales of interest (climatology) require development of metrics from the domain experts. 
Moreover, extracting and verifying underlying causal relations in the surrogate mode are critical 
for both trustworthiness and validation. 
 
An ongoing challenge, even for simple models, is to maintain the stability and forecast skill for a 
sufficiently long time period. Integrating emulators (representing small scales) into existing PDE 
dynamic solvers (representing large scales) is a substantial software architecture research 
challenge. First, the representation of data in the PDE models and in the emulators may differ 
greatly (e.g., processes, scales). Second, there is a concurrency management problem as 
emulators compete for resources with existing PDE models, and the relative computation times 
and resource requirements may change dynamically (e.g., time-stepping). Third, monitoring and 
debugging models that mix intermediate results from PDE models and emulators will be difficult 
(e.g., exponential growth of errors). Overall, the development of a hybrid modeling system will 
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face similar challenges when compared to the development of conventional models, such as the 
complexity of modeling the Earth system, with its nonlinear interactions between model 
components, scale interactions, exponential growth of errors in initial conditions, numerical 
instabilities, and many more.  

16.2  State-of-the-Science 
 
In this section, we summarize the state-of-the-science in hybrid modeling with regard to (1) the 
state of science in hybrid modeling for Earth science, and (2) the state of science in ML for 
supporting hybrid modeling. 
 

16.2.1  The State of Science in Hybrid Modeling for Earth Science 
 
Broadly speaking, hybrid modeling has been applied in the following three scenarios in Earth 
science: (1) learning PDEs through AI; (2) coupling simulation from physics-based models with 
observation/experiment data; and (3) coupling AI-based emulators with physics-based models.  
 
Extensive efforts exist in employing AI as surrogates in representing PDE-based dynamics. For 
instance, physics-informed neural networks (PINNs) learn PDE by incorporating physics-based 
laws in the loss function of a DL model (Karniadakis et al. 2021). PINN has been employed in 
different studies in Earth science, particularly in subsurface hydrological processes (Tartakovsky 
et al. 2020), where observations are usually hard to obtain. Also, neural operators started gaining 
attention recently (Anandkumar et al. 2019). This technique learns PDE through a predefined 
operator such as Fourier operator (Li et al. 2020) and has experienced some successes in 
emulating sea surface height (Jiang et al. 2021) and belowground multiphase flow (Wen et al. 
2021).  
 
Another scenario of hybrid modeling is to couple model simulations with observations data. One 
widely used application is to employ AI as error corrector to adjust the model simulations 
(Willard et al. 2020). Such a corrector can be deployed in the following two ways. The first 
approach is to directly construct the AI-based error corrector using the difference between 
simulation and observations (Karpatne et al. 2017). The second approach first pre-trains a 
surrogate using model simulations, and then fine-tunes the pre-trained emulator using an 
observation dataset (Read et al. 2019). 
 
One good example of integrating AI-based emulators with physics-based models is coupling a 
DL-based emulator for turbulent heat fluxes with a process-based hydrological model framework 
(Bennett and Nijssen 2021). However, compared with the previous two scenarios, there are 
limited applications on such hybrid modeling. The main reason probably lies in the technical 
bottleneck of integrating python-based AI codes (e.g., pytorch) with C++/Fortran-based physical 
models (see Grand Challenges, section 16.1, for details). 
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16.2.2  The State of Science in ML to Support Hybrid Modeling 
 
In general, the workflows and computational infrastructure for hybrid modeling are still in their 
early stages. While deep learning frameworks (e.g., pytorch and tensorflow) have gain their 
popularity rapidly in the past decade, a more universal framework for ML-based scientific 
programming is still in its infancy phase. Nevertheless, emerging tools exist, such as Jax – a 
python library for differential programming serving as a more mature alternative to numpy 
autograd; and Julia – a relatively new programming language that is specifically designed for 
high-performance computing. These examples of progress have enabled new modeling activities 
in Earth science. An ocean scientist developed Veros (Häfner et al. 2018), a JAX-based ocean 
model that supports both CPU and GPU-based parallel computing and shows comparable 
performance with the corresponding Fortran codes. These developments would eventually not 
only change the “legacy way” of physical modeling using C++/Fortran and but also greatly ease 
the process of integrating physics-based models and DL models. 
 

16.3  Experimental, Data, and Modeling Opportunities 
 
Opportunities lay ahead owing to the increasing availability of observation/simulations in the 
Earth system; the potential computational efficiency gain through hybrid modeling; the 
development of computing software/resources; and the potential funding avenues. 
 
Over the last decade, the advance of observation technology and computation power enables the 
generation of numerous datasets including both observation and model simulations, which would 
greatly benefit the development of hybrid models or AI models in general. First, the increasing 
observations, which range from point-based (e.g., AmeriFlux https://ameriflux.lbl.gov/]) to 
remote sensing product (e.g., NASA MODIS [https://modis.gsfc.nasa.gov/], NASA SMAP 
[https://smap.jpl.nasa.gov/]), provide extensive training datasets to refine DL models that can be 
used as either data-driven modeling or error correction. In particular, these observations are 
usually available across different spatiotemporal scales. Future research can focus on how to 
efficiently utilize these heterogeneous data sources for multiscale modeling study. Second, open 
model simulation is another source for developing AI surrogate models. For instance, National 
Water Model (NWM, https://water.noaa.gov/about/nwm) regularly updates its reanalysis product 
for hydrological simulation across the CONUS. These model simulations can facilitate surrogate 
model development. Third, these days many datasets come online, including both remote sensing 
and NWM reanalysis products. Developing a systematic way to integrate these datasets into the 
E3SM using technology such as online learning would be a great opportunity.  
 
Similar to surrogate modeling, hybrid modeling provides significant speedup for ensemble-based 
modeling and analysis. It would benefit the performance of ensemble-based forecasting 
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(e.g., Kay et al. 2015; Weyn, Durran, and Caruana 2020), uncertainty quantification, and 
sensitivity analysis. In particular, the computation efficiency achieved by hybrid modeling can 
further facilitate uncertainty quantification on high-dimensional space. Another advantage of 
hybrid modeling is in multiscale modeling (Schneider et al. 2017). Instead of developing a big 
surrogate model for a physical model, which is extremely hard and at risk of losing the 
embedded physics, one can keep the dynamics of the scale of interest (e.g., high resolution) 
unchanged and replace the remaining (e.g., low-resolution) dynamics with an AI surrogate, such 
that both model stability and physics are obtained. 
 
Advances in high-performance computing and deep learning tools provide opportunities for 
Earth scientists to develop a powerful, user-friendly software framework for conducting research 
on hybrid modeling. Such new software frameworks can leverage the following advances in deep 
learning and computer science in general. Automated ML (e.g., H2O’s AutoML 
[https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html]) can be used to ease the 
development of an ML component such as hyperparameter tuning/ensemble machine learning. In 
addition, SmartSim (https://www.craylabs.org/docs/overview.html) and Fortran-Keras Bridge 
(https://github.com/scientific-computing/FKB) are powerful tools to connect machine learning 
codes with physics modeling codes programmed on legacy Fortran/C++ codes. Furthermore, the 
new framework should systematically archive existing modeling simulation (e.g., from E3SM) 
such that these simulations can be readily accessed and used for hybrid modeling development. 
 

16.4  Research Priorities 
 

16.4.1  Use In-situ Data to Improve Surrogates for Hybrid Modeling 
 
Previous studies have developed emulators for complex climate models based on purely 
numerical simulations (e.g., Krasnopolsky, Fox-Rabinovitz, and Chalikov 2005; Wang, 
Balaprakash, and Kotamarthi 2019). This could be problematic, especially for small-scale and 
fast-moving processes, if the physical processes are still not or only partially resolved (e.g., the 
missing interaction between neighboring cells through cold pools; the three-dimensional nature 
of radiation) in these numerical models. These processes may be directly trained by in situ 
observations, remote sensing data, and super-resolution simulations. But much remains unknown 
about how much data from the past and present could be used to train models for future 
prediction and how to make sure these models conserve important physical properties. The use 
of observational data in developing these emulators will provide the ability to identify critical 
observations and develop numerical/observational and computational strategies to improve both 
their representation and the predictability of the model. Data examples include the Atmospheric 
Radiation Measurement’s observatory and routine high-resolution modeling at the Southern 
Great Plains. For certain locations, the improvement of using both observations and model 
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simulations most likely can also help the neighboring locations, for example, using advances in 
transfer learning and continual learning methods. 
 

16.4.2 Explore Parameter Space for Optimizing Emulator’s Performance and for Uncertainty 
Quantifications 
 
This research priority is to better understand the source of model errors and uncertainties through 
perturbation of model initial conditions, physical parameterizations and parameters, and external 
forcings. This requires a fast, accurate, and stable modeling system that couples AI-based 
emulators with PDE-based dynamic solvers using advanced computational techniques (e.g., 
software integration, coupling, workflows) to achieve long time-period and/or large ensemble 
simulations. Such emulators need to be able to sample physical parameters (not hyperparameter, 
but the parameter used in the physics parameterizations) within the parameter space. It should 
also work on both regular grids as well as non-regular mesh like the E3SM or MPAS-Ocean 
models do (Shi et al. 2022) and should allow interactive post-hoc exploration and analysis, so the 
scientist can be analyzing the sensitivity of different parameters in real time during the training 
(He et al. 2020). 
 

16.4.3  Continual Learning Hybrid Models 
 
Most of the hybrid models that leverage AI/ML are developed for the given snapshot of training 
data. These models become less effective when the data on which they are trained on becomes 
less relevant due to distribution shifts, which often happens in the spatial-temporal climate data. 
To that end, we need to develop hybrid models that can quickly adapt to the change in the data. 
Specifically, continual learning algorithms seek to train models without losing the learning from 
the past (stability) and adapt rapidly to the new information from the newly collected data 
(plasticity). Hybrid models with continual learning capabilities are key to rapid training and fast 
adaptation. 

16.4 4  Combine Online and Offline Training  
 
While most of the emulators are developed and tested “offline,” there is a need to plug these 
offline emulators back to the PDE solves, because offline training is not informed by physics 
constraints. Therefore, to make certain that the hybrid model can be stably run, approaches for 
effective online training are needed. There are studies that train the emulators “online” while 
coupled with the dynamical solvers. However, these studies use very simple models and ignore 
important aspects (e.g., cloud water and ice) for simplicity (Brenowitz and Bretherton 2019; 
Maulik et al. 2019). A new compute pipeline is needed that can help prevent instability due to 
separate compute flows of PDE versus AI for complex Earth system models, such as E3SM.  
 



 

337 
 

16.4.5  Automated Machine Learning  
 
Design and development of AI/ML-based hybrid models open up several design choices and 
hyperparameters, which are often set manually and/or by using trial and error. Given the 
expected complexity and volume of the data, this manually intensive or ad hoc approach will not 
scale and will result in models with poor performance. A promising approach to overcome these 
issues is scalable automated machine learning. This will include a hyperparameter and neural 
architecture search to tune the hyperparameters of the models and the components of the neural 
architectures. In the context of hybrid models, we can expand these tuning to the components of 
the physical models and tune all of the components holistically. Another area where automated 
machine learning can help is to develop model ensembles. Specifically, automated machine 
learning can be used to develop an ensemble of hybrid models and use them for uncertainty 
quantification. 
 

16.4.6  Software for Hybrid Model, Coupling between AI and PDE  
 
To couple AI/ML-based emulators and complex PDE-based climate models and respond to the 
software architecture research challenges, software development is an urgent need. This includes, 
for example, the development of data adapters that allow in-memory, distributed data to be 
presented to the emulators; lightweight workflow-like components to distribute work on demand; 
and decision-tracking components to capture the data that go into and out of the emulator. The 
DOE Leadership Computing Facility is preparing for CPU and GPU hybrid supercomputers, 
such as the exascale Aurora, which could be beneficial for coupling AI and numerical 
simulations. One big advantage of replacing process models with ML-based emulators is that 
ML models tend to run efficiently on GPUs. The GPU will also significantly speed up data 
generation from numerical models that can provide the training data for AI emulator 
development. 
 

16.4.7  MLOps for Hybrid Modeling  
 
In traditional model/software development, the underlying physical phenomena that need to be 
modeled and implemented do not change rapidly; therefore, the software development, test, 
validation and verification, and scaling are often stable and static. This is often not the case in 
hybrid models because of the iterative nature of data-driven science, wherein the ML models 
drive the data collection, which in turn changes the models. Consequently, the ML models need 
to be constantly retrained, validated, verified, and deployed. MLOps (akin to DevOps in 
traditional software development) seeks to automate, orchestrate, and manage various stages of 
ML model development and deployment. MLOps applies to the entire hybrid model 
development lifecycle: data collection, data processing, feature engineering, data labeling, model 
design, model training, optimization, deployment, and monitoring.  
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16.5  Short-term (<5 years), 5-year, and 10-year Goals 
 
Table 16-1 describes the short-term, 5-year, and 10+-year goals for several topic areas or targets. 
Specifically, advances expected in hybrid modeling algorithms, data, UQ, and software 
frameworks for simulations are all shown in a concise manner. 
 
Table 16-1. Aspirational Goals for Hybrid Modeling for Earth System Predictions 
Topic	Areas	/	
Target	

Short-Term	Goals	 5-Year	Goals	 10+-Year	Goals	

Expected	
Algorithmic	
Speedup	

10×		 10×	–	100×	 1000×	

Hybrid	
Modeling	
Algorithmic	
Advances	

● PINNs	and	other	
SciML	method	
development		

● Identifying	reduced	
order	hybrid	
modeling	
opportunities	

● Integrated	
framework	to	
handle	multiscale	
and	cross-physics	

● Progress	on	
stability,	physics	
constraints	

● Formulating	ML	
models	so	that	
projections	are	
interpolated	
between	training	
data	

● Offline	training	
inference	on	need	

● Formulating	ML	
models	for	rare	events	
(different	
distributions	than	
training	data);	few-
shot	or	zero-shot	
learning	

● Enhancing	
explainability	of	
hybrid	models;	same	
problem	as	physics	
models	

● Stable,	production	
hybrid	modeling	in	
climate	science	

● Continuous	learning	/	
transfer	learning	for	
hybrid	models	

● Identify	data	gaps	
based	on	hybrid	
models		

● Automated	model	
development	and	
new	physics	
discovery	

● Online/coupled,	
federated	training	
on	climatological	
timescales	and	
close	to	data	

● Developing	
learning	
approaches	to	
enable	machine	
reasoning	
(>	10	years)	

Data	Advances	 ● Benchmark	datasets	
for	standardized	
comparison	of	
methods	and	tools	
(MNIST	for	ESP)	

● Common	data	pre-
processing	for	data	
engineering	

● Smart	practices	for	
data	augmentation,	
e.g.,	for	extremes	

● Augments,	large	scale,	
production,	open	
datasets	for	hybrid	
models	

● Automatic	data	
curation	and	pre-
processing	for	
multiple	data	
streams	

● Build	
infrastructure	to	
stream	data	into	
ESGF	to	build	ML	
models.	
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Table 16-1. (Cont.) 
Topic	Areas	/	
Target	

Short-Term	Goals	 5-Year	Goals	 10+-Year	Goals	

UQ	Advances	 ● Build	UQ	methods	
focused	on	hybrid	
physics	+	ML	
models	

● Identify	the	source	
of	uncertainty	and	
identify	key	gaps	of	
uncertainty	
identification	for	UQ	

● Scientifically	useful	
uncertainty	
information	in	
predictions		

● Established	
mathematical	UQ	
framework	for	
hybrid	physics	and	
ML	models,	error	
propagation,	
optimal	decision-
making	

Community	
Development	

● Building	new	
multidisciplinary	
communities	
around	data,	ESP,	
and	ML	models	

● Basic	
understanding	of	
other	areas	within	
ESP	

● Integrated	teams	of	
ML,	mathematics,	
data,	and	domain	
scientists	with	
knowledge	in	other	
areas	

● A	pipeline	of	students,	
postdocs,	and	staff	
members	with	
knowledge	across	
areas	of	interest	

● A	tightly	integrated	
AI4ESP	community	
with	a	community-
wide	inter-
disciplinary	
understanding	of	
problems	and	
methods	in	other	
areas	

Software	
Frameworks,	
Infrastructure	
for	Simulation	
Advances	

● Infrastructure	to	
allow	data	sitting	
next	to	the	
computer	

● Demonstration	of	
methods	with	
existing	
frameworks	

● Learning	with	
distributed	
physics/observation	
datasets		

● Workflow	for	MLOps	
and	AI/ML-focused	
computing	
infrastructure		

● Development	of	new	
differentiable	
programming	
languages	and	
packages	with	built-in	
support	for	scientific	
applications	(ODEs,	
PDEs)	and	integration	
with	DOE	codes	

● Adjoint/derivative-
enhanced	training	

● Integrated	
software	
frameworks	for	
routine	hybrid	
model	training,	
coupling,	
validation,	
hardware	
acceleration	

● Differentiable	
Climate	Modeling	
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17  AI Architectures and Co-design      

Authors: Jim Ang (PNNL), Simon Hammond (SNL), Maya Gokhale (LLNL), James Hoe 
(CMU), Tushar Krishna (GA-Tech), Sarat Sreepathi (ORNL), Matt Norman (ORNL), Ivy Peng 
(LLNL), Maruti Mudunuru (PNNL), Phil Jones (LANL), Mahantesh Halappanavar (PNNL) 
 

17.1  Future System Concepts 
 
Participants in the breakout room focus groups discussed several plausible future system 
concepts. The first group addressed the evolution of DOE’s Leadership Computing Facility 
(LCF) systems for HPC and AI. These large-scale heterogeneous computing systems provide a 
foundation for advanced concepts with the potential to provide a radically different approach to 
future Earth system modeling and AI-enabled integration with measurement and observation 
data.  

17.1.1  Centralized Large-Scale HPC Concept 
 
The baseline system concept is the future evolution of large-scale HPC and Cloud computing 
systems. This next step will extend post-exascale architectures beyond the first generation of 
DOE exascale heterogeneous systems that integrate CPUs and GPUs. As the HPC and Cloud 
computing communities increasingly rely on hardware specialization to improve performance, 
co-design approaches will support the development of accelerators for frequently used kernels in 
scientific modeling and AI/ML methods. New specialized accelerators may arise to support 
additional data science capabilities such as uncertainty quantification, streaming analytics, or 
graph analysis. These future large-scale computing systems with extreme heterogeneity will need 
to be co-designed to support the increased computational and dataset sizes associated with Earth 
science predictability and scientific machine reasoning. 
 

17.1.2  Edge Sensors with Centralized HPC/Cloud Resources Concept 
 
In the second system concept, environmental data are recorded from a broad collection of 
sensors spread across the globe and located at points of interest. The sensors are designed to 
monitor specific items of interest (e.g., river flow, temperature, light, etc.) and to communicate 
these data back to a centralized location. At this centralized facility, large HPC or Cloud 
computing environments will process the incoming data streams for integration into online 
simulations of extreme weather events, climate, hydrology, etc.  
 
AI/ML capabilities could be utilized at multiple points within this system concept. First, the 
excessive volume of data coming into the system will have the potential to overrun even the 
largest processing capabilities and is unlikely to be able to be stored in memory or even 
temporary storage resources (such as file systems or object stores). AI/ML models could be 
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trained and tailored to either summarize or select relevant features from the incoming data 
streams so that a significantly reduced amount of data needs to be kept and integrated into 
ongoing simulations. One other potential is for AI/ML models to identify anomalies from the 
incoming data streams that might suggest areas of interest for simulations to be focused on – for 
instance, the start of a hurricane, or the high likelihood of significant snowfall.  
 
Due to the distributed nature and inhospitable environments where sensors may need to be 
placed or roam, it is unlikely that a reliable stream of data will reach the centralized location for 
all possible inputs. One common use case is the smart city scenario, Figure 17-1, that describes a 
wide range of sensor, computing, and data storage capabilities. AI/ML models could be used in 
such an environment to help patch measurement gaps and present a more consistent view of real-
world data to a future simulation run on a large-compute resource.  
 

 
Figure 17-1. A Smart City scenario with a large number of sites for fixed sensor deployments, e.g., 
temperature, wind, CO2, precipitation, etc., plus a variety of mobile devices that can also be used to 
intermittently augment collection of measurement and observation data. An urban setting will support 
advanced wireless communications like 5G and eventually 6G (Source: Pacific Northwest National 
Laboratory). 
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17.1.3  Federated Processing from the Edge to the Data Center Concept 
 
The third potential system design extends the second concept by leveraging a much higher 
degree of processing located either in, or near to, the distributed sensor network. In this model, 
sensor data can be processed either directly on the sensor itself or in a nearby edge server with 
processing elements that may stream a small collection of sensor data into it. Local processing 
stations can then send on either their raw or locally processed data to a centralized HPC and/or 
Cloud resource for inclusion in simulation models and centralized AI/ML models as in the first 
system concept.  
 
The advantage of this approach is that data down-selection and feature extraction can be 
performed locally, significantly reducing the volume of data that must be transmitted to a 
centralized resource. Assuming that a sufficiently performant local network among sensors can 
be established, model parameters and partial results, perhaps even AI/ML model updates can be 
exchanged within a locale, allowing for a truly federated aspect to the design. 
 
Initially, this concept takes advantage of existing gateways and local area networks serving 
sensors in the field. Through co-design collaborations, it is possible to expand that service to 
include application/sensor-specific processing to filter, analyze, compress, encrypt, and unify 
multiple sensor streams transmitting measurements through the network. 
 

17.1.4  Dynamic and Adaptive Federated Processing Concept 
 
The last system concept builds on the previous three by augmenting feedback and control paths 
within distributed networks of sensor-local resources. Local control offers lower latency 
decision-making to dynamically control what information is observed, measured, recorded, and 
relayed by the sensor network. Such a design has powerful implications: by dynamically 
controlling sensors online, simulations of the Earth’s weather and climate can essentially focus 
sensor inputs on specific quantities or geographic locations of interest. Examples might include 
where severe weather events are expected or whether climate scientists identify where specific 
information is needed to help improve the quality of their models. This concept expands to 
potentially multiple HPC and/or Cloud data centers for federated AI/ML modeling. AI/ML 
models can play a crucial part in this system by performing continuous, autonomous online 
inspection of evolving simulations or of recorded data to identify areas of data insufficiency or 
statistical weakness. Furthermore, a dynamic and adaptive system may be able to carefully 
obtain and select data to improve the quality of its training, reducing the need for vast, 
potentially intractable, datasets to be collected over long periods.  
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17.2  Grand Challenges 
 
These two system concepts that integrate federated processing are beyond the capabilities of 
affordable technologies today and will require a significant investment both in foundational 
technology systems and co-design programs so that climate scientists, mathematicians, AI/ML 
experts, computer scientists, and hardware engineers can collaborate to balance the competing 
performance, energy, cost, and security challenges associated with AI/ML-accelerated Earth 
system modeling and observation/measurement capabilities. 
 
Significant technical challenges will arise in the following areas: 
 

17.2.1  Programmability and Usability  
 
The current and near-term challenge is the integration of scientific modeling and simulation 
applications with AI/ML methods. This drives the need to integrate Earth system HPC 
applications written in C/C++ and/or Fortran with AI/ML methods that use Python ML 
frameworks. Programming models are under development to support the convergence of 
applications and workflows onto heterogeneous computing systems. Many AI/ML architectures 
provide hardware support for reduced or mixed precision, and tools will be required to analyze 
which specific model components can use these capabilities. Protocols and tools for ESP data-
sharing and data federation on Cloud must be created. The usability challenge is to manage the 
complexity of mapping converged application workloads to future heterogeneous computing 
architectures that will integrate specialized hardware accelerators with commodity CPU/GPU 
processors. 
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Domain scientists1 are interested in exploring the capabilities of new heterogeneous advanced 
architecture computing systems, but there are challenges to understand how to map AI4ESP 
workflows to the diverse collection of computing system options. It is especially important to 
understand how AI/ML capabilities originally developed for generic commercial workloads may 
or may not be applicable for ESP hybrid modeling applications, or observation and measurement 
capabilities. From centralized large-scale modeling and training to edge computing inferencing 
and federated learning, new challenges arise for composition and distribution of applications, 
algorithms, and methods. This is an important opportunity for the AI4ESP community to develop 
a new generation of proxy applications and benchmarks for both modeling and observation 
capabilities2 and to facilitate communication and co-design collaborations with hardware 
designers, system software developers, algorithm developers, and domain scientists. 
 

17.2.2  Data Movement  
 
The expected volume of data associated with a full, coordinated Earth sensor capability will be 
unprecedented. Not only will such a network generate a previously unimaginable quantity and 
diversity of data, but the computing and network load for processing, transmitting, and 
subsequent storage of this volume will be orders of magnitude higher than any system available 
today. Data movement costs in terms of energy and latency motivates the interest in federation 
and distribution of computing across the AI4ESP scientific ecosystem. AI/ML technologies 
could help reduce such volumes through identification of patterns and anomalies, and in 
summarization of sub-volumes. Significant investment will be required in AI/ML approaches to 
ensure that the modeling capabilities will be compatible and efficient for the types of data being 
recorded, especially where this may deviate from commercial photo or video capabilities. 
Technologies that may assist in energy-efficient data transfers could include investment in 
silicon photonic network capabilities, as well as wide-area 5G- or 6G-like communication 
networks enabling sensors to communicate over short/medium distances without the need for 
physical wiring. On the storage side, Cloud technologies such as high-performance, large-
volume data object stores could likely provide a capability to address increased sparse data 
storage volumes, although at present this would pose a significant cost barrier using 
contemporary commercial Cloud pricing. AI/ML may also be used to enable smart compression 

 
1 Interfacing with sensors and AI analytics at the Edge will allow domain scientists to extract actionable 

information needed for improved modeling of disturbances and extreme events. This type of co-design is needed 
for most ESP applications. For example, watershed science, hydrology, ecohydrology, climate variability and 
extremes, aerosols and clouds, and atmospheric modeling are cross-cutting themes where AI@Edge has the 
highest impact. Co-design approaches that interface with distributed sensor networks will allow us to (1) collect 
reliable and relevant watershed data under disturbances, (2) monitor land-atmosphere-coastal interactions by 
embedding intelligence on the Atmospheric Radiation Measurement (ARM)  instruments, (3) understand 
wildfire events and their impact on ecosystems in near-real-time, and (4) assess critical infrastructure impacted 
by extreme events (e.g., see Human Systems and Dynamics, chapter 9). 

2  For example, AI-enabled co-design will enable us to emulate and deploy DOE codes such as PFLOTRAN, ATS, 
and E3SM at sensor edge for empowering ARM instruments and EMSL user facilities. 



 

347 
 

techniques on Earth system data to increase information density without increasing storage costs. 
Additionally, DOE HPC centers could incorporate concepts and methods from Cloud storage 
systems into future parallel file and storage systems to slowly move toward such capability. 
 

17.2.3  Energy Efficiency  
 
Large-scale networks with integrated sensors and federated processing, as well as wide area 
communication networks to handle data transmissions, are likely to be very expensive in terms 
of energy consumption. While this was a lower-priority focus for exascale computing, processing 
and communication of data remain power-expensive operations. Co-design has the potential to 
help improve this situation through the use of novel materials, devices, and processing 
techniques (e.g., neuromorphic-based accelerators to analyze images/video). However, 
significant investment will still be required in foundational technologies if large-scale, power-
efficient sensing networks are to be realized. Co-design to balance performance and energy 
efficiency will also address key questions of how the modeling, machine learning, uncertainty 
quantification, and other streaming analytics capabilities are partitioned across the AI4ESP 
scientific ecosystem that integrates DOE’s heterogeneous HPC systems with Cloud computing, 
edge servers, and sensors with IoT devices. 
 

17.2.4  Privacy and Security of Data 
 
As Earth systems modeling becomes increasingly integrated with a distributed network of 
observation and measurement sensors, and perhaps federated processing capabilities, the quality, 
accuracy, and robustness of the information will become more important. This is increased 
significantly if the information generated from modeling and measurement capabilities is used to 
support high-consequence national or international scientific policy decisions. The implications 
of potential data tampering or nefarious modification are clear: a national or international 
resource for accurate scientific prediction could be severely affected. As well as the security 
implications of such a system, data privacy concerns will also need to be addressed. This is 
particularly true of a system where individual human subject images or videos may be captured, 
or where their behavior could be discerned from the data. Imagine sensor capabilities that were 
able to identify patterns such as individual schedules going to and from work, etc. Co-design has 
a potential role to play in this space—by including security experts in cyber-physical designs 
from the outset, secure data transmission and processing can be integrated as a first-level citizen 
rather than as a later, software-derived additional layer. In addition, data privacy may be afforded 
if local artifacts associated with specific individuals can be aggregated into a larger, federated 
model with individual patterns obfuscated or redacted into the full model of the system.  
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17.3  State of the Science 
 

17.3.1  DOE HPC 
 
The HPC user facilities build on DOE’s investments in exascale computing. The first generation 
of these systems is based on the integration of CPU and GPU processors into heterogeneous 
systems. The impact on AI4ESP is through DOE’s development of scientific modeling 
capabilities to achieve energy-efficient performance on GPUs, while also leveraging the 
commercial drivers for GPU-based AI/ML performance. With the slowing of Moore’s Law, the 
computing community recognizes the increased need for architectural specialization, so the next 
generation of HPC systems is likely to extend beyond the current designs for CPU/GPU 
heterogeneity. DOE’s efforts in AI for Science are exploring capabilities that provide a 
foundation for integration of HPC applications with data science and AI/ML frameworks. 

17.3.2  Cloud Computing 
 
While Cloud providers have user-friendly tools to run AI/ML workloads, there is incompatibility 
among tool capabilities and user interfaces among different providers that make it difficult to 
achieve interoperability in a federation of Clouds. While some ESM data are presently stored on 
Cloud storage systems, the data stores are associated with a patchwork of individual groups and 
projects, lacking a federated view. For data storage, cloud providers can presently accommodate 
petabytes to exabytes of data. The commercial cloud cost is based on accessing and computing or 
analyzing the data, and can become an extreme cost if data transmission into/out of the Cloud 
becomes a frequent operation. Commercial AI/ML cloud infrastructure and services are 
predominately motivated by text and image data. Cloud providers have demonstrated AI-at-Scale 
for these applications. The largest NLP models approaching of 1 trillion parameters has been 
demonstrated on Selene (the #6 machine on the November 2021 Top 500 list). Workflow 
services exist on the cloud for certain applications, including many AI/ML methods, and raw 
materials are available on cloud platforms to create more complex workflows. ESM workflows 
currently do not exist that combine external data sources or coordinate with HPC simulation. 
Computer science expertise would be required to create such workflows in a form suitable for 
domain scientists. 
 

17.3.3  Edge Computing 
 
There is a broad portfolio of AI methods for classifying patterns, anomaly detection, 
unsupervised learning for data compression, inference at the edge, and continuous learning with 
streaming sensor data. The integration of edge computing sensors has a number of distinct 
deployment scenarios including NOAA and NASA Earth-observing satellite imagery with edge 
processing in space or at dedicated ground stations. Edge computing can also be integrated with 
the diverse collection of distributed sensors that collect observation and measurements for the 
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DOE’s Atmospheric Radiation Measurement (ARM) user facility. Adaptive sensors with 
embedded hardware accelerators are now emerging. New concepts for distributed applications 
are also under development such as geomorphic computing where weather research and 
forecasting models are distributed, federated, and able to dynamically adapt to the environment. 
 

17.4  Experimental, Data, and Modeling Opportunities 
 

17.4.1  DOE HPC  
 
There is an immediate opportunity to support scientific machine learning with higher level 
scientific application language APIs to allow domain scientists to develop and deploy AI4ESP 
modeling capabilities. Leveraging the experiences and expertise in DOE exascale co-design, 
there are opportunities to develop a new generation of mini-apps and benchmarks that reflect the 
needs of AI4ESP workflows from both the modeling and observation/measurement perspectives. 
AI architecture advances are driving the development of new, lower-precision computer number 
formats and high arithmetic intensity tensor operations. While clearly targeting deep learning 
methods that can be directly applied to ESP measurement data, there are also opportunities to 
develop tools to map ESP modeling and simulation capabilities to these advanced architectures. 
 

17.4.2  Cloud Computing  
 
Cloud can provide virtually unlimited compute cycles, enabling collections of individual 
simulations running concurrently on the distributed network. Use of the Cloud in ESM may 
facilitate data sharing due to ease of the merging of distributed data sources. Most commercial 
Cloud providers offer HPC environments with dedicated servers. Cloud resources include a 
variety of heterogeneous compute resources with CPUs, GPUs, and other accelerators. However, 
it should be noted that the cost model of commercial Cloud providers is based on use of the 
compute resources, and thus the cost for analyses and simulations may be potentially unbounded. 
An attractive direction for the future is for DOE facilities to offer Cloud environments within the 
HPC data center to accommodate Cloud storage models, workflow, and job scheduling co-
existing with traditional HPC approaches. Commercial Cloud providers also have pioneered 
support for integration of data center computing with a diverse portfolio of commercial Internet 
of Things (IoT) devices like smart speakers, thermostats, and other consumer home appliances. 
There is a significant opportunity for the ESM community to identify and prioritize how to 
leverage this commercial IoT infrastructure to support scientific observation and measurement 
instruments. 
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17.4.3  Edge Computing 
 
The most immediate opportunity for edge computing is the integration of processing with 
sensors to integrate inferencing, streaming analytics, or other data science capabilities to enhance 
the observations and measurements for Earth sciences. Edge computing can also provide local 
control of sensors to support real-time, autonomous sensor control to improve the quality and 
value of measurements for subsequent data assimilation workflows. There are a number of 
interesting co-design opportunities associated with the partitioning of computing workflows that 
can be distributed among DOE HPC user facilities, commercial Cloud computing data centers, 
and these distributed edge sensing instruments. The co-design of this modeling and experiment 
approach could also apply AI/ML to optimize some of the data communication challenges 
present in the integration of large-scale models/simulations with smart sensors. The data 
movement and energy efficiency challenges may also drive innovative approaches to distribute 
weather simulations across the AI4ESP scientific ecosystem that could integrate large-scale 
E3SM models with widely distributed “E3SM-Lite” edge computing simulations. 
 

17.5  Research Priorities: Short-term (<5 years), 5-year, and 10-year Goals 
 

17.5.1  Short Term 
 
Short-term goals include efforts to:  

● Develop a suite of AI4ESP workflows and benchmarks that share common tools and 
building blocks with commercial AI/ML activities for economy of scale. 

● Develop network simulators to provide quantitative analysis of distributed AI4ESP 
workflows that integrate computing and data capabilities for HPC + Cloud + Edge. 

● Develop high-level frameworks and APIs that support convergence of scientific modeling 
(e.g., PFLOTRAN, ATS, E3SM) and measurement with AI/ML and UQ methods. 

● Develop service-level abstractions to support scientists by hiding the scale and 
complexity (heterogeneity) of the underlying resources and execution on a range of 
different systems from DOE LCFs, to Cloud computing, to Edge computing capabilities 
for ARM instruments. 

● Support much closer communication and collaboration of domain scientists with data 
scientists, computer scientists, applied mathematicians, and computer architects. 

 

17.5.2  Medium Term  
 
Medium-term goals include efforts to:  

● Create data formats and structures to support interoperable, federation, and data sharing. 
● Understand how AI/ML can define better metrics for model and sensor uncertainty 

quantification. 
● Create AI/ML surrogates from high-resolution simulation and data. 
● Develop automated control of edge sensors. 
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17.5.3  Long Term 
 
Long-term goals include efforts to:  

● Improve efficiency by co-design across many currently disparate technical domains 
(ML/traditional, compute/storage/communication, SW/CPU/GPU/accelerator, and 
HPC+Cloud+Edge.  

● Demonstrate AI-at-scale opportunities for the envisioned concepts (HPC+Cloud+Edge) 
with secure storage, authentication, and provenance. 

● Develop federated learning that integrates streaming analytics and AI at edge sensors 
with HPC modeling. 

 

17.5.4  Vision of Co-design Opportunities 
 

● Anomaly analysis for weather and climate VERY early/extreme weather, real-time 
analysis needed, early prediction?  

○ Wildfire predictions, predict propagation of fires, then direct resources to areas of 
concern. 

○ Hurricane tracking/prediction: More accurate determination of evacuation zones, 
pre-positioning of infrastructure restoration assets. 

● Climate simulations have a longer timeframe, need archival records, larger datasets (long 
time series)? Can AI help fill in gaps in data, limited data/missing, etc.? 

● Create an AI4ESP Digital Twin of the planet. 
● Partitioning of processing and data capabilities over widely distributed AI4ESP scientific 

ecosystem that spans DOE supercomputers, Cloud computing and data centers, Edge 
servers, and sensors with integrated IoT processor capabilities. 

  



 

352 
 

Appendix A: Acronyms 

1D, 3D, 4D one-, three-, four-dimension(al) 
 
ABM  agent-based modeling 
AI  artificial intelligence 
AI2  Allen Institute for Artificial Intelligence 
AI4ESP Artificial Intelligence for Earth System Predictability  
ALE  Accumulated Local Effect 
ANN  artificial neural network 
API  application programming interface 
ARD  ARM Data Center 
Argonne Argonne National Laboratory 
ARM  Atmospheric Radiation Measurement 
ASCR  Advanced Scientific Computing Research (DOE Office of Science) 
ASU  Arizona State University 
 
BER  Biological and Environmental Research (DOE) 
BGC  biogeochemistry 
BNL  Brookhaven National Laboratory 
 
CAM  community atmospheric model 
CESM  Community Earth System Model 
CI  cyberinfrastructure 
CIRES  Cooperative Institute for Research in Environmental Sciences 
CMIP  Coupled Model Intercomparison Project 
CMU  Carnegie-Mellon University 
CNN  convolutional neural network 
CPU  central processing unit 
CRM  cloud-resolving model 
CU  Colorado University 
 
DA  data assimilation 
DAAC  Distributed Active Archive Center (NASA) 
DAQ  data acquisition 
DDROM data-driven reduced order modeling 
DL  deep learning 
DNN  deep neural network 
DNS  direct numerical simulation 
DOE  U.S. Department of Energy 
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E3SM  Energy Exascale Earth System Model 
EES  Earth and Environmental Systems 
EESSD Earth and Environmental Systems Science Division 
eMBB  enhanced mobile broadband 
EMSL  Environmental Molecular Science Laboratory 
ENSO  El Niño Southern Oscillation 
ERF  effective radiative forcing 
ESGF  Earth System Grid Federation 
ESM  Earth system model 
ESP  Earth system predictability/prediction 
ESS  Earth system science 
ESS-DIVE Environmental Systems Science Data Infrastructure for a Virtual Ecosystem 
ET  evapotranspiration 
 
FACE  Free Air Carbon Dioxide Enrichment 
FAIR  findable, accessible, interoperable, and reproducible 
 
GAN  generative adversarial network 
GC  Grand Challenge  
GCAM Global Change Analysis Model 
GCM  global climate model 
GHG  greenhouse gas  
GP  Gaussian process 
GPP  gross primary productivity 
GPU  graphical processing unit 
GSA  global sensitivity analysis 
 
HPC  high-performance computing 
 
I/O  input/output 
IAI  interpretable AI 
ILAMB International Land Model Benchmarking 
IoT  Internet of Things 
IPCC  Intergovernmental Panel on Climate Change 
 
JPL  Jet Propulsion Laboratory (NASA) 
 
KIML  knowledge-informed machine learning 
 
LANL  Los Alamos National Laboratory 
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LBL, LBNL Lawrence Berkeley National Laboratory 
LCF  Leadership Computing Facility (DOE) 
LES  large eddy simulation 
LIME  local interpretable model-agnostic  
LRP  Layerwise Relevance Propagation 
LSTM  long short-term memory 
LTER  Long-Term Ecological Research  
 
MJO  Madden Julian Oscillation 
ML  machine learning 
MLP  multilayer perceptron 
MOCU mean objective cost of uncertainty 
ModEx MOdel Driven EXperiment 
 
NASA  National Aeronautics and Space Administration 
NCAR  National Center for Atmospheric Research (NSF) 
NCICS  North Carolina Institute for Climate Studies 
NCSU  North Carolina State University 
NEON  National Ecological Observatory Network 
NERSC National Energy Research Scientific Computing Center 
NETL  National Energy Technology Laboratory 
NeurIPS Neural Information Processing System 
NGEE  Next-Generation Ecosystem Experiment 
NLP  natural language processing 
NN  neural network 
NOAA  National Oceanic and Atmospheric Administration 
NSF  National Science Foundation 
NWM  National Water Model 
 
ODE  ordinary differential equation 
ODML  on-demand machine learning 
ORNL  Oak Ridge National Laboratory 
OSSE  Observing System Simulation Experiment 
 
PDE  partial differential equation 
PE  parameter estimation 
PINN  physics-informed neural network 
PNNL  Pacific Northwest National Laboratory 
PPE  perturbed physics ensemble 
PSL  Physical Sciences Laboratory (NOAA) 
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PSU  Pennsylvania State University 
PUBS  prediction in unmonitored basins 
 
QA/QC quality assurance and quality control 
QoI  quantity of interest 
 
R&D  research and development 
RF  random forest 
RNN  recurrent neural network 
ROI  return on investment  
ROM  reduced order modeling 
RS  remote sensing 
 
SAR  synthetic aperture radar  
SFA  Science Focus Area 
SH  sensible heat 
SHAP  Shapley  
SNL  Sandia National Laboratories 
SMAP  soil moisture active passive 
SOC  soil organic carbon 
SPEEDY Simplified Parameterization, primitive Equation Dynamics 
SPRUCE Spruce and Peatland Responses Under Changing Environments 
SSL  self-supervised learning 
SST  sea surface temperature 
SVM  support vector machine 
 
TC  tropical cyclone 
 
UAV  unmanned aerial vehicle 
UC  University of California 
UIUC  University of Illinois at Urbana-Champaign 
UQ  uncertainty quantification 
USACE U.S. Army Corps of Engineers 
USGS  U.S. Geological Survey 
UT  University of Texas 
 
VAE  variational autoencoder 
WHONDRS Worldwide Hydrobiogeochemistry Observation Network for Dynamic River 

Systems 
XAI  explainable AI  
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Appendix B: Workshop Agenda 

Video and additional information is linked on the online version of the agenda. 
Times Are North American Eastern Time Zone 

October 25: Day 1 (Week 1) 
12:00 Welcome - Nicki Hickmon 
 Deputy Director for Science Programs, DOE Office of Science - Harriet Kung 
 Introduction to AI4ESP initiative - Nicki Hickmon 
 Earth & Environmental Systems Sciences Division (EESSD) - Gary Geernaert 
 Advanced Scientific Computing Research (ASCR) - Barb Helland 
13:15 AI4ESP Workshop Structure & Charge - Haruko Wainwright 
 AI4ESP State-of-the-Science - Haruko Wainwright, Forrest Hoffman, Scott Collis 
14:00 Break 
14:15 Panel Discussion 
 Panel Chair: Rick Stevens 
 Panel: Grace E. Kim, Prabhat Ram, Kirk Borne 
15:00 Earth System Predictability Session - Atmospheric Modeling (Invited Only) 
 Session Chair: Ruby Leung - Presentation 
17:00 Adjourn 

October 26: Day 2 (Week 1) 
12:00 Plenary talk - Amy McGovern 
12:15 Plenary talk - Pierre Gentine 
12:30 Break 
12:45 Earth Science Topic Session - Land Modeling (Invited Only) 
 Session Chair: Beth Drewniak 
14:45 Break 
15:00 Cross-cut Session - Data Acquisition to Distribution (Invited Only) 
 Session Chair: Giri Prakash 
17:00 Adjourn 

November 1: Day 3 (Week 2) 
12:00 Reports From Previous Sessions 
12:30 Break 
12:45 Earth Science Topic Session - Human Systems & Dynamics (Invited Only) 
 Session Chair: Christa Brelsford 
14:45 Break 
15:00 Earth Science Topic Session - Hydrology (Invited Only) 
 Session Chair: Charuleka Varadharajan 
17:00 Adjourn 
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November 2: Day 4 (Week 2) 
12:00 Plenary talk - Chaopeng Shen 
12:15 Plenary talk - Rob Ross 
12:30 Break 
12:45 Earth Science Topic Session - Watershed Science (Invited Only) 
 Session Chair: Mavrik Zavarin 
14:45 Break 
15:00 Cross-cut Session - Neural Networks (Invited Only) 
 Session Chair: Auroop Ganguly 
17:00 Adjourn 

November 8: Day 5 (Week 3) 
12:00 Reports From Previous Sessions 
12:30 Break 
12:45 Earth Science Session - Ecohydrology (Invited Only) 
 Session Chair: Forrest Hoffman 
14:45 Break 
15:00 Cross-cut Session - Surrogate Models & Emulators (Invited Only) 
 Session Chair: Nathan Urban 
17:00 Adjourn 

November 9: Day 6 (Week 3) 
12:00 Plenary Talk - Tapio Schneider 
12:15 Plenary Talk - Alison Appling 
12:30 Break 
12:45 Earth Science Session - Aerosols & Clouds (Invited Only) 
 Session Chair: Po-Lun Ma 
14:45 Break 
15:00 Cross-cut Session - Knowledge-Informed Machine Learning (Invited Only) 
 Session Chair: Frank Alexander 
17:00 Adjourn 

November 29 Day 7 (Week 4) 
12:00 Reports From Previous Sessions 
12:30 Break 
12:45 Earth Science Session - Coastal Dynamics, Oceans & Ice (Invited Only) 
 Session Chair: Matt Hoffman 
14:45 Break 
15:00 Cross-cut Session - Knowledge Discovery & Statistical Learning (Invited Only) 
 Session Chair: Xingyuan Chen 
17:00 Adjourn 
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November 30: Day 8 (Week 4) 
12:00 Plenary talk - Laure Zanna 
12:15 Plenary talk - Katie Dagon 
12:30 Break 
12:45 Earth Science Topic Session - Climate Variability & Extremes (Invited Only) 
 Session Chair: Maria Molina 
14:45 Break 
15:00 Cross-cut Session - Explainable/Interpretable/Trustworthy AI (Invited Only) 
 Session Chair: Line Pouchard 
17:00 Adjourn 

December 2: Day 9 (Week 5) 
12:00 Reports From Previous Sessions 
12:30 Break 
12:45 Cross-cut Session - Hybrid Modeling (Invited Only) 
 Session Chair: Sivasankaran Rajamanickam 
14:45 Break 
15:00 Cross-cut Session - AI Architecture Co-Design (Invited Only) 
 Session Chair: Jim Ang 
17:00 Adjourn 

December 3: Day 10 (Week 5) 
12:00 Reports From Previous Sessions 
12:15 Workshop session wrap-up and discussion motivation 
12:30 Break 
12:45 Panel/Open Discussion (Invited Only) 
 Common challenges & opportunities 
 Resources, capabilities, and facilities (DOE + Multi-agency) 
14:45 Break 
15:00 Panel/Open discussion (Invited Only) 
 Short-term, 5-year, 10-year goals 
 Earth system predictability and applied math and computer science research priorities 
17:00 Adjourn 

December 6 
12:00 - 16:00 Editing Meeting (Invited Only) 

December 20 
12:00 - 16:00 Editing Meeting (Invited Only) 
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Appendix C: Call for AI4ESP Papers 

White Paper Purpose, Structure, and Submittal 

Purpose 
Submitted white papers will be used to inform the design of three sequential workshops (conducted in 
2021-2022) focused on answering the following overarching question of: How can DOE directly leverage 
artificial intelligence (AI) to engineer a substantial (paradigm-changing) improvement in Earth System 
Predictability? 

Structure of white papers 

White papers should be prepared using the following outline and may be up to a maximum of 3 pages 
long (12-point font, not including the optional Suggested Partners and References sections). Use of the 
template provided is optional. 

1. Title 
2. Authors/Affiliations: List in order of largest contribution 
3. Focal Area(s): One or two sentences only 
4. Science Challenge: Short statement describing the area addressed by the white paper 
5. Rationale: Description of the research needs/gaps, the barriers to progress, and the justification 

for and benefits associated with the proposed approach 
6. Narrative: Scientific and technical description of the opportunities and approach; activities that 

will advance the science; and specific field, laboratory, model, synthesis, and/or analysis 
examples 

7. Suggested Partners/Experts (Optional): Laboratory and university partners or experts in the 
field who may be able to present a related webinar or plenary presentation at a workshop 

8. References (Optional) 

Authors are limited to two submissions as lead author but may participate as a co-author in other 
submissions. Teaming is encouraged to reduce the reviewing workload. Multi-institutional responses are 
welcome; however, a clear lead who can speak authoritatively on the white paper contents should be 
identified. [Note: Protected information should not be included in white papers, but instead should be 
shared directly with the appropriate U.S. Department of Energy (DOE) program manager(s).] 

Submittal 

White papers must be submitted as PDF files by 5:00 p.m. EST on February 15, 2021, using this 
Google Form. After the submission date, white papers will be posted publicly on a website (active Feb 
2021) and be made available in advance of the workshops for review by participant and general public 
engagement. 

Questions: Prospective authors are welcome to seek clarification on any part of this announcement 
through the AI4ESP slack workspace #white-paper-call-questions slack channel. 

Background 

Throughout its history, the U.S. Department of Energy (DOE) has tackled some of the world’s most 
difficult scientific and technical challenges. In response to changing scientific needs, DOE’s national 
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laboratories manage some of the most sophisticated facilities and observatories on the planet; develop 
multi-scale, multi-physics Earth system models (ESMs); and apply artificial intelligence and machine 
learning, advanced visualization, and cutting-edge computing assets in innovative ways to solve scientific 
challenges. Major scientific breakthroughs are seeded when individual and distinct investments can be 
integrated in novel ways, for example, where facilities, models, experiments, and artificial intelligence 
(AI) are partnered.  

Nearly a decade ago, DOE recognized that an acceleration was needed in the transition of basic science 
into new predictive capabilities to meet the needs of scientists and stakeholders. To help meet this 
challenge, DOE’s Earth and Environmental System Sciences Division (EESSD) incorporated a novel 
model-experiment (ModEx) approach, linking interdependent observation and model development into its 
management philosophy and strategic planning (Figure C-1). 

 
Figure C-1. Schematic of the ModEx approach to scientific discovery (outer ring) and various DOE data, 
models and analysis capabilities that should be linked as community resources based on open science 
principles (inner sphere). 
  
Despite advances in high-resolution modeling and better observational capabilities, scientific and 
decision-making communities have increasingly sought predictive capabilities that exceed current 
knowledge. Some examples include an urgent need for more accurate prediction of extreme events, more 
complete characterization of uncertainty in models and data necessary to constrain scientific findings, and 
effective bridges between observational designs and useful predictions. 

To meet these pressing needs, a paradigm shift is necessary to build the integrative research framework of 
the future. Building such a framework will require attention to the design of integrative research 
approaches that take advantage of recent scientific and technological advances – such as artificial 
intelligence and exascale computing, etc. – that are not widely incorporated in EESSD research. A 
successful shift has the potential to result in an entirely new framework that will integrate new 
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observational strategies with capabilities in automated data quality validation; edge computing; new 
nonlinear and multiscale data assimilation methodologies; model parameter estimation and feature 
detection using AI; and hybrid prediction models that combine physics with AI. 

The hierarchies of models that must be considered in such a paradigm shift include the hybridization of 
one-dimensional and multi-dimensional ESMs, large eddy simulations, and agent-based models; AI-
generated surrogates for such models; and scale-aware, AI-based analytics to complement traditional 
physical approaches to evaluating uncertainties. With advanced computing and AI as leadership 
disciplines within DOE, we envision new and heretofore unforeseen possibilities for EESSD to use these 
new frameworks to discover next generation science, revolutionizing our Nation’s predictive capabilities 
and advancing its scientific agenda. 

This exercise to explore a paradigm shift in prediction science follows the July 2020 release of the AI for 
Science technical report, prepared by a consortium of DOE national laboratories to identify scientific 
opportunities for AI in the upcoming decade. Two weeks later, the White House issued a joint OSTP-
OMB President’s S&T memorandum, that highlighted Earth system predictability as a national science 
priority and identified AI and edge computing as areas that the federal agencies should continue to 
develop. More recently, DOE collaborated with other agencies to identify science capabilities that the 
research community could rapidly and aggressively apply to advance prediction science in Earth science 
research. 

The DOE vision is to radically improve predictive capabilities by applying AI methods to build a new 
integrative system that spans the continuum from observations to predictive modeling. This effort will 
require the exploration of AI across the ModEx enterprise (Figure C-1) to determine the most impactful 
applications along the observation-modeling continuum. 

Call for White Papers 

All interested researchers are asked to read the current version of the Earth and Environmental Systems 
Sciences Division (EESSD) Strategic Plan. This plan enumerates five grand challenges that frame the 
Division’s investments through 2023: integrated water cycle, biogeochemistry, high-latitude science, 
drivers and responses, and data-model integration. Since the development of the plan, the following cross-
cutting areas of interest have emerged: predictability of extreme events, terrestrial aquatic interfaces, 
regions of high gradients (e.g., coastal zones and watersheds), and integration of AI and other new 
technologies into scientific research. 

The purpose of this announcement is to solicit white papers from the scientific community that focus on 
development and application of AI methods in areas relevant to EESSD research with an emphasis on 
quantifying and improving Earth system predictability, particularly related to the integrative water cycle 
and associated water cycle extremes. White papers must describe novel and innovative approaches to 
improving the predictability of the Earth system and explain why these approaches are expected to 
succeed. We expect that a novel framework, derived from white paper concepts and a series of 
workshops, will improve capabilities for knowledge capture and distillation that provide future 
computational constructs across the EESSD research enterprise. Authors should consider novel 
approaches, needed resources, technologies available and/or in the pipeline, and unforeseen developments 
that have the potential to transform the Earth system research enterprise out to FY2030 and beyond. We 
anticipate that exascale computing, edge computing, 5G/6G, and use of quantum computing and quantum 
sensors will be further developed during this period. 
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White papers should adhere to the following criteria and constraints: 

● White papers should identify a transformational science question that involves the water cycle 
and associated water cycle extremes as a centerpiece in conjunction with the EESSD’s cross-
cutting areas described above. This science question may include, for example, extreme 
precipitation, extreme drought, strong perturbations on surface water or groundwater systems, 
and/or extreme flooding or inundation, and the impacts of these events on biogeochemistry, 
terrestrial aquatic interfaces and high latitude/gradient regions. 

● Responses should be framed around one or more of the following focal area, ensuring that 
technology and techniques are incorporated as a critical component of a development pathway: 

1. Data acquisition and assimilation enabled by machine learning, AI, and advanced 
methods including experimental/network design/optimization, unsupervised learning 
(including deep learning), and hardware-related efforts involving AI (e.g., edge 
computing)  

2. Predictive modeling through the use of AI techniques and AI-derived model components; 
the use of AI and other tools to design a prediction system comprising of a hierarchy of 
models (e.g., AI driven model/component/parameterization selection) 

3. Insight gleaned from complex data (both observed and simulated) using AI, big data 
analytics, and other advanced methods, including explainable AI and physics- or 
knowledge-guided AI 

● White papers should identify the primary relevant focal area (1,2, or 3) - the workshops will be 
arranged around these focal areas. Responses should include how unique DOE capabilities would 
be brought to bear on the scientific question, including e.g., exascale computing, existing data 
holdings, community modeling programs and unique observational capabilities. White papers 
must provide sufficient detail to show how the conceptual idea can more rapidly and fully address 
the scientific question. 

● White papers must address the data-model integration grand challenge presented in the EESSD 
Strategic Plan. Ideas that incorporate data generated by the Atmospheric Radiation Measurement 
(ARM) Facility, Environmental Molecular Science Laboratory (EMSL), Next Generation 
Ecosystem Experiments (NGEEs), Science Focus Area (SFA) observatories, and/or other DOE-
generated information are encouraged. Use of data provided by other agencies is also encouraged, 
as long as it is supplemented by and enhances DOE-supported datasets and software.   

● Develop a high-level approach that incorporates one or more of the following as a critical 
component of a development pathway (if unknown, state any known barriers to understanding the 
pathway): 

○ Topics must employ machine learning or another AI techniques or technologies 
○ Topics are encouraged to employ other emerging technologies, e.g., edge computing, 

nonlinear data assimilation, 5G/6G and advanced wireless 
○  Topics should consider a level of difficulty that demands advanced computing 

capabilities that are likely to be available over the next decade  
○ Topics that are more forward looking and explore the application of quantum sensors 

and/or quantum computing related to AI are also encouraged 
● Responses should outline how code and other tools generated in the process of addressing the 

author-selected science question will be made reusable and findings reproducible. Such tools can 
include (but are not limited to) open source code, packaging to allow deployment on a variety of 
hardware, outreach and workforce development. White papers should outline how FAIR 
(Findable, Accessible, Interoperable, Reusable) principles will be incorporated into products 
(e.g., data, networks, models, tools, etc.).   
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Appendix D: Participants 

AI4ESP would like to extend our utmost gratitude to the white paper call and workshop 
participants. Our goal was to provide a forum and avenue for your great ideas to be heard by 
other scientists, agency managers and administration, and U.S. government decision makers. 
Your selfless participation and open communication of ideas invigorated hope in the scientific 
process and community to drive innovation and transformation for humankind. We feel 
confident to express, on behalf of all authors of this report, that we hope to have done justice to 
the information provided and discussed in the workshop and beyond. Thank you again for the 
hard work and sacrifices you made to participate. 
 
Participants (listed alphabetically by role and session; name and institution provided by 
participants on workshop registration form): 
Session POCs and Chairs 
Name Affiliation Sessions 
Po-Lun Ma Pacific Northwest National 

Laboratory 
Aerosols & Clouds 

Jim Ang Pacific Northwest National 
Laboratory 

AI Architecture Co-Design 

Ruby Leung Pacific Northwest National 
Laboratory 

Atmospheric Modeling 

Maria Molina University of Maryland, College 
Park 

Climate Variability & Extremes 

Matthew Hoffman Los Alamos National Laboratory Coastal Dynamics, Oceans & Ice 
Giri Prakash Oak Ridge National Laboratory Data Acquisition to Distribution 
Forrest Hoffman Oak Ridge National Laboratory Ecohydrology 
Line Pouchard Brookhaven National Laboratory Explainable/Interpretable/Trustworthy 

AI 
Christa Brelsford Oak Ridge National Laboratory Human Systems & Dynamics 
Sivasankaran 
Rajamanickam 

Sandia National Laboratories Hybrid Modeling 

Charuleka Varadharajan Lawrence Berkeley National 
Laboratory 

Hydrology 

Xingyuan Chen Pacific Northwest National 
Laboratory 

Knowledge Discovery & Statistical 
Learning 

Frank Alexander Brookhaven National Laboratory Knowledge-Informed Machine 
Learning 

Beth Drewniak Argonne National Laboratory Land Modeling  
Auroop Ganguly Northeastern University Neural Networks 
Nathan Urban Brookhaven National Laboratory Surrogate Models & Emulators 
Mavrik Zavarin Lawrence Livermore National 

Laboratory 
Watershed Science 

 
Session Co-chairs 
Name Affiliation Sessions 
Pavlos Kollias Brookhaven National Laboratory Aerosols & Clouds 
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Yunyan Zhang Lawrence Livermore National 
Laboratory 

Aerosols & Clouds 

Salil Mahjan Oak Ridge National Laboratory Aerosols & Clouds 
Adam Varble Pacific Northwest National Laboratory Aerosols & Clouds 
Sam Silva Pacific Northwest National Laboratory Aerosols & Clouds 
Paloma Borque Pacific Northwest National Laboratory Aerosols & Clouds 
James Hoe Carnegie Mellon University AI Architecture Co-Design 
Tushar Krishna Georgia Institute of Technology AI Architecture Co-Design 
Maya Gokhale Lawrence Livermore National 

Laboratory 
AI Architecture Co-Design 

Simon Hammond NNSA AI Architecture Co-Design 
Sarat Sreepathi Oak Ridge National Laboratory AI Architecture Co-Design 
Travis O'Brien University of Indiana Climate Variability & Extremes 
Will Pringle Argonne National Laboratory Coastal Dynamics, Oceans & Ice 
Steven Brus Argonne National Laboratory Coastal Dynamics, Oceans & Ice 
Rao Kotamarthi Argonne National Laboratory Coastal Dynamics, Oceans & Ice 
Paul Durack Lawrence Livermore National 

Laboratory 
Coastal Dynamics, Oceans & Ice 

Carolyn Begeman Los Alamos National Laboratory Coastal Dynamics, Oceans & Ice 
Andrew Roberts Los Alamos National Laboratory Coastal Dynamics, Oceans & Ice 
David Judi Pacific Northwest National Laboratory Coastal Dynamics, Oceans & Ice 
Rob Hetland Pacific Northwest National Laboratory Coastal Dynamics, Oceans & Ice 
Irina Tezaur Sandia National Laboratory Coastal Dynamics, Oceans & Ice 
Shawn Serbin Brookhaven National Laboratory Data Acquisition to Distribution 
Jinyun Tang Lawrence Berkeley National Laboratory Ecohydrology 
Zheng Shi University of Oklahoma Ecohydrology 
Byung-Jun Yoon BNL/Texas A&M Explainable/Interpretable/Trustworth

y AI 
Line Pouchard Brookhaven National Laboratory Explainable/Interpretable/Trustworth

y AI 
Timo Bremer Lawrence Livermore National 

Laboratory 
Explainable/Interpretable/Trustworth
y AI 

Bhavya Kailkhura Lawrence Livermore National 
Laboratory 

Explainable/Interpretable/Trustworth
y AI 

Ben Brown LBNL Explainable/Interpretable/Trustworth
y AI 

Derek DeSantis Los Alamos National Laboratory Explainable/Interpretable/Trustworth
y AI 

Maria Glenski Pacific Northwest National Laboratory Explainable/Interpretable/Trustworth
y AI 

Svlitana Volkova Pacific Northwest National Laboratory Explainable/Interpretable/Trustworth
y AI 

Guang Lin Purdue University Explainable/Interpretable/Trustworth
y AI 

Amy McGovern University of Oklahoma Explainable/Interpretable/Trustworth
y AI 

Donatella Pasqualini Los Alamos National Laboratory Human Systems & Dynamics 
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Melissa R. Allen-
Dumas 

Oak Ridge National Laboratory Human Systems & Dynamics 

Nathalie Voisin Pacific Northwest National Laboratory Human Systems & Dynamics 
Abigail Snyder Pacific Northwest National Laboratory Human Systems & Dynamics 
Thushara Gunda Sandia National Laboratories Human Systems & Dynamics 
Prasanna Balaprakash Argonne National Laboratory Hybrid Modeling 
Jiali Wang Argonne National Laboratory Hybrid Modeling 
Nathan Urban Brookhaven National Laboratory Hybrid Modeling 
Peishi Jiang Pacific Northwest National Laboratory Hybrid Modeling 
Jitendra Kumar Oak Ridge National Laboratory Hydrology 
Scott Painter Oak Ridge National Laboratory Hydrology 
Dan Lu Oak Ridge National Laboratory Hydrology 
Chaopeng Shen Penn State Univ Hydrology 
Richard Mills Argonne National Laboratory Knowledge Discovery & Statistical 

Learning 
Vipin Kumar University of Minnesota Knowledge Informed Machine 

Learning 
Romit Maulik ANL and IIT-Chicago Neural Networks 
Juliane Mueller Lawrence Berkeley National Laboratory Neural Networks 
Kate Duffy NASA Bay Area Environmental 

Research Institute 
Neural Networks 

Richard Archibald Oak Ridge National Laboratory Neural Networks 
Nathan Hodas Pacific Northwest National Laboratory Neural Networks 
Khachik Sargsyan Sandia National Laboratories Neural Networks 
Dan Lu Oak Ridge National Laboratory Surrogate Models & Emulators 
Carl Steefel Lawrence Berkeley National Laboratory Watershed Science 
Dipankar Dwivedi Lawrence Berkeley National Laboratory Watershed Science 
David Moulton Los Alamos National Laboratory Watershed Science 
Scott Painter Oak Ridge National Laboratory Watershed Science 
Xingyuan Chen Pacific Northwest National Laboratory Watershed Science 
Li Li Penn State University Watershed Science 

 
Breakout Room Leads and Rapporteurs 
Name Affiliation Sessions Contribution 
Pavlos Kollias Brookhaven National Laboratory Aerosols & Clouds BR lead 
Yunyan Zhang Lawrence Livermore National Laboratory Aerosols & Clouds BR lead 
Salil Mahjan Oak Ridge National Laboratory Aerosols & Clouds BR lead 
Min Xu Oak Ridge National Laboratory Aerosols & Clouds BR lead 
Adam Varble Pacific Northwest National Laboratory Aerosols & Clouds BR lead 
Sam Silva Pacific Northwest National Laboratory Aerosols & Clouds BR lead 
Paloma Borque Pacific Northwest National Laboratory Aerosols & Clouds BR lead 
Po-Lun Ma Pacific Northwest National Laboratory Aerosols & Clouds BR lead 
Baoxiang Pan Lawrence Livermore National Laboratory Aerosols & Clouds Rapporteur 
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Murali M. 
Gopalakrishnan 

Oak Ridge National Laboratory Aerosols & Clouds Rapporteur 

Andrew Geiss Pacific Northwest National Laboratory Aerosols & Clouds Rapporteur 
Colleen Kaul Pacific Northwest National Laboratory Aerosols & Clouds Rapporteur 
Ivy Peng Lawrence Livermore National Laboratory AI Architecture Co-

Design 
Rapporteur 

Matthew 
Norman 

Oak Ridge National Laboratory AI Architecture Co-
Design 

Rapporteur 

Roberto 
Gioiosa 

Pacific Northwest National Laboratory AI Architecture Co-
Design 

Rapporteur 

Maruti 
Mudunuru 

Pacific Northwest National Laboratory AI Architecture Co-
Design 

Rapporteur 

Antonino 
Tumeo 

Pacific Northwest National Laboratory AI Architecture Co-
Design 

Rapporteur 

Noah Brenowitz Allen Institute for AI Atmospheric Modeling BR lead 
Chris 
Bretherton 

Allen Institute for AI and University of 
Washington 

Atmospheric Modeling BR lead 

Marcus van 
Lier-Walqui 

Columbia University Atmospheric Modeling BR lead 

Gregory 
Elsaessser 

Columbia University & NASA Goddard 
Institute for Space Studies 

Atmospheric Modeling BR lead 

Istvan 
Szunyogh 

Texas A&M University Atmospheric Modeling BR lead 

Amy McGovern University of Oklahoma Atmospheric Modeling BR lead 
Chris Fletcher University of Waterloo Atmospheric Modeling BR lead 
Scott Collis Argonne National Laboratory Atmospheric Modeling Rapporteur 
Yangang Liu Brookhaven National Laboratory Atmospheric Modeling Rapporteur 
Peter Caldwell  Lawrence Livermore National Laboratory Atmospheric Modeling Rapporteur 
Andy Salinger Sandia National Laboratory Atmospheric Modeling Rapporteur 
Andrew Bradley Sandia National Laboratory Atmospheric Modeling Rapporteur 
Paul Ullrich University of California, Davis Atmospheric Modeling Rapporteur 
David Mechem University of Kansas Atmospheric Modeling Rapporteur 
Gemma 
Anderson 

Lawrence Livermore National Laboratory Climate Variability & 
Extremes 

BR lead 

Steve Klein Lawrence Livermore National Laboratory Climate Variability & 
Extremes 

BR lead 

Katrina Bennett Los Alamos National Laboratory Climate Variability & 
Extremes 

BR lead 

Bill Collins University of California at Berkeley; 
Lawrence Berkeley National Laboratory 

Climate Variability & 
Extremes 

BR lead 

Scott Collis Argonne National Laboratory Climate Variability & 
Extremes 

Rapporteur 

Katie Dagon National Center for Atmospheric 
Research 

Climate Variability & 
Extremes 

Rapporteur 

Moet Ashfaq Oak Ridge National Laboratory Climate Variability & 
Extremes 

Rapporteur 

Paul Ullrich University of California at Davis Climate Variability & 
Extremes 

Rapporteur 

William Pringle Argonne National Laboratory Coastal Dynamics, 
Oceans & Ice 

BR lead 
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Steven Brus Argonne National Laboratory Coastal Dynamics, 
Oceans & Ice 

Rapporteur 

Derek DeSantis Los Alamos National Laboratory Coastal Dynamics, 
Oceans & Ice 

Rapporteur 

Luke Van 
Roekel 

Los Alamos National Laboratory Coastal Dynamics, 
Oceans & Ice 

Rapporteur 

Elena Reinisch Los Alamos National Laboratory Coastal Dynamics, 
Oceans & Ice 

Rapporteur 

Sanjib Sharma Pennsylvania State University/Now at 
McGill University 

Coastal Dynamics, 
Oceans & Ice 

Rapporteur 

Scott 
Giangrande 

Brookhaven National Laboratory Data Acquisition to 
Distribution 

BR lead 

Chongai Kuang Brookhaven National Laboratory Data Acquisition to 
Distribution 

BR lead 

Line Pouchard Brookhaven National Laboratory Data Acquisition to 
Distribution 

BR lead 

Baptiste Dafflon Lawrence Berkeley National Laboratory Data Acquisition to 
Distribution 

BR lead 

Giri Prakash Oak Ridge National Laboratory Data Acquisition to 
Distribution 

BR lead 

Kyle Pressel Pacific Northwest National Laboratory Data Acquisition to 
Distribution 

BR lead 

Prassana  Data Acquisition to 
Distribution 

BR lead 

Beth Drewniak Argonne National Laboratory Data Acquisition to 
Distribution 

Rapporteur 

Shawn Serbin Brookhaven National Laboratory Data Acquisition to 
Distribution 

Rapporteur 

Cory Stuart Oak Ridge National Laboratory Data Acquisition to 
Distribution 

Rapporteur 

Mallory Barnes Indiana University Ecohydrology BR lead 
Matthias 
Sprenger 

Lawrence Berkeley National Laboratory Ecohydrology BR lead 

Erica Woodburn Lawrence Berkeley National Laboratory Ecohydrology BR lead 
Chonggang Xu Los Alamos National Laboratory Ecohydrology BR lead 
Jiafu Mao Oak Ridge National Laboratory Ecohydrology BR lead 
Umakant 
Mishra 

Sandia National Laboratories Ecohydrology BR lead 

Sarah Scott Sandia National Laboratories Ecohydrology BR lead 
Richard Mills Argonne National Laboratory Ecohydrology Rapporteur 
James 
Dennedy-Frank 

Lawrence Berkeley National Laboratory Ecohydrology Rapporteur 

Paul Levine NASA Jet Propulsion Laboratory Ecohydrology Rapporteur 
Sagar Gautam Pacific Northwest National Laboratory Ecohydrology Rapporteur 
Elias Massoud University of California, Berkeley Ecohydrology Rapporteur 
Yaoping Wang University of Tennessee Ecohydrology Rapporteur 
Claire Zarakas University of Washington Ecohydrology Rapporteur 
Aric Hagberg Los Alamos National Laboratory Human Systems & 

Dynamics 
Rapporteur 

Kuldeep Kurte Oak Ridge National Laboratory Human Systems & 
Dynamics 

Rapporteur 
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Joe Tuccillo Oak Ridge National Laboratory Human Systems & 
Dynamics 

Rapporteur 

Chris Vernon Pacific Northwest National Laboratory Human Systems & 
Dynamics 

Rapporteur 

Jim Yoon Pacific Northwest National Laboratory Human Systems & 
Dynamics 

Rapporteur 

Nicole Jackson Sandia National Laboratories Human Systems & 
Dynamics 

Rapporteur 

Julie Bessac Argonne National Laboratory Hybrid Modeling Rapporteur 
Thushara 
Gunda 

Sandia National Laboratories Hybrid Modeling Rapporteur 

Hongkyu Yoon Sandia National Laboratories Hybrid Modeling Rapporteur 
Andrew Bradley Sandia National Laboratory Hybrid Modeling Rapporteur 
David Moulton Los Alamos National Laboratory Hydrology BR lead 
Xingyuan Chen Pacific Northwest National Laboratory Hydrology BR lead 
Julie Bessac Argonne National Laboratory Knowledge Discovery 

& Statistical Learning 
BR lead 

Emil 
Constantinescu 

Argonne National Laboratory Knowledge Discovery 
& Statistical Learning 

BR lead 

Michael 
Wehner 

Lawrence Berkeley National Laboratory Knowledge Discovery 
& Statistical Learning 

BR lead 

Juliane Mueller Lawrence Berkeley National Laboratory Knowledge Discovery 
& Statistical Learning 

BR lead 

Chandrika 
Kamath 

Lawrence Livermore National Laboratory Knowledge Discovery 
& Statistical Learning 

BR lead 

Shashank 
Konduri 

NASA Goddard Space Flight Center Knowledge Discovery 
& Statistical Learning 

BR lead 

Juan Restrepo Oak Ridge National Laboratory Knowledge Discovery 
& Statistical Learning 

BR lead 

Forrest 
Hoffman 

Oak Ridge National Laboratory Knowledge Discovery 
& Statistical Learning 

BR lead 

Murali M. 
Gopalakrishnan 

Oak Ridge National Laboratory Knowledge Discovery 
& Statistical Learning 

BR lead 

Zachary 
Langford 

Oak Ridge National Laboratory Knowledge Discovery 
& Statistical Learning 

BR lead 

John Jakeman Sandia National Laboratories Knowledge Discovery 
& Statistical Learning 

BR lead 

Elias Massoud University of California, Berkeley Knowledge Discovery 
& Statistical Learning 

BR lead 

Youzuo Lin  Knowledge Discovery 
& Statistical Learning 

BR lead 

Shinjae Yoo Brookhaven National Laboratory Knowledge-Informed 
Machine Learning 

BR lead 

Jayaraman 
Thiagarajan 

Lawrence Livermore National Laboratory Knowledge-Informed 
Machine Learning 

BR lead 

Mahantesh 
Halappanavar 

Pacific Northwest National Laboratory Knowledge-Informed 
Machine Learning 

BR lead 

Karthik 
Kashinath 

Lawrence Berkeley National Laboratory Knowledge-Informed 
Machine Learning 

Rapporteur 

Arvind Thanam 
Mohan 

Los Alamos National Laboratory Knowledge-Informed 
Machine Learning 

Rapporteur 

Sutanay 
Choudhury 

Pacific Northwest National Laboratory Knowledge-Informed 
Machine Learning 

Rapporteur 
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Pamela 
Weisenhorn 

Argonne National Laboratory Land Modeling  BR lead 

Qing Zhu Lawrence Berkeley National Laboratory Land Modeling  BR lead 
Anthony Walker Oak Ridge National Laboratory Land Modeling  BR lead 
Dan Ricciuto Oak Ridge National Laboratory Land Modeling  BR lead 
Xiaojuan Yang Oak Ridge National Laboratory Land Modeling  BR lead 
Beth Drewniak Argonne National Laboratory Land Modeling  Rapporteur 
Charlie Koven Lawrence Berkeley National Laboratory Land Modeling  Rapporteur 
William Riley LBNL/Now at the University of Southern 

California 
Land Modeling  Rapporteur 

Jingfeng Xiao University of New Hampshire Land Modeling  Rapporteur 
Abigail Swann University of Washington Land Modeling  Rapporteur 
Vishwas Rao Argonne National Laboratory Neural Networks Rapporteur 
Jack Watson Northeastern University Neural Networks Rapporteur 
Sebastian Ruf Northeastern University Neural Networks Rapporteur 
Puja Das Northeastern University Neural Networks Rapporteur 
Jong Youl Choi Oak Ridge National Laboratory Neural Networks Rapporteur 
Craig Bakker Pacific Northwest National Laboratory Neural Networks Rapporteur 
Cosmin Safta Sandia National Laboratories Neural Networks Rapporteur 
Vanessa 
Lopez-Marrero 

Brookhaven National Laboratory Surrogate Models & 
Emulators 

BR lead 

Shinjae Yoo Brookhaven National Laboratory Surrogate Models & 
Emulators 

BR lead 

Panos Stinis Pacific Northwest National Laboratory Surrogate Models & 
Emulators 

BR lead 

Draguna Vrabie Pacific Northwest National Laboratory Surrogate Models & 
Emulators 

BR lead 

Kenny 
Chowdhary 

Sandia National Laboratory Surrogate Models & 
Emulators 

BR lead 

Earl Lawrence   Surrogate Models & 
Emulators 

BR lead 

Carl Steefel Lawrence Berkeley National Laboratory Watershed Science BR lead 
Dipankar 
Dwivedi 

Lawrence Berkeley National Laboratory Watershed Science BR lead 

Mavrik Zavarin Lawrence Livermore National Laboratory Watershed Science BR lead 
David Moulton Los Alamos National Laboratory Watershed Science BR lead 
Scott Painter Oak Ridge National Laboratory Watershed Science BR lead 
Xingyuan Chen Pacific Northwest National Laboratory Watershed Science BR lead 
Vanessa Bailey Pacific Northwest National Laboratory Watershed Science Rapporteur 
Umakant 
Mishra 

Sandia National Laboratory Watershed Science Rapporteur 

 
Plenary Speakers 
First 
Name 

Last 
Name 

Institution 

Alison Appling U.S. Geological Survey 
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Kirk Borne DataPrime Inc. 
Katie Dagon National Center for Atmospheric 

Research 
Pierre Gentine Columbia University 
Grace Kim Booz Allen Hamilton 
Amy McGovern University of Oklahoma 
Pabhat Ram University of California, Berkeley 
Rob Ross Argonne National Laboratory 
Tapio Schneider California Institute of Technology 
Chaopeng Shen Pennsylvania State University 
Rick Stevens Argonne National Laboratory 
Laure Zanna New York University 

 
Other Participants 
First Name Last Name Institution 
Erin Acquesta Sandia National Laboratories 
Deb Agarwal Lawrence Berkeley National Laboratory 
Osinachi Ajoku Howard University 
John Allen Central Michigan University 
Steven Allison University of California, Irvine 
Philipe Ambrozio Dias Oak Ridge National Laboratory 
Emmanouil Anagnostou University of Connecticut 
Animashree Anandkumar California Institute of Technology 
Valentine Anantharaj Oak Ridge National Laboratory 
Marian Anghel Los Alamos National Laboratory 
Jeff Arnold U.S. Army Engineer Climate Change Program 
Bhavna Arora Lawrence Berkeley National Laboratory 
Xylar Asay-Davis Los Alamos National Laboratory 
Hessam Babaee University of Pittsburgh 
David Bader Lawrence Livermore National Laboratory 
Karthik Balaguru Pacific Northwest National Laboratory 
Jerad Bales Consortium of Universities for the Advancement of Hydrologic Science, 

Inc. (CUAHSI) 
Kenneth Ball Geometric Data Analytics, Inc. 
Antara Banerjee University of Colorado and National Oceanic and Atmospheric 

Administration, Physical Sciences Laboratory 
Feng Bao Florida State University 
Jie Bao Pacific Northwest National Laboratory 
David Barajas-

Solano 
Pacific Northwest National Laboratory 

John Bargar SLAC National Accelerator Laboratory 
Elizabeth Barnes Colorado State University 
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Ana Barros University of Illinois at Urbana-Champaign 
Kanad Basu University of Texas at Dallas 
Jennifer Bauer National Energy Technology Laboratory 
Susanne Bauer NASA Goddard Institute for Space Studies 
Paul Bayer U.S. Department of Energy 
James Benedict Los Alamos National Laboratory 
Andrew Bennett University of Arizona 
Russell Bent Los Alamos National Laboratory 
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Appendix E: AI4ESP Workshop White Papers 
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Ranjeet 
Devarakonda 

10.2172/1769671 

AI4ESP1034 Semi-automated Design of Artificial 
Intelligence Earth Systems Models 

Philipe Dias 10.2172/1769777 

AI4ESP1035 Using AI to build a 
hydrobiogeochemical soil model 

Beth A. Drewniak 10.2172/1769793 
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AI4ESP1036 AI for Extreme Volcanic Climate 
Forcing and Feedback Forecasting in 
the 21st century 

Manvendra Dubey 10.2172/1769659 

AI4ESP1037 Knowledge-Guided Machine Learning 
(KGML) Platform to Predict Integrated 
Water Cycle and Associated 
extremes 

Dipankar Dwivedi 10.2172/1769733 

AI4ESP1038 A Modular System for Increasing 
Predictiveness for Extreme Climate 
Predictions 

Christopher 
Rakauckas 

10.2172/1769647 

AI4ESP1039 Jaynesian Analysis of Environmental 
Chemistry: Systems Model 
Component Integration via the Arctic 
Aquatic Carbon Cycle 

Scott Elliott 10.2172/1769731 

AI4ESP1040 Rapid assimilation and analysis of a 
suit of remote sensing data for 
predicting extreme events and their 
impact on ecological-human systems 

Nicola Falco 10.2172/1769770 

AI4ESP1041 Develop a weather-aware climate 
model to understand and predict 
extremes and associated power 
outages and renewable energy 
shortages with uncertainty-aware and 
physics-informed machine learning 

Jiwen Fan 10.2172/1769695 
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AI4ESP1042 On AI Prediction of Hydrological 
Processes Based on Integration of 
Retrospective and Forecasting ML 
Techniques 

Boris Faybishenko 10.2172/1769756 

AI4ESP1043 Reliable modeling and prediction of 
precipitation & radiation for 
mountainous hydrology 

Daniel Feldman 10.2172/1769771 

AI4ESP1044 Characterization of Extremes and 
Compound Impacts: Applications of 
Machine Learning and Interpretable 
Neural Networks  

Yan Feng 10.2172/1769686 

AI4ESP1045 Land Surface Modeling 2.0 for 
agricultural climate change impact 
assessments 

James A. Franke 10.2172/1769734 

AI4ESP1046 A Grand Challenge "Uncertainty 
Project" to Accelerate Advances in 
Earth System Predictability: AI-
Enabled Concepts and Applications 

Ann Fridlind 10.2172/1769643 

AI4ESP1047 Science-integrated Artificial-
intelligence for Flooding and 
precipitation Extremes (SAFE) 

Auroop R. Ganguly 10.2172/1769776 

AI4ESP1048 Deep Learning for Ensemble 
Forecasting 

Andrew Geiss 10.2172/1769692 



 

391 
 

AI4ESP1049 Toward Hybrid Physics -Machine 
Learning to improve Land Surface 
Model predictions 

Mangistu (Stu) Geza 10.2172/1769785 

AI4ESP1050 Geophysical Retrievals in an Artificial 
Intelligence (AI) Framework for 
Illuminating Processes Controlling 
Water Cycle 

Virendra P. Ghate 10.2172/1769714 

AI4ESP1051 AI Automated Discovery of New 
Climate Water System Knowledge 
from Models and Observations 

André Goncalves 10.2172/1769658 

AI4ESP1052 Autonomous reinforcement learning 
agents for improving predictions and 
observations of extreme climate 
events 

André Goncalves 10.2172/1769680 

AI4ESP1053 Data-Driven Exploration of Climate 
Attractor Manifolds For Long-Term 
Predictability 

Carlo Graziani 10.2172/1769691 

AI4ESP1054 Feature Detection Yawen Guan 10.2172/1769711 

AI4ESP1055 Modeling Noise: Paths toward AI-
Enabled Stochastic Earth System 
Models and Parameterizations 

Samson Hagos 10.2172/1769749 
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AI4ESP1056 Making Atmospheric Convective 
Parameterizations Obsolete with 
Machine Learning Emulation 

Walter Michael 
Hannah 

10.2172/1769746 

AI4ESP1057 The Usage of Observing System 
Simulation Experiments and 
Reinforcement Learning to Optimize 
Experimental Design and Operation 

Joseph C. Hardin 10.2172/1769782 

AI4ESP1058 Machine Learned Radiative Transport 
for Enhanced Resolution Earth 
System Modeling 

Benjamin Hillman 10.2172/1769738 

AI4ESP1059 Integrating AI with physics-based 
hydrological models and observations 
for insight into changing climate and 
anthropogenic impacts 

Ben R. Hodges 10.2172/1769725 

AI4ESP1060 AI-Constrained Bottom-Up 
Ecohydrology and Improved 
Prediction of Seasonal, Interannual, 
and Decadal Flood and Drought 
Risks 

Forrest M. Hoffman 10.2172/1769668 

AI4ESP1061 Deep learning techniques to 
disentangle water use efficiency, 
climate change, and carbon 
sequestration across ecosystem 
scales1 

Jennifer A. Holm 10.2172/1769694 
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AI4ESP1062 Multi-scale Multi-physics Scientific 
Machine Learning for Water Cycle 
Extreme Events Identification, 
Labelling, Representation, and 
Characterization 

Zhangshuan (Jason) 
Hou 

10.2172/1769751 

AI4ESP1063 Subseasonal-to-seasonal Prediction 
of Atmospheric Rivers in the Western 
United States 

Huanping Huang 10.2172/1769780 

AI4ESP1064 The use of soil moisture and 
Standardized Evaporative Stress 
Ratio (SESR) anomalies for 
increased lead time of the 
development flash drought and heat 
waves 

Eric Hunt 10.2172/1769783 

AI4ESP1065 Towards Trustworthy and 
Interpretable Deep Learning-assisted 
Ecohydrological Models 

Peishi Jiang 10.2172/1769787 

AI4ESP1066 Combining artificial intelligence, Earth 
observations, and climate models to 
improve predictability of ice-
biogeochemistry interactions 

Grace E. Kim 10.2172/1769689 

AI4ESP1067 A Quantum-Ai Framework for 
Extreme Weather Prediction 

Grace E. Kim 10.2172/1769650 
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AI4ESP1068 Improving Short Term Predictability of 
Hydrologic Models with Deep 
Learning 

Ryan King 10.2172/1769722 

AI4ESP1069 Advancing the Predictability of Water 
Cycle Phenomena via the Application 
of AI to Model Ensemble Simulations 
and Observations 

Stephen A. Klein 10.2172/1769656 

AI4ESP1070 Multisensor Agile Adaptive Sampling 
of Convective Storms Driven by Real-
time Analytics 

Pavlos Kollias 10.2172/1769753 

AI4ESP1071 Modular hybrid modeling to increase 
efficiency, explore structural 
uncertainty, and allow 
multidimensional complexity scaling 
in land surface models. 

Charles Koven 10.2172/1769750 

AI4ESP1072 End-to-End Differentiable Modeling 
and Management of the Environment 

Christopher Krapu 10.2172/1769703 

AI4ESP1073 Representing the Unrepresented 
Impact of River Ice on Hydrology, 
Biogeochemistry, Vegetation, and 
Geomorphology: A Hybrid Physics-
Machine Learning Approach 

Jitendra Kumar 10.2172/1769772 
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AI4ESP1074 In Situ Inference for Earth System 
Predictability 

Earl Lawrence 10.2172/1769723 

AI4ESP1075 Toward the Development of New 
Parameterizations for Surface Fluxes 

Temple R. Lee 10.2172/1769786 

AI4ESP1076 Physics-Informed Learning for 
Predictive Multi-Scale Modeling of 
Water Cycle and Extreme Events 

Lai-Yung (Ruby) 
Leung 

10.2172/1769761 

AI4ESP1077 Deep Learning for Hydro-
Biogeochemistry Processes 

Li Li 10.2172/1769693 

AI4ESP1078 A Self-Evolution Data Fusion Platform 
for Large-Scale Water Models 

Xinya Li 10.2172/1769652 

AI4ESP1079 Structurally flexible cloud 
microphysics, observationally 
constrained at all scales via ML-
accelerated Bayesian inference 

Marcus Van Lier-
Walqui 

10.2172/1769779 

AI4ESP1080 Building an AI-enhanced modeling 
framework to address multiscale 
predictability challenges 

Yangang Liu 10.2172/1769683 
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AI4ESP1081 A Bayesian Neural Network 
Ensemble Approach for Improving 
Large-Scale Streamflow Predictability 

Dan Lu 10.2172/1769641 

AI4ESP1082 An AI-Enabled MODEX Framework 
for Improving Predictability of 
Subsurface Water Storage across 
Local and Continental Scales 

Dan Lu 10.2172/1769675 

AI4ESP1083 Advancing Regional Climate 
Predictability through ML-enabled 
Dynamical System Approach 

Jian Lu 10.2172/1769654 

AI4ESP1084 Machine Learning for Surrogate 
Modeling of the Upper Ocean and 
Heat Exchange Between the Ocean 
and Atmosphere 

Nicholas Lutsko 10.2172/1769742 

AI4ESP1085 Facilitating better and faster 
simulations of aerosol-cloud 
interactions in Earth system models 

Po-Lun Ma 10.2172/1769709 

AI4ESP1086 Assessing Teleconnections-Induced 
Predictability of Regional Water Cycle 
on Seasonal to Decadal Timescales 
Using Machine Learning Approaches 

Salil Mahajan 10.2172/1769676 
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AI4ESP1087 Identifying precursors of daily to 
seasonal hydrological extremes over 
the USA using deep learning 
techniques and climate model 
ensembles 

Nicola Maher 10.2172/1769719 

AI4ESP1088 Separating Climate Signals with 
Machine Learning 

Ankur Mahesh 10.2172/1769778 

AI4ESP1089 AI-Based Integrated Modeling and 
Observational Framework for 
Improving Seasonal to Decadal 
Prediction of Terrestrial 
Ecohydrological Extremes 

Jiafu Mao 10.2172/1769666 

AI4ESP1090 Surrogate multi-fidelity data and 
model fusion for scientific discovery 
and uncertainty quantification in Earth 
System Models 

Romit Maulik 10.2172/1769781 

AI4ESP1091 Trustworthy AI for Extreme Event 
Prediction and Understanding 

Amy McGovern 10.2172/1769791 

AI4ESP1092 Computationally Tractable High-
Fidelity Representation of Global 
Hydrology in ESMs via Machine 
Learning Approaches to Scale-
Bridging 

Richard Tran Mills 10.2172/1769690 
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AI4ESP1093 Rethink hydrologic modeling 
framework with AI integrating multi-
processes across scales 

Eugene Yan 10.2172/1769773 

AI4ESP1094 New Understanding of Cloud 
Processes via Unsupervised Cloud 
Classification in Satellite Images 

Elisabeth J. Moyer 10.2172/1769754 

AI4ESP1095 EdgeAI: How to Use AI to Collect 
Reliable and Relevant Watershed 
Data 

Maruti Kumar 
Mudunuru 

10.2172/1769700 

AI4ESP1096 Machine Learning for Adaptive Model 
Refinement to Bridge Scales 

Juliane Mueller 10.2172/1769741 

AI4ESP1097 Machine Learning to Enable Efficient 
Uncertainty Quantification, Data 
Assimilation, and Informed Data 
Acquisition  

Juliane Mueller 10.2172/1769743 

AI4ESP1098 Co-Evolving Climate Models under 
Uncertainty to Improve Predictive Skill 

Balu T. Nadiga 10.2172/1769688 

AI4ESP1099 A Fire Community Observatory: 
Interdisciplinary, AI-informed Post-
Fire Rapid Response for Improved 
Water Cycle Science at Watershed 
Scale 

Michelle E. 
Newcomer 

10.2172/1769642 
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AI4ESP1100 Physics-Informed Deep Learning for 
Multiscale Water Cycle Prediction 

Brenda Ng 10.2172/1769760 

AI4ESP1101 AI-Directed Adaptive Multifidelity 
Modeling of Water Availability and 
Quality at River Basin Scales 

Scott L. Painter 10.2172/1769669 

AI4ESP1102 Integration of AI/ML with Data 
Assimilation for Earth System 
Prediction2 

Stephen G. Penny 10.2172/1769728 

AI4ESP1103 Hybrid (PDE+ML) models in the 
context of land ice modeling 

Mauro Perego 10.2172/1769717 

AI4ESP1104 Advancing Sea Ice Predictability in 
E3SM with Machine Learning 

Kara Peterson 10.2172/1769655 

AI4ESP1105 FAIR data infrastructure and tools for 
AI-assisted streamflow prediction   

Line Pouchard 10.2172/1769710 

AI4ESP1106 Water Cycle-Driven Infectious 
Diseases as Multiscale, Reliable, 
Continuously Updating Water Cycle 
Sensors 

Amy Powell 10.2172/1769797 

AI4ESP1107 AI-Based Upgrades to Observatories 
Enabling Data Interoperability 

Giri Prakash 10.2172/1769667 
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AI4ESP1108 Early detection and uncertainty 
quantification of rapid sea-level rise 
from Antarctica 

Stephen Price 10.2172/1769698 

AI4ESP1109 Machine learning and artificial 
intelligence for wildfire prediction 

James Tremper 
Randerson 

10.2172/1769739 

AI4ESP1110 Probabilistic Machine Learning and 
Data Assimilation 

Vishwas Rao 10.2172/1769766 

AI4ESP1111 AI-Based Approach for Advancing the 
Understanding of Spatiotemporal 
Drought Characteristics 

Deeksha Rastogi 10.2172/1769665 

AI4ESP1112 Predictability and feedbacks of the 
ocean-soil-plant-atmosphere water 
cycle: deep learning water 
conductance in Earth System Model 

Alexandre A. 
Renchon 

10.2172/1769763 

AI4ESP1113 Machine learning to generate gridded 
extreme precipitation data sets for 
global land areas with limited in situ 
measurements 

Mark Risser 10.2172/1769784 
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AI4ESP1114 Integrating Applied Energy and BER 
Smart Data Capabilities to Develop a 
DOE Data Fabric for Energy-Water 
R&DÂ  

Kelly Rose 10.2172/1769726 

AI4ESP1115 GANpiler Barry Rountree 10.2172/1769713 

AI4ESP1116 Transfer Operator Framework for 
Earth System Predictability and Water 
Cycle Extremes 

Adam Rupe 10.2172/1769789 

AI4ESP1117 Earth System Model Improvement 
Pipeline via Uncertainty Attribution 
and Active Learning 

Khachik Sargsyan 10.2172/1769699 

AI4ESP1118 A new era of observationally-infused 
E3SM: GANs for unifying imagery 
archives 

Jon Schwenk 10.2172/1769649 

AI4ESP1119 AI to Automate ModEx for Optimal 
Predictive Improvement and Scientific 
Discovery 

Shawn P. Serbin 10.2172/1769662 

AI4ESP1120 Integrative data-driven approaches 
for characterization & prediction of 
aerosol-cloud processes 

Lyndsay Shand 10.2172/1769729 
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AI4ESP1121 Integrated parameter and process 
learning for hydrologic and 
biogeochemical modules in Earth 
System Models 

Chaopeng Shen 10.2172/1769724 

AI4ESP1122 Improved Understanding of Coupled 
Water and Carbon Cycle Processes 
through Machine Learning 
Approaches 

Debjani Sihi 10.2172/1769721 

AI4ESP1123 AI predicted shifts in watershed 
hydrodynamics driven by extreme 
weather and fire 

Erica Siirila-
Woodburn 

10.2172/1769660 

AI4ESP1124 Automated Discovery of DOminaNt 
physics Informed Surrogates 
(ADDONIS) Framework for Improving 
Water Cycling Predictability 

Kenneth (Chad) 
Sockwell 

10.2172/1769678 

AI4ESP1125 Preferential flow in subsurface 
hydrology: From a century of denial to 
a decade of addressing it via ML? 

Matthias Sprenger 10.2172/1769765 

AI4ESP1126 On Demand Machine Learning for 
Multi-Fidelity Biogeochemistry in 
River Basins Impacted by Climate 
Extremes 

Carl I Steefel 10.2172/1769757 
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AI4ESP1127 Emergent Concepts from a 
Community Ideation on AI4ESP 

James Stegen 10.2172/1769702 

AI4ESP1128 Bridging Multiscale Processes in 
Earth System Models with Physics-
Guided Hierarchical Machine 
Learning 

Alexander Y. Sun 10.2172/1769682 

AI4ESP1129 Machine-Learning-Assisted Hybrid 
Earth System Modelling 

Istvan Szunyogh 10.2172/1769745 

AI4ESP1130 Using machine learning and artificial 
intelligence to improve model-data 
integrated earth system model 
predictions of water and carbon cycle 
extremes 

Jinyun Tang 10.2172/1769794 

AI4ESP1131 Machine Learning for a-posteriori 
model-observed data fusion to 
enhance predictive value of ESM 
output 

Claudia Tebaldi 10.2172/1769740 

AI4ESP1132 Learned implicit representations of 
aerosol chemistry and physics for 
enhancing the predictability of water 
cycle extreme events 

Christopher W. 
Tessum 

10.2172/1769735 
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AI4ESP1133 Physics-Informed Machine Learning 
from Observations for Clouds, 
Convection, and Precipitation 
Parameterizations and Analysis 

Paul Ullrich 10.2172/1769762 

AI4ESP1134 Black-Box Neural System 
Identification and Differentiable 
Programming to Improve Earth 
System Model Predictions 

Nathan Urban 10.2172/1769681 

AI4ESP1135 Using Machine Learning to Develop a 
Predictive Understanding of the 
Impacts of Extreme Water Cycle 
Perturbations on River Water Quality 

Charuleka 
Varadharajan 

10.2172/1769795 

AI4ESP1136 Observational Capabilities to Capture 
Water Cycle Event Dynamics and 
Impacts in the Age of AI 

Charuleka 
Varadharajan 

10.2172/1769755 

AI4ESP1137 Using machine learning to improve 
land use/cover characterization and 
projection for scenario-based global 
modeling 

Alan Di Vittorio 10.2172/1769796 
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AI4ESP1138 A science paradigm shift is needed 
for Earth and Environmental Systems 
Sciences (EESS) to integrate 
Knowledge-Guided Artificial 
Intelligence (KGAI) and lead new 
EESS-KGAI theories 

Nathalie Voisin 10.2172/1769651 

AI4ESP1139 AI-Driven Cross-Domain Knowledge 
Discovery and Hypotheses 
Generation for Enhanced Earth 
System Predictability 

Svitlana Volkova 10.2172/1769670 

AI4ESP1140 Automated Custom Calibration for 
E3SM 

Benjamin M. 
Wagman 

10.2172/1769677 

AI4ESP1141 Development of Explainable, 
Knowledge-Guided AI Models to 
Enhance the E3SM Land Model 
Development and Uncertainty 
Quantification 

Dali Wang 10.2172/1769696 

AI4ESP1142 A Hybrid Climate Modeling System 
Using AI-assisted Process Emulators 

Jiali Wang 10.2172/1769645 

AI4ESP1143 Exploring variability in seasonal 
average and extreme precipitation 
using unsupervised machine learning 

Michael Wehner 10.2172/1769708 
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AI4ESP1144 High-Accuracy Module Emulators 
from Physically-Constrained AI 
Algorithms 

Anthony S. Wexler 10.2172/1769715 

AI4ESP1145 Quality Data Essential for Modeling 
Water Cycles Effectively 

John Wu 10.2172/1769769 

AI4ESP1146 How AI Predicts the Untrained and 
Unseen 

Yuxin Wu 10.2172/1769716 

AI4ESP1147 Process-based Neural Network to 
Forecast Vegetation Dynamics 

Chonggang Xu 10.2172/1769768 

AI4ESP1148 A HPC Theory-Guided Machine 
Learning Cyberinfrastructure for 
Communicating Hydrometeorological 
Data Across Scales 

Haowen Xu 10.2172/1769644 

AI4ESP1149 Mapping hydrologic and 
biogeochemical information flows to 
improve predictive models and 
understand climate influence 

Zexuan Xu 10.2172/1769747 

AI4ESP1150 Multiscale Reduced Order Modeling 
and Parameter Estimation for Climate 
Sciences 

Arvind Mohan 10.2172/1769752 
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AI4ESP1151 AI Scaling Laws for Extremes (AISLE) Da Yang 10.2172/1769661 

AI4ESP1152 Process Discovery through 
Assimilation of Complex 
Biogeochemical Datasets 

Mavrik Zavarin 10.2172/1769767 

AI4ESP1153 AI as a Bridge between ARM 
Observations and E3SM for 
improving Clouds and Precipitation 

Yunyan Zhang 10.2172/1769657 

AI4ESP1154 Improve wildfire predictability driven 
by extreme water cycle with 
interpretable physically-guided ML/AI 

Qing Zhu 10.2172/1769720 

AI4ESP1155 Hybridizing Machine Learning and 
Physically-based Earth System 
Models to Improve Prediction of 
Multivariate Extreme Events (AI 
Exploration of Wildland Fire 
Prediction)Â  

Yufei Zou 10.2172/1769718 

AI4ESP1156 Represent precipitation-induced 
geological hazards in Earth system 
models using artificial intelligence 

Zeli Tan 10.2172/1784543 
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