
MULTIVARIATE GEOGRAPHIC CLUSTERING IN A
METACOMPUTING ENVIRONMENT USING GLOBUS*

G. Mahinthakumar
�

Oak Ridge National Laboratory
Center for Computational Sciences

P. O. Box 2008
Oak Ridge, TN 37831–6203

voice: 423–241–5628
fax: 423–241–2850
 kumar@ornl.gov

Forrest M. Hoffman
�

Oak Ridge National Laboratory
Environmental Sciences Division

P. O. Box 2008
Oak Ridge, TN 37831–6036

voice: 423–576–7680
fax: 423–576–8543

forrest@esd.ornl.gov

William W. Hargrove
University of Tennessee

Energy, Environment, and Resources Center
Systems Development Institute

10521 Research Drive, Suite 100
Knoxville, TN 37932
voice: 423–241–2748
fax: 423–241–3870

 hnw@fire.esd.ornl.gov

Nicholas T. Karonis
High Performance Computing Laboratory

Department of Computer Science
Northern Illinois University

Dekalb, IL 60115
voice: 815–753–6937
fax: 815–753–0342
karonis@niu.edu

ABSTRACT
The authors present a metacomputing application of multivariate, nonhierarchical statistical
clustering to geographic environmental data from the 48 conterminous United States in order
to produce maps of regions of ecological similarity, called ecoregions. These maps represent
finer scale regionalizations than do those generated by the traditional technique: an expert
with a marker pen. Several variables (e.g., temperature, organic matter, rainfall etc.) thought
to affect the growth of vegetation are clustered at resolutions as fine as one square kilometer
(1 km2). These data can represent over 7.8 million map cells in an n–dimensional (n = 9 to 25)
data space. A parallel version of the iterative statistical clustering algorithm is developed by
the authors using the MPI (Message Passing Interface) message passing routines. The paral-
lel algorithm uses a classical, self–scheduling, single–program, multiple data (SPMD) orga-
nization; performs dynamic load balancing for reasonable performance in heterogeneous
metacomputing environments; and provides fault tolerance by saving intermediate results
for easy restarts in case of hardware failure. The parallel algorithm was tested on various
geographically distributed heterogeneous metacomputing configurations involving an IBM
SP3 � , an IBM SP2 � , and two SGI Origin 2000 � ’s. The tests were performed with minimal
code modification, and were made possible by Globus � (a metacomputing software toolkit)
and the Globus–enabled version of MPI (MPICH–G). Our performance tests indicate that
while the algorithm works reasonably well under the metacomputing environment for a
moderate number of processors, the communication overhead can become prohibitive for
large processor configurations.

CLUSTERING

Statistical clustering is the division, arrangement, or classification of a number of (nonidenti-
cal) objects into subgroups or categories based on their similarity. Hierarchical clustering
provides a series of divisions (based on some measure of similarity) into all possible numbers

*The submitted manuscript has been authored by a contractor of the U.S. Government under contract No.
DE–AC05–96OR22464. Accordingly, the U.S. Government retains a nonexclusive, royalty–free license to publish or
reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes�
Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp. for the U.S. Department of

Energy under contract number DE–AC05–96OR22464

2

of groups— from one single group which contains all objects to as many groups as there are
objects, with each object being in a group by itself. Hierarchical clustering, which results in a
complete similarity tree, is computer–intensive; therefore, the assemblage to be classified is
limited to relatively few objects.

Nonhierarchical clustering provides only a single, user–specified level of division into
groups; however, it can be used to classify a much larger number of objects. Multivariate
geographic clustering employs nonhierarchical clustering on the individual pixels in a digital
map from a Geographic Information System (GIS) to classify the cells into types or catego-
ries. The classification of satellite imagery into land cover or vegetation classes using spec-
tral characteristics of each cell from multiple images taken at different wavelengths is a com-
mon example of multivariate geographic clustering. Rarely, however, is nonhierarchical
clustering performed on map cell characteristics aside from spectral reflectance values. In
Figure 1 we show how the clustering is performed by transforming from geographic space to
data space.

Organic

Matter

Organic

Matter

1
2
3
4
5
6

A B C D E F G H

A CB D E F G H

6 5 4 3 2
1 Temperature

Organic Matter

Rainfall

Perform multivariate

clustering.
non-hierarchical statistical

1 3 42
Cluster Bins

F2
H1

D6
E4
D5

C6
B7
A8
A6

F8
G8
G7
E6

variables become
axes of the data
space. Map cell
values become
coordinates for
the respective

axis.

Descriptive

Group map cells with
similar values for these
descriptive variables.

space and color
them according
to their cluster

number.

Reassemble map
cells in geographic

Rainfall

Temperature

H1

Temperature

G7

H1

Rainfall

G7

Geographic Space Data Space

D5
D6

E4
F2

G8

F8
E6

C6
B7

A8
A6

Figure 1. A schematic representation of the clustering process.

Maps showing the suitability or characterization of regions are used for many purposes, in-
cluding identifying appropriate ranges for particular plant and animal species, identifying
suitable crops for an area or identifying a suitable area for a given crop, and identifying plant
hardiness zones for gardeners. In addition, ecologists have long used the concept of the eco-

3

region, an area within which there are similar ecological conditions, as a tool for understand-
ing large geographic areas (Bailey, 1983, 1994, 1995, 1996; Omernick, 1986). Such re-
gionalization maps, however, are usually prepared by individual experts in a rather
subjective way and are essentially objectifications of expert opinion. Our goal was to make
repeatable the process of map regionalization based not on spectral cell characteristics, but
on characteristics identified as important to the growth of woody vegetation. By using non-
hierarchical multivariate geographic clustering, we intended to produce several maps of eco-
regions across the entire nation at a resolution of 1 km2 per cell. At this resolution, the 48
conterminous United States contains over 7.8 million map cells. Nine characteristics from
three categories—elevation, edaphic (or soil) factors, and climatic factors—were identified
as important. The edaphic factors are (1) plant–available water capacity, (2) soil organic mat-
ter, (3) total Kjeldahl soil nitrogen, and (4) depth to seasonally–high water table. The clima-
tic factors are (1) mean precipitation during the growing season, (2) mean solar insolation
during the growing season, (3) degree–day heat sum during the growing season, and (4) de-
gree–day cold sum during the nongrowing season. The growing season is defined by the
frost–free period between mean day of first and last frost each year. A map for each of these
characteristics was generated from best–available data at a 1–km2 resolution for input into
the clustering process (Hargrove and Luxmoore, 1998). Given the size of this input data and
the significant amount of computer time typically required to perform statistical clustering,
we decided a parallel computer was needed for this task.

Figure 2. National map clustered on elevation, edaphic, and climate variables into
3000 ecoregions using similarity colors.

In our studies we have used the clustering algorithm to generate maps with 500, 100, 2000,
and 3000 ecoregions. These maps appear to capture the ecological relationships among the

4

nine input variables. This multivariate geographic clustering can be used as a way to spatially
extend the results of ecological simulation models by reducing the number of runs needed to
obtain output over large areas. Simulation models can be run on each relatively homoge-
neous cluster rather than on each individual cell thus reducing the computational burden. The
clustered map can be populated with simulated results cluster by cluster (like a paint–by–
number picture). This cluster fill–in simulation technique has been successfully used by the
Integrated Modeling Project to assess the health and productivity of southeastern forests. In
Figure 2 we show an example of final map obtained after the clustering and smoothing opera-
tions.

GLOBUS AND MPICH–G
The Globus metacomputing tool kit (Foster and Kesselman, 1997) (see www.glo-
bus.org) and the Globus–enabled version of MPICH (Gropp et.al., 1996), called MPICH–
G (see www–unix.mcs.anl.gov/mpi/mpich), is used in this implementation.
MPICH–G provides a transparent interface to run MPI–based applications under a heteroge-
neous metacomputing environment.

THE ALGORITHM
In our implementation of nonhierarchical clustering, the 3 characteristic values (principal
components) of the 9 input variables are used as coordinates to locate each of the 7.8 million
map cells (number of observations) in a 9–dimensional environmental data space. The map
cells can be thought of as galaxies of ”unit–mass stars” fixed within this 9–dimensional vol-
ume. The density of ”unit–mass stars” varies throughout the data space. ”Stars” which are
close to each other in data space have similar values of the nine input variables, and might, as
a result, be included in the same map ecoregion or ”galaxy.” The clustering task is to deter-
mine, in an iterative fashion, which ”stars” belong together in a ”galaxy,” the number of
which is specified by the user. The coordinates of a series of ”galaxy” centroids, or its ”cen-
ters of gravity,” are calculated after each iteration, thus allowing the ”centers of gravity” to
”walk” to the most densely populated parts of the data space.

In Figure 3 we show how the United States appears when clustered in ecological 3–space
defined by the 3 principal component axes collapsed from the nine input variables. Each spot
in this data space represents a mean centroid for one of 3000 clusters, and, in this visualiza-
tion, the size and color of each of the centroids relate to how many of the 1–km2 cells are
members of this cluster. The largest cluster is 22,000 km2, and the size distribution of clusters
is a negative exponential. The largest cluster ‘‘galaxies’’ are close to the center of the data
‘‘universe’’.

The nonhierarchical algorithm, which is nearly perfectly parallelizable, consists of two
parts: initial centroid determination (called seed finding) and iterative clustering until con-
vergence is reached. The algorithm begins with a series of ”seed” centroid locations in data
space––one for each cluster desired by the user. In the iterative part of the algorithm, each
map cell is assigned to the cluster whose centroid is closest, by simple Euclidean distance, to
the cell. After all map cells are assigned to a centroid, new centroid positions are calculated

5

for each cluster using the mean values for each coordinate of all map cells in that cluster. The
iterative classification procedure is repeated, each time using the newly recalculated mean
centroids, until the number of map cells which change cluster assignments within a single
iteration is smaller than a convergence threshold. Once the threshold is met, the final cluster
assignments are saved.

Figure 3. Clusters (or galaxies) in a 3–dimensional data space.
Sphere color and size are indicative of the number of map cells in each cluster (or
the total mass of each galaxy if each map cell is represented by a unit–mass star).

Seed centroid locations are ordinarily established using a set of rules which sequentially ex-
amine the map cells and attempt to preserve a subset of them which are as widely separated in
data space as possible. This inherently serial process is difficult to parallelize; if the data set is
divided equally among N nodes and each node finds the best seeds among its portion of the
cells and then if a single node finds the ”best–of–the–best,” this set of seeds is not as widely
dispersed as a single serially obtained seed set. On the other hand, the serial seed–finding
process is quite slow on a single node, while the iterations are relatively fast in parallel. It is
not sensible, in terms of the time to final solution, to spend excessive serial time polishing
high–quality initial seeds because the centroids can ”walk” relatively quickly to their ulti-

6

mate locations in parallel. Thus, we opted to implement this ”best–of–the–best” parallel
seed–finding algorithm. It has proven to produce reasonably good seeds very quickly.

The iterative portion of the algorithm is implemented in parallel using the MPI message pass-
ing routines by dividing the total number of map cells into parcels or aliquots, such that the
number of aliquots (naliquot) is larger than the number of nodes. We use a classical self–
scheduling (master–slave) relationship among nodes and perform dynamic load balancing
because of the heterogeneous nature of the metacomputing environment on which the algo-
rithm is run. This dynamic load balancing is achieved by having a single master node act as a
”card dealer” by first distributing the centroid coordinates and then distributing an aliquot of
map cells to all nodes. Each slave node assigns each of its map cells to a particular centroid
and then reports the results back to the master. If there are additional aliquots of map cells to
be processed, the master will send a new aliquot to this slave node for assignment. In this
way, faster and less busy nodes are effectively utilized to perform the majority of the process-
ing. If the load on the nodes changes during a run, the distribution of the work load will auto-
matically be shifted away from busy or slow nodes onto idle or fast nodes. At the end of each
iteration, the master node computes the new mean centroid positions from all assignments
and distributes the new centroid locations to all nodes along with the first new aliquot of map
cells. Because all nodes must be coordinated and in step at the beginning of each new itera-
tion, the algorithm is inherently self–synchronizing.

If the number of aliquots is too low (i.e., the aliquot size is too large), the majority of nodes
may have to wait for the slowest minority of nodes to complete the assignment of a single
aliquot. On the other hand, it may be advantageous to exclude particularly slow nodes so that
the number of aliquots—and therefore the amount of internode communication—is also re-
duced, thus often resulting in shorter run times. Large aliquots work best for a parallel ma-
chine with few or homogeneous nodes or very slow internode communication, while small
aliquots result in better performance on machines with many heterogeneous nodes and fast
communication. Aliquot size is a manually tunable parameter, which makes the code porta-
ble to various architectures, and can be optimized by monitoring the waiting time of the mas-
ter node in this algorithm.

To provide some fault–tolerance, the master node saves centroid coordinates to a disk at the
end of each iteration. If one or more nodes fails or if the algorithm crashes, the program can
simply be restarted using the last–saved centroid coordinates as initial seeds, and processing
will thus resume in the iteration in which the failure occurred.

PRELIMINARY RUNS USING THE INTEL PARAGONS

Our preliminary runs, which were performed before the extended abstract was submitted in-
cluded 2 Intel Paragons � (128 processor XPS/5 and 512 processor XPS/35) at Oak Ridge
National Laboratory (ORNL), an IBM SP2 (80 processors) at Argonne National Laboratory
(ANL), and an SGI Origin 2000 (128 processors) at the National Center for Supercomputing
Applications (NCSA). Since then, the Intel Paragons at ORNL have been replaced by an

7

IBM SP3 (124 processors). Therefore our more recent results presented in the next section do
not include the Intel Paragons. This section presents the results from our earlier runs.

Globus and MPICH–G were first installed and tested on the Intel Paragons at ORNL. Globus
was already available on the NCSA Origin 2000 and the ANL IBM SP, so no new installation
of Globus was required for these machines. However, MPICH–G had to be installed on these
machines.

Considerable work was expended in getting Globus working on the Paragons because it was
the first successful Globus installation on an Intel Paragon. The communication component
of Globus is called Nexus � . Nexus can use the native communication library within a paral-
lel architecture (e.g., MPI, MPL, NX etc.) and TCP/IP or UDP for communication across
different machines. The Paragon’s communication library, NX, was not fully implemented
within Nexus with the original Globus distribution. Working with the Globus developers, we
completed the Nexus communication module to include the INX protocol for the Paragons.
This facilitated more efficient communication within the Paragons. Previously, communica-
tion within the Paragon was possible only when using normal TCP/IP.

In these preliminary runs, the clustering application code was compiled using MPICH–G on
the Intel Paragons, SGI Origin 2000, and the IBM SP. The MPICH–G was built to use the
INX communication protocol within the Paragons, IBM’s native MPI within the IBM SP,
and the standard (TCP/IP) protocol within the Origin 2000. The communication across dif-
ferent architectures was facilitated by TCP/IP.

Some initial tests were performed to evaluate the Globus overhead on the Intel Paragons. A
16–processor local run on the XPS/5 indicated that the Globus overhead was about 10%
compared to a version compiled without Globus. However, when the number of processors
was increased to 64, the Globus version was about 20 times slower than the non–Globus ver-
sion. Further analysis indicated that most of the Globus slowdown was caused by frequent
polling by the processors to check for incoming messages. When the polling frequency was
reduced by increasing the GLOBUS_NEXUS_SKIP_POLL environment variable from the
default 100 to 10 000, the slowdown was improved from 20 times to about 1.8 times. The
other primary parameter that was adjusted to improve performance is the number of aliquots
(naliquot) parameter (described in a previous section), which is inputted to the clustering
code. This parameter was reduced from 2300 to 512, thus resulting in a Globus overhead of
about 20% for the 64–processor configuration. It should be noted that the Globus overhead
problem was specific to the Paragons and not observed on the other architectures.

Preliminary tests were performed to study the performance of the code under different meta-
computing configurations involving Intel Paragons. The heterogeneous test used a simple
configuration with moderate number of processors on 4 different machines: 4 processors
each on the Intel Paragon XPS/5 at ORNL, the Intel Paragon XPS/35 at ORNL, the IBM SP2
at ANL (ANL SP2), and the SGI Origin 2000 at NCSA (NCSA O2K). We performed several
tests by progressively adding each machine to the configuration. Preliminary timings for 1
iteration of the clustering algorithm are presented in Table 1.

8

Table 1. Preliminary timings involving the Intel Paragons

Machine Configuration Time (secs)

XPS/5 290

XPS/5, XPS/35 200

XPS/5, XPS/35, ANL SP2 170

XPS/5, XPS/35, ANL SP2, NCSA O2K 190

HETEROGENEOUS METACOMPUTING ENVIRONMENT
For the more comprehensive performance tests performed in this study the following ma-
chines are used in various combinations:

� IBM SP3 at ORNL (124 processors)
� IBM SP2 at ANL (80 processors)
� SGI Origin 2000 (also called O2K) at NCSA (128 processors—250 MHz)
� SGI Origin 2000 (also called O2K) at ANL (96 processors—250 MHz)

Although all of the above machines had more than 64 processors available, we used only a
maximum of 64 processors on each machine in our tests. The the clustering application code
was compiled using MPICH–G on the IBM SPs, and the SGI Origin 2000s. The MPICH–G
was built to use the IBM’s native MPI communication protocol within the IBM SPs, and the
shared memory protocol within the Origin 2000s. The communication across different archi-
tectures was facilitated by TCP/IP. In order to build MPICH–G over native MPI, the mpi.h
include file has to be slightly modified to avoid name conflicts between the MPICH–G and
the native MPI (Personal communication, Warren Smith, ANL). Contrary to the Intel Para-
gon case presented earlier, the Globus overhead (overhead of calling the native communica-
tion library through the MPICH–G and Nexus layers) was measured to be less than 5% for all
of the above architectures for a test case with 64 processors.

PERFORMANCE TESTS
The test problem used in this paper consisted of 890,950 observations (num_obs), 3 princi-
pal components (num_coord), and 500 clusters (num_clust). The number of aliquots
(naliquot or the number of pieces in which the problem is divided) is set to 256 unless
otherwise stated. The number of observations is based on a 4 km � 4 km resolution map of
the entire United States. For a larger problem the number of observations can be as large as
7.8 million (1 km � 1 km resolution), the number of principal components can be as large as
25, and the number of clusters as large as 50000. A problem of this size runs for 4 days on an
SGI Origin 2000 using 16 processors. We intend to present results for this run (in a metacom-
puting environment) in our final presentation.

The number of floating point operations performed by the slave nodes in 1 iteration of the
algorithm (primarily in the distance calculation) is roughly equal to

9

3*num_obs*num_clust*num_coord. The number of operations performed by the
master node is negligible compared to the slave nodes. For this reason, when we list the num-
ber of processors in our results, we count only the number of slave processors. However, the
location of the master node in a metacomputing environment can play an important role in
the performance results because of differences in communication efficiency (the master
node communicates with all the slave nodes in the beginning and at the end of each iteration).
For example, a 64 node run performed on the Origin 2000 at ANL with all slave processors at
ANL but with the master node on the ORNL SP3 takes about 73 seconds for 5 iterations.
However, if all 65 nodes (including the master node) reside at ANL, then the time is 60 sec-
onds for 5 iterations. This discrepancy can vary depending on the network load.

Results on individual machines
For relative comparisons of each machine, we first present timings for 5 iterations of the al-
gorithm on each machine (Table 2). The timings are obtained using the globus_utp timer
calls. All the jobs were submitted from the ORNL SP3. The master node resided on the local
machine for these runs.

Table 2. Timings in seconds for 5 iterations of the algorithm

Machine

name

Time for 5 iterations (secs)Machine

name 4 processors 16 processors 64 processors

ORNL SP3 570 155 45

NCSA O2K 551 139 35

ANL O2K 560 177 60

ANL SP2 1148 300 83

 In these runs the fastest timing is obtained for the 64–processor run on the NCSA O2K. How-
ever, the relative performances of ORNL SP3, NCSA O2K, and the ANL O2K are roughly
equal. The ANL SP2 which uses the old IBM power2 nodes does not give good single node
performance but achieves reasonable speedup (13.9/16). The best speedup of 15.8/16 is ob-
tained on the NCSA O2K (128–processor O2Ks are known to exhibit good parallel efficien-
cy up to 64 processors). In the timings presented in this study the distance calculation was
performed using the pow function which can be inefficient on some architectures. We re-
cently discovered that the single processor performance (on ORNLs SP3) can be improved
significantly by replacing pow with simple multiplication. In the final presentation we will
update our results by incorporating this change.

Results in a heterogeneous metacomputing environment
The heterogeneous runs were performed using combinations of 4, 16, or 64 processors on
each machine. The number of aliquots processed by each machine indicates the amount of
work performed by each machine. The percentage of work performed by each machine can
be obtained from this information. In Table 3 we present the percentage of work performed
by each machine and the total time for 5 iterations for various machine configurations. The

10

’–’ indicates that the machine did not participate in the run. The master node resides on the
machine that shows the percentage of work performed in red text. In some cases the ORNL
SP3 participated only as a master node. Since the master node performs negligible amount of
work, these are reflected as 0 work performed.

Table 3. Performance results for heterogeneous configurations

Work performed by each machine (%) Number of
processors

on each

Total
number of
processors

Time for 5
iterations

(secs)ORNL SP3 ANL O2K NCSA O2K ANL SP2

Number of
processors

on each

Total
number of
processors

Time for 5
iterations

(secs)

60 40 – – 4 8 355

33 33 34 – 4 12 206

28 28 29 15 4 16 187

61 39 – – 16 32 107

0 – – 100 64 64 104

30 26 25 19 16 64 94

0 65 – 35 64 128 135

From Table 3 we see that in general we see some improvement in timings as we progressively
increase the number of processors in the configuration. The exception is the 128 node run
using the 2 ANL machines. In this case, the master node resided at ORNL thus increasing the
cost of communication.

Effect of naliquot

As defined previously, naliquot is the number of pieces (number of aliquots) of the pie
the problem is divided into before passing each piece to a slave processor to work on. In a
homogeneous processor configuration (single machine), minimum number of messages are
passed between the master and slave nodes when naliquot is equal to the total number of
slave processors (the number of messages is proportional to naliquot). However, in a het-
erogeneous configuration the naliquot can have an impact on performance because of the
differences in communication efficiency (both across network and local to each machine)
and computing speeds. Increasing naliquot effectively increases the granularity of the
problem and thus permitting better load balancing at the expense of more communication in
a heterogeneous configuration. The effect of naliquot is examined by using a fixed ma-
chine configuration of 4 processors each on the ORNL SP3 and the ANL SP2 for a total of 8
processors. These two machines were chosen because the relative differences in speed. The
results are shown in Table 4.

The ORNL SP3 is roughly twice as fast as the ANL SP2. For naliquot of 8 each machine gets
4 pieces (equal to the number of processors) to work on. Therefore the total time is limited by
the ANL SP2 to perform 50% of the work. It is surprising to see that even for the case of
naliquot = 16, each machine gets the same amount of work. This is because the ORNL
machine is not much than twice as fast as the ANL machine. This can be explained as follows:

11

in the beginning each machine gets 4 pieces (e.g., pieces 1 to 4 at ORNL SP3, and pieces 5 to
8 at ANL SP2) to work on; the ORNL machine finishes first and gets pieces 9 to 12; however,
during the time the ORNL machine works on pieces 9 to 12, the ANL machine finishes pieces
5 to 8, and pieces 13 to 16 are handed over to the ANL machine. The performance improves
up to a naliquot of 256 but then begins to drop. At this point there is no more improve-
ment in load balancing but the communication cost is higher.

Table 4. Effect of naliquot on performance

naliquot Work performed by each machine (%) Time for 5 iterations
(secs)

naliquot

ORNL SP3 ANL SP2

Time for 5 iterations
(secs)

8 50 50 581

16 50 50 611

64 64 36 461

128 66 34 417

256 76 24 353

512 76 24 383

CONCLUSIONS

The ability to run applications in a metacomputing or grid environment can be a big advan-
tage given the greater number of computing resources available. Tools like Globus and
MPICH–G provide the user a common interface for harnessing multiple parallel architec-
tures. However, many applications have to be rewritten to properly take advantage of such
environments due to the following reasons: (1) communication performance is several or-
ders of magnitude higher within a tightly coupled parallel architecture compared to regular
ethernet, and (2) processor and communication performance can be different from one archi-
tecture to the other. Fortunately, the application we have considered here is affected to a less-
er degree by the aforementioned problems because of the adjustable granularity (nali-
quot), self–scheduling nature of the algorithm (less synchronization and better dynamic
load balancing), and relatively small communication overhead. We have demonstrated that
even for the relatively small clustering problem considered here we can achieve reasonable
performance up to a moderate number of processors in a metacomputing environment. How-
ever, for large processor configurations the slow ethernet communication can be bottleneck
especially for the small problem considered here. However, we can expect better perfor-
mance for larger more realistic problems.

REFERENCES

Bailey, R. G. 1983. Delineation of ecosystem regions. Environmental Management,
7:365–373.

Bailey, R. G., P. E. Avers, T. King, W. H. McNab, eds. 1994. Ecoregions and subregions of
the United States (map). Washington, DC: U.S. Geological Survey. Scale 1: 7,500,000;
colored. Accompanied by a supplementary table of map unit descriptions compiled and

12

edited by McNab, W. H., and R. G. Bailey. Prepared for the U.S. Department of Agricul-
ture, Forest Service.

Bailey, R. G. 1995. Description of the ecoregions of the United States. (2nd ed., 1st ed.
1980). Misc. Publ. No. 1391, Washington, D.C. U.S. Forest Service. 108 pp with sepa-
rate map at 1:7,500,000.

Bailey, R. G. 1996. Ecosystem Geography. Springer–Verlag. 216 pp.

Foster, I., C. Kesselman. 1997. ”Globus: A Metacomputing Infrastructure Toolkit.” Intl. J.
Supercomputer Applications, 11(2):115–128.

Gropp, W., E. Lusk, N. Doss, and A. Skjellum. September 1996. ”A High–Performance,
Portable Implementation of the MPI Message Passing Interface Standard.” Parallel
Computing, 22(6):789–828.

Hargrove, W. W. and R. J. Luxmoore. 1998. A New High–Resolution National Map of Vege-
tation Ecoregions Produced Empirically Using Multivariate Spatial Clustering. URL:
http://www.esd.ornl.gov/~hnw/esri98/

Hoffman, F. M. and W. W. Hargrove. March 1999. ”Cluster Computing: Linux Taken to the
Extreme.” Linux Magaine, Vol. 1, No. 1, pp. 56–59.

Omernik, J. M. 1987. Ecoregions of the Conterminous United States. Map (scale
1:7,500,000). Annals of the Association of American Geographers.

