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Abstract
Understanding historical wildfire variations and their environmental driving mechanisms is key to predicting and mitigating wildfires.
However, current knowledge of climatic responses and regional contributions to the interannual variability (IAV) of global burned area remains
limited. Using recent satellite-derived wildfire products and simulations from version v1.0 of the land component of the U.S. Department of
Energy's Energy Exascale Earth System Model (E3SM land model [ELM] v1) driven by three different climate forcings, we investigated the
burned area IAVand its climatic sensitivity globally and across nine biomes from 1997 to 2018. We found that 1) the ELM simulations generally
agreed with the satellite observations in terms of the burned area IAV magnitudes, regional contributions, and covariations with climate factors,
confirming the robustness of the ELM to the usage of different climate forcing sources; 2) tropical savannas, tropical forests, and semi-arid
grasslands near deserts were primary contributors to the global burned area IAV, collectively accounting for 71.7%e99.7% of the global
wildfire IAV estimated by both the satellite observations and ELM simulations; 3) precipitation was a major fire suppressing factor and
dominated the global and regional burned area IAVs, and temperature and shortwave solar radiation were mostly positively related with burned
area IAVs; and 4) noticeable local discrepancies between the ELM and remote-sensing results occurred in semi-arid grasslands, croplands, boreal
forests, and wetlands, likely caused by uncertainties in the current ELM fire scheme and the imperfectly derived satellite observations. Our
findings revealed the spatiotemporal diversity of wildfire variations, regional contributions and climatic responses, and provided new metrics for
wildfire modeling, facilitating the wildfire prediction and management.
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1. Introduction

An average of 400 million hm2, or about 3% of the global
land area, is burned annually by wildfires (Chuvieco et al.,
2016; Giglio et al., 2013). Such widespread wildfires have
direct impacts on the global carbon cycle, ecosystem dynamics,
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atmospheric chemistry, and human society sustainability
(Bowman et al., 2009; Page et al., 2002; Shakesby, 2011). In
the context of climate warming and increased human activities,
fire regimes have shifted dramatically in many regions, such as
the Mediterranean area (Mouillot et al., 2002), boreal area
(Kasischke et al., 1995), Australia (Cary and Banks, 2000), and
the western USA (Abatzoglou and Williams, 2016; Flannigan
et al., 2009; McKenzie and Littell, 2017). The interannual
variability (IAV) of wildfires is a key fire characteristic that
affects the terrestrial carbon cycle and atmospheric composi-
tion (e.g., CO2 and aerosol concentrations) (Patra et al., 2005).
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High year-to-year wildfire changes also make wildfire analysis
and simulation challenging (Beck et al., 2002), adding
complexity to relevant policy decisions, planning, and execu-
tion (Monz�on-Alvarado et al., 2014; van Wilgen, 2009).
Improving the understanding of wildfire IAV and associated
environmental determinants is critical for wildfire prediction
and management, facilitating the mitigation of adverse wildfire
effects on human health and ecological stability.

Our knowledge of global wildfire IAVand its climatic drivers
remains limited. Although a number of studies, using observa-
tional or modeling approaches, have explored the relationships
between wildfire IAVand climate at regional scales (e.g., Africa,
Mediterranean area, Siberia), the wildfire-climate relationships
are still poorly characterized at the global scale (Abatzoglou
et al., 2018; Archibald et al., 2010; Goss et al., 2020; Jolly
et al., 2015; Urbieta et al., 2015). Although possible impacts
of major climatic factors (e.g., temperature, precipitation, solar
radiation) on wildfire IAV have been examined, their relative
contributions and corresponding uncertainties still need to be
quantified (Crockett and Leroy Westerling, 2018; Fasullo et al.,
2018; Holden et al., 2007; Lafon and Quiring, 2012; Wei et al.,
2020). Satellite-retrieved wildfire products (e.g., burned area)
provide unique opportunities to investigate wildfire dynamics
and their climatic determinants across different scales. However,
remote-sensing wildfire observations are produced only for
recent time periods (e.g., starting from 1997), and the data
quality is subject to sensor aging, cloud and smoke disturbances,
and the performance of detection algorithms (Giglio et al., 2016;
Randerson et al., 2012). Moreover, satellite wildfire datasets are
not derived based on physical mechanisms and therefore cannot
be directly used to predict future fire behaviors. Process-oriented
fire models, designed at different complexity levels, have been
developed to simulate historical and future wildfires responding
to prescribed or prognostic environmental conditions (Li et al.,
2012; 2013; Rabin et al., 2017; Thonicke et al., 2010). However,
it is necessary to comprehensively benchmark existing wildfire
models against various sources of satellite and ground obser-
vations (Korontzi et al., 2006; Ramankutty et al., 2008). Hence,
the combined use of remote-sensing and model results would
integrate the strengths of both approaches and improve the
understanding and mechanistic modeling of global wildfire IAV.

Having a comprehensive understanding of global wildfire
IAV and its major climatic drivers would enhance the capa-
bility of wildfire prediction and preparedness of wildfire risk
management. To achieve this overarching goal, in this study,
we focused on addressing the following questions: 1) What
were the spatial and temporal structures of global burned area
IAV for the 1997e2018 period? 2) What were the biome-level
regional contributions to global wildfire IAV? 3) What were
the covariations between wildfire IAV and main climate fac-
tors? 4) How different were the IAVestimations between ELM
and remote-sensing wildfire products? We assessed these
changes and performed relevant intercomparisons using
different global satellite-based burned area products and off-
line simulations from version 1.0 of the land component of the
U.S. Department of Energy's Energy Exascale Earth System
Model (E3SM land model [ELM] v1).
2. Data and methodologies
2.1. Data

2.1.1. Remote-sensing wildfire products
Two satellite-based wildfire datasets were applied, including

the burned area fraction of the Global Fire Emission Database
(GFED) version 4.1s (Randerson et al., 2015) and the FireCCI
version 5.1 from the European Space Agency Climate Change
Initiative (CCI) project (Chuvieco et al., 2018; Lizundia-Loiola
et al., 2020). The monthly GFED4.1s burned area fraction
spanning from 1997 to 2016 with a spatial resolution of
0.25 � � 0.25 � was derived from a combination of multiple
data sources that include images from the Visible and Infrared
Scanner on the Tropical Rainfall Measuring Mission satellite,
multi-channel images of the Along Track Scanning Radiome-
ters on the European Space Agency's Earth-observing satellite,
and burned area and thermal products from the Moderate
Resolution Imaging Spectroradiometer (MODIS) on the Terra
and Aqua satellites (Giglio et al., 2013). When compared with
GFED version 4, the version 4.1s dataset accounts for small
fires. The FireCCI5.1 burned area dataset was generated from
250 m resolution MODIS red and near-infrared reflectance
information, with a combination of thermal anomaly data from
the MODIS active fires product (Chuvieco et al., 2018; Giglio
et al., 2016; Lizundia-Loiola et al., 2020) and has monthly and
biweekly temporal resolutions from 2001 to present.

Both GFED4.1s and FireCCI5.1 dataset were aggregated to
0.5 � � 0.5 � resolution with yearly intervals covering
1997e2016 and 2001e2018, respectively. Because GFED4.1s
provides a burned area fraction in each grid, we multiplied it by
the land area of each 0.5� grid to derive actual burned areas.
Only pixels with annual mean Normalized Difference Vege-
tation Index greater than 0.125 were considered to ensure
available combustive biomass and spatial consistency among
different data sources (Pinzon and Tucker, 2014). A similar
vegetation classification scheme like (Ahlstr€om et al., 2015)
was adopted and includes tropical rainforests (TRFs),
temperate forests (TEFs), boreal forests (BFs), tropical savan-
nahs (TRS), temperate grasslands and shrublands (TGRSs),
semi-arid grasslands (SAGs), tundra (TUD), croplands (CRPs),
and wetlands (WETs) (Fig. A1).

2.1.2. ELM wildfire simulations
Built on the Community Land Model Version 4.5

(CLM4.5), the ELM embeds the CLM-Li fire scheme (Li et al.,
2012, 2013) as the default fire component. CLM-Li contains
four sub-modules: process-based non-peat fires, empirical
agricultural fires, deforestation fires, and peat fires. The simu-
lated fire-burned area, mainly the non-peat burned area, is
estimated as a function of fire counts and an average fire spread
area driven by ignition sources, fuel load, fuel combustibility,
and anthropogenic suppression processes. For this study, the
global burned area simulations were produced by three offline
ELM experiments driven by different climate forcings,
including CRUNCEP version 8 (1901e2016), GSWP version 2
(1901e2014), and PRINCETON (1901e2012) (van Den Hurk
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et al., 2016). Accordingly, these three historical simulations at
0.5� spatial resolution were denoted as ELM-CRU, ELM-
GSWP, and ELM-PRIN, respectively. A more detailed
description of the experimental setup and driver information
for ELM historical transient runs can be found in Chen et al.
(2020), Forbes et al. (2018, 2019), and Haarsma et al. (2016).
Fig. 1. Global burned area IAVs from 1997 to 2018 of simulation results.
2.2. Methodologies

2.2.1. IAV
Similar to previous studies (Anderegg et al., 2015; Fu

et al., 2017; Piao et al., 2020), we defined the detrended
annual anomalies of wildfire or climate variables as their
interannual variability (IAV). Specifically, the IAVof variable
Y is denoted as:

I¼Y � bY ð1Þ
where Y is the original time series and bY is the fitting line from
a least squares regression.

The magnitude of IAV is characterized using the coefficient
variations (CV) (Chuvieco et al., 2021):

CV¼s

m
; ð2Þ

where s and m stand for the standard deviation and mean.

2.2.2. Regional contribution index
An IAV contribution partitioning index (Ahlstr€om et al.,

2015) was used to calculate the contribution of each biome
type to global burned area IAV. The contribution index fj is
defined as

fj¼
P
t

bjt jBt j
BtP

t

jBtj ð3Þ

where bjt is the detrended burned area for biome region j in

year t and Bt is the detrended global burned area, where Bt ¼P
j

bjt. This definition implies
P
j

fj ¼ 1. The resulting index fj

represents region j’s contribution to global variation. A region
with higher index means it contributes more to the global
variation, and a negative index dampens global variation. Each
regional contribution index was multiplied by 100 to convert
fractions to percentages.

Partial correlation analysis was employed at grid, biome,
and global scales to explore sensitivities of burned area IAV to
various climate factors (i.e., temperature, precipitation, and
solar downward radiation). Long-term linear trends were
removed before conducting partial correlations.

3. Results

The ELM global burned area IAV ranged from�44.0 to 57.6
Mhm2 (e.g., �36.7e36.8 Mhm2 for ELM-CRU, �44.0e57.6
Mhm2 for ELM-GSWP, and �34.6e43.1 Mhm2 for ELM-
PRIN), generally consistent with satellite-derived results,
especially with the GFED4.1s (i.e., �45.2�42.2 Mhm2 for
GFED4.1s and �93.0e48.0 Mhm2 for the FireCCI5.1) (Fig. 1;
Table A1). Global wildfire IAV magnitudes from different ELM
simulations, represented by CV, also agreed closely with that of
satellite-derived results in the period of 1997e2012 (i.e., 0.1 for
ELM-CRU, 0.1 for ELM-GSWP, 0.1 for ELM-PRIN, and 0.1
for GFED4.1s). The IAV of FireCCI5.1 global burned area was
abnormally low in 2001, which was mainly contributed by the
low IAV values from the TRF and TRS biomes (Fig. A2a and
d). Such underestimation was likely caused by the absence of
MODIS Aqua Hotspots data between 2001/01 and 2002/07
(Chuvieco et al., 2018; Lizundia-Loiola et al., 2020). Consid-
ering the relatively short temporal overlap of FireCCI5.1 with
other datasets (starting from 2001), GFED4.1s will thus here-
after be primarily used to compare with the ELM simulations.

Geographically, a relatively high IAV variation of
GFED4.1s occurred mainly in the boreal area and semi-arid
region (e.g., Australia), while tropical and subtropical re-
gions showed relatively low fire variations (Fig. 2a). The
weakest wildfire variations existed in African subtropical
savannah systems and were consistent with previous studies
(Archibald et al., 2013; Chuvieco et al., 2008). Such a remote-
sensing-derived spatial pattern was generally reproduced by
the ELM simulations, especially the ELM-GSWP and ELM-
PRIN, which were mostly consistent with one another
(Fig. 2bed). However, some regional discrepancies between
the ELM and GFED4.1s variation magnitudes were note-
worthy. For example, the ELM underestimated the IAV mag-
nitudes in the boreal area, especially the ELM-CRU, and the
ELM overestimated the IAV over Africa.

The ELM simulations driven by different climate forcings
consistently produced the highest IAV variation in the Boreal
Forests (BF) (0.5 ± 0.2), the second highest variation in the
Tundra (TUD) (0.4 ± 0.1), and the lowest variation in the
temperate grasslands and shrubland (TGRS) (0.1 ± 0.0)
(Fig. 3a). GFED4.1s showed the highest wildfire variation in
the TUD (1.5), followed by BF (1.1), while the Tropical Sa-
vannas (TRS) had the lowest variation (0.1). For the regional



Fig. 2. Spatial distribution of coefficient variation of burned area for (a) GFED, (b) the ELM-CRU, (c) the ELM-GSWP, and (d) the ELM-PRIN for 1997e2012.

689TANG R. et al. / Advances in Climate Change Research 12 (2021) 686e695
contribution, both types of products estimated that TRSs
contributed most to the global IAV (58.0% for ELM-CRU,
42.0% for ELM-GSWP, 58.3% for ELM-PRIN, and 58.4%
for GFED4.1s). The second leading contribution was from
TRFs for the ELM simulations (14.7% for ELM-CRU, 22.0%
for ELM-GSWP, and 18.2% for ELM-PRIN), and from SAGs
(31.8%) for the GFED retrieval.

Both GFED4.1s and ELM simulations showed that the
burned area IAV correlated positively with temperature and
shortwave radiation but correlated negatively with precipita-
tion for most of the globe (Fig. 4). One noticeable exception,
however, existed in northern Australia, where the GFED
wildfire generally showed negative temperature responses
while ELM wildfire simulations demonstrated slightly positive
temperature responses (Fig. 4aeb, Figs. A4 and A6). In this
area, high temperature and associated droughts tend to limit
the vegetation growth, resulting in less available fuel for
burning (Bradstock, 2010; Sun et al., 2019; Madani et al.,
2020). But detailed climatic and anthropogenic driving
mechanisms (e.g., the traditional Indigenous fire management)
underlying the wildfire IAV in this local region are still un-
certain and require further investigation (Bowman et al.,
2020). Compared with the GFED4.1s, the ELM simulated
burned area IAVs were more sensitive to precipitation, espe-
cially in North America and northern Eurasia (Fig. 4d), and
were more sensitive to temperature and shortwave radiation,
mainly in North America (Fig. 4a, b, e, and f). Different
sources of climate forcings had minor impacts on their cor-
relations with burned area IAV for either wildfire product
(Fig. 4, and Fig. A4). Additionally, the spatial patterns for
climate sensitivities of ELM wildfire IAVs were broadly
consistent among the simulations driven by different climate
forcings (Fig. 4, and Fig. A4).
Regional summaries of both GFED4.1s and ELM sensi-
tivity results, shown in Fig. 5, confirmed positive responses of
burned area IAV to temperature and shortwave radiation but
negative responses to precipitation across the globe and most
biome regions. Moreover, precipitation mainly controlled the
burned area IAV, especially for the three ELM simulations.
Major response differences between the ELM and observa-
tions were found in the BF, SAG, and WET biomes in terms of
the sensitivity magnitude, sign, or both.

4. Discussion

Using the latest satellite and ELM-simulated wildfire
products, we investigated global and regional wildfire IAVs
and their climatic sensitivities. The findings of regional con-
tributions to the global burned area IAV and the impacts of
major climatic factors on the changes of burned area IAVs are
generally consistent with previous wildfire assessments
(Randerson et al., 2012; van der Werf et al., 2006; 2008a;
2008b,; Yin et al., 2016). Next, we will discuss the burned
area IAV and its underling mechanisms for each biome,
starting with the TRS because of its largest contribution to
global IAV.

TRSs, featured with high fire intensity but low IAV varia-
tion magnitude, were the largest contributor to the global
burned area IAV. TRSs, such as the African TRS systems, are
characterized by the codominance of C3 woody plants and C4
grasses. During wet seasons or years, grasses prevail and form
a dense herbaceous layer, which then dries quickly in dry
seasons or years. Such seasonal or interannual variation of
grass fuel availability, mainly driven by rainfall patterns, fa-
vors biomass combustion all year round and leads to the
largest regional contribution to global burned area variation



Fig. 3. Global and regional burned area coefficient variation (a); and (b) relative percentages of regional IAV contribution to global burned area IAV from 1997 to

2012 for the tropical rainforest (TRF), temperate forests (TEF), boreal forest (BF), tropical savannah (TRS), temperate grasslands and shrubland (TGRS), semi-arid

grassland (SAG), tundra (TUD), cropland (CRP), and wetlands (WET) biomes.

690 TANG R. et al. / Advances in Climate Change Research 12 (2021) 686e695
(Archibald et al., 2010; Hao and Liu, 1994; Romero-Ruiz
et al., 2010).

Next to TRSs, TRFs also showed a large contribution to the
global burned area IAV. These high wildfire numbers of TRFs,
especially those in tropical Asia, were likely associated with
irregular peatland drainage and deforestation that are partially
caused by political and economic incentives (Cochrane, 2001;
Laurance and Williamson, 2001; Morton et al., 2006;
Murdiyarso et al., 2004; Shea et al., 1996). The draining of
peatlands and consequently lowered water-table levels would
not only induce a higher peat decomposition rate but also
make peat areas more fire-prone (Hirano et al., 2014; Konecny
et al., 2016; Miettinen et al., 2012). Tropical deforestation,
forest thinning, or removing the forest canopy would allow
greater insolation to the soil surface, resulting in a more
flammable environment with dryer fuel, higher air tempera-
ture and wind speed, lower relative humidity, and less pre-
cipitation (Christopher and Kauffman, 1990; Hoffmann, 2003;
Xu et al., 2020).

The global SAG biome, covering the desert grasslands, was
found to make a large contribution to the global burned area
IAV, especially for the GFED4.1s (Fig. 3b). Over recent de-
cades, more mega-fires have occurred in its corresponding
geographical locations, such as those in western Australia
(Haydon et al., 2000) and the western USA (Abatzoglou and
Kolden, 2011). Such wildfire increases in SAGs were likely
linked to the rain-related growth of domestic grasses and
expansion of plant invasions such as the red brome and
cheatgrass invasion in North America, gamba grass and buf-
felgrass in northern and central Australia (Clarke et al., 2005),
and buffelgrass invasion in the southwestern USA (Mack,
1981; Marshall et al., 2012; Setterfield et al., 2010). The in-
crease of exotic grasses and associated loss of native shrubbery
or woody vegetation significantly changes fuel characteristics,
such as a growing fuel continuity and fuel load (Brooks et al.,
2004; Horn et al., 2015; Horn and St. Clair, 2017; McLaughlin
and Bowers, 1982; Wright, 1980). For example, buffelgrass in
Australia, is highly drought-tolerant and thus more flammable
than domestic grasses by providing more biomass and higher
spatial connectivity (Clarke et al., 2005). No matter what types
of grass exist in the SAG, precipitation was widely reported to
have a positive correlation with fire events since it dominants



Fig. 4. Spatial distributions of partial correlation coefficients between burned area IAVs and different climate factors from 1997 to 2012 (a, c, e) partial correlations

between the GFED4.1s burned area IAV and each climate forcing of GSWP; and (b, d, f) partial correlations between the ELM burned area IAV and each climate

forcing of GSWP (Pixels with statistical significance (p < 0.1) are black dotted; TMP, PRE, and SDR represent temperature, precipitation, and solar downward

radiation, respectively).
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grass growth and provides fuel for combustions in the dry
season (Bradstock, 2010).

The wildfire IAV showed vast spatial variation, being
dominated or co-dominated by different climatic factors over
different geographical regions (Figs. 4 and 5 and Fig. A5). In
accordance with previous results, temperature was identified to
mostly determine the wildfire IAVs in high-latitude areas with
Fig. 5. Summaries of partial correlations between burned area IAV and climate fact

temperate forests (TEF), temperate grasslands and shrubland (TGRS), boreal forest

(WET) (Visible length of each bar stands for the magnitude of partial correlation; t

correlation).
positive partial correlations. Local warming could increase
tree mortality in those areas, enhance evapotranspiration,
lower relative humidity, and thus lead to more flammable
biomass fuel and drier weather, favoring the ignition and
spreading of wildfires (Allen et al., 2010; Anderegg et al.,
2013; Breshears et al., 2005). Both the ELM and satellite re-
sults roughly agreed that precipitation was the major
ors for the globe (Global), tropical rainforest (TRF), tropical savannah (TRS),

(BF), semi-arid grassland (SAG), tundra (TUD), cropland (CRP), and wetlands

he dominant climate factor is the one with the highest absolute value of partial
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suppressing factor for global wildfire IAVs (Fig. 4c, d,
Fig. A4b, e, h, k, and Fig. 5). Precipitation patterns have been
widely confirmed to govern wildfire variations by changing the
fuel load and fuel moisture (Andela and van der Werf, 2014;
Archibald et al., 2009). For example, the burned area variation
in TEFs of the western USA was strongly associated with the
vegetation condition and soil wetness, which were directly or
indirectly affected by the summer precipitation changes
(Holden et al., 2018). In TGRSs, many studies have revealed
that precipitation stimulates plant photosynthesis, favors
biomass accumulation, and thus may increase fire probability
(Pilliod et al., 2017; Song et al., 2016; Vargas et al., 2012).
However, the ignition of wildfires in TGRSs also relies on the
alternating pattern of wet and dry years for a flammable
environment with enough dry fuel and fuel continuity. Thus,
for this research, the identified annual constraining effects of
precipitation on TGRS wildfire variation (Fig. 5) were likely
more controlled by the precipitation-induced high fuel mois-
ture than the precedented precipitation-stimulated high fuel
availability.

This study demonstrates that the ELM generally captured
the IAV variation magnitudes of remote-sensing burned areas
at the global scale (Fig. 2). Furthermore, ELM simulations
driven by different climate forcings (i.e., the ELM-CRU,
ELM-GSWP, and ELM-PRIN) produced similar sensitivities
of burned area IAVs to climate factors, reflecting the model's
steady performance and robustness in simulating the wildfire-
climate feedback (Fig. 4 and Fig. A4). However, when
comparing the burned area IAVs derived from satellite ob-
servations and model simulations, we also found discrepancies
in the SAG biome around deserts for its IAV variation
magnitude, global contribution, and responses to climate fac-
tors. Moderate inconsistencies were also identified in BFs,
CRPs, and WETs, and the ELM simulations tended to be more
sensitive to climatic factors than GFED4.1s, especially in
North America. Such disparities between the two products
could be caused for various reasons such as imperfect
modeling representations and defective satellite-extracted ob-
servations. Because the interactions between burned areas and
their environmental drivers are complex and nonlinear, the
statistical assumption of the climate-fire relationship as a
linear system in this study may lead to considerable un-
certainties (Archibald et al., 2010; Hantson et al., 2016;
Kloster and Lasslop, 2017). Although in the current ELM-Li
fire scheme, population density and gross domestic product
are used to characterize human impacts on wildfire dynamics,
the monotonically increasing or decreasing expressions of
these two factors may induce performance degradation. The
default fire scheme also ignores anthropogenic impacts on the
seasonality of wildfires, especially over agricultural regions
and heavily deforested areas. In CRPs where rice is grown, for
example, the fire season timing and the number of peak
months may vary significantly because of different agricultural
cultivating modes. The oversimplified representation of land
use and land cover change in the ELM model and possible
classification errors, especially between peatland and WETs,
also lead to a modeling limitation of the time-varying burned
areas. Additionally, the current fire model assumes that fuel
load, which is mainly the above-ground biomass, is constant
within one particular year and does not change over seasons
with the climates, human activities, and even wildfire feed-
back. This could be a major reason why the model under-
estimated burned area IAVs in SAG areas, where wildfire
occurrences largely depend on the seasonal fuel accumulation,
especially during wet seasons (Gremer et al., 2015; Rao and
Allen, 2010). The IAV magnitudes in BFs and TUDs were
much different between simulations and satellite observations
(Fig. 3a). Peatland covers about 25%e30% of the BF region,
and forested peatland is vulnerable to wildfires (Gorham,
1991; Gremer et al., 2015; Wieder and Vitt, 2006). Although
the parameterization of ELM peatland fires may be further
improved by using more accurate peat maps and considering
time-depending burning depth, ELM produced similar wildfire
IAVs to those from the satellite-derived FireCCI5.1, while
GFED4.1s yielded low IAVs over the BFs and TUDs
(Fig. A2c, and g). Burned areas in the GFED4.1s were derived
by an algorithm that applied a burn-sensitive vegetation index
with a threshold of active fires. Smoldering peatland wildfires
could be too difficult to detect because of the mixture of
peatlands with upland BFs, which may have resulted in the
underestimated wildfire IAVs for GFED4.1s.

5. Conclusions

Using satellite-derived wildfire products and process-
oriented ELM simulations, this study explored the spatio-
temporal dynamics of burned area IAVs and their possible
responses to major climatic factors. The wildfire activities in
tropical savannas, tropical forests, and SAGs around deserts
were found to dominate the global burned area IAV and were
mainly associated with the precipitation variations, espe-
cially for the ELM outputs. Both temperature and downward
shortwave radiation positively modulated the burned area
IAV, whereas precipitation showed significant suppressing
effects across most regions for both types of fire products.
Satellite and ELM IAVs and their covariations with climate
factors were mostly consistent at the global scale, and the
ELM simulations were robust even when driven by different
climate inputs. However, some discrepancies regarding sign,
magnitude, or both were identified in SAG, BF, TUD, CRP,
and WET areas. Both the ELM uncertainties and observa-
tional biases in the satellite products may lead to such dis-
crepancies. A need exists to improve the ELM fire processes
and capture the effects of different land surface conditions,
climate change, and human activities, especially for the
CRP, SAG and peatland fires. Such detailed global quanti-
fication of wildfire IAVs and associated driving mechanisms
offers important insights into the wildfire prediction, man-
agement, and sustainable maintenance, especially across
fire-prone regions.
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