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ABSTRACT

El Niño–Southern Oscillation (ENSO) is an important driver of climate and carbon cycle variability in the

Amazon. Sea surface temperature (SST) anomalies in the equatorial Pacific drive teleconnections with

temperature directly through changes in atmospheric circulation. These circulation changes also impact

precipitation and, consequently, soil moisture, enabling additional indirect effects on temperature through

land–atmosphere coupling. To separate the direct influence of ENSO SST anomalies from the indirect effects

of soil moisture, a mechanism-denial experiment was performed to decouple their variability in the Energy

Exascale Earth SystemModel (E3SM) forced with observed SSTs from 1982 to 2016. Soil moisture variability

was found to amplify and extend the effects of SST forcing on easternAmazon temperature and carbon fluxes

in E3SM. During the wet season, the direct, circulation-driven effect of ENSO SST anomalies dominated

temperature and carbon cycle variability throughout the Amazon. During the following dry season, after

ENSO SST anomalies had dissipated, soil moisture variability became the dominant driver in the east, ex-

plaining 67%–82% of the temperature difference between El Niño and La Niña years, and 85%–91% of the

difference in carbon fluxes. These results highlight the need to consider the interdependence between tem-

perature and hydrology when attributing the relative contributions of these factors to interannual variability

in the terrestrial carbon cycle. Specifically, when offlinemodels are forced with observations or reanalysis, the

contribution of temperature may be overestimated when its own variability is modulated by hydrology via

land–atmosphere coupling.

1. Introduction

El Niño–Southern Oscillation (ENSO) is the domi-

nant mode of interannual climate variability in Earth’s

tropics. During the positive phase of the ENSO cycle (El

Niño), high sea surface temperature (SST) anomalies in

the eastern and central equatorial Pacific persist for

several months during boreal fall and winter. Positive

SST anomalies are associated with a weakened Walker

circulation, which leads to climatic teleconnections

globally, and particularly over the tropical land surface

(Trenberth et al. 2002). Under El Niño conditions, the

tropical land surface as a whole experiences anoma-

lously high surface air temperatures, and anomalously

low precipitation and terrestrial water storage, while the

opposite occurs during the negative phase of the ENSO

cycle (La Niña) (Llovel et al. 2011; Tyrrell et al. 2015;
Reager et al. 2016).

ENSO-driven land surface responses are particularly

prevalent in the Amazon River basin (Marengo 1992;

Foley et al. 2002; Chen et al. 2011; de Linage et al. 2013).

Recent El Niño events have exacerbated the effects of

global warming, with the 2015/16 El Niño leading to
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record-breaking temperatures and extreme drought in

the Amazon (Jiménez-Muñoz et al. 2016). The Amazon

is known as a ‘‘hot spot’’ of land–atmosphere coupling,

in which variation in soil moisture leads to variation in

the partitioning of turbulent surface fluxes between latent

and sensible heat, subsequently influencing development of

the planetary boundary layer and local atmospheric con-

ditions (Fu et al. 2001; Lee et al. 2011; Ma et al. 2011; Sun

andWang 2013). An outstanding challenge is to determine

how much the Amazonian temperature anomalies during

different phases of the ENSO cycle are the direct result of

atmospheric circulation changes due to SST variability, and

how much they are indirectly driven by the local land sur-

face response to moisture redistribution (Sun and Wang

2013; Spennemann and Saulo 2015; Levine et al. 2016).

The ENSO cycle is also associated with interannual

variability in the atmospheric CO2 growth rate (CGR),

which increases during El Niño and decreases during La

Niña (Bacastow 1976; Keeling and Revelle 1985; Jones

et al. 2001). While interannual variability in the carbon

sink of the tropical land surface has been strongly impli-

cated in CGR variability, there is ongoing debate in the

literature as to the exact mechanisms that lead to this re-

lationship. Some studies attribute CGR variability pri-

marily to theeffects of temperatureon terrestrial ecosystems

(Cox et al. 2013; Piao et al. 2013; Wang et al. 2013, 2014).

Other studies indicate that CGR is driven at least in part by

the terrestrial response to precipitation and water storage

variability (Foley et al. 2002; Zeng et al. 2005; Qian et al.

2008; Keppel-Aleks et al. 2014; J. Wang et al. 2016;

Humphrey et al. 2018). While the relative importance of

these drivers varies across tropical continents, both high

temperature and low precipitation in the Amazon during a

recent El Niño event were associated with an observed

positive CO2 flux anomaly (Liu et al. 2017).

Of course, the effects of temperature and hydrology on

the terrestrial carbon cycle should not be viewed as mu-

tually exclusive. The role of land–atmosphere coupling in

theAmazon suggests that when considering the impact of

SST forcing on terrestrial ecosystems, temperature

anomalies and moisture redistribution may not be in-

dependent. However, studies exploring the relative im-

portance of precipitation and temperature controls on

terrestrial carbon cycle variability may obscure this in-

terdependence by externally forcing land surface models

with time series of these variables from observations or

reanalysis (Zeng et al. 2005; Qian et al. 2008; Piao et al.

2013; Wang et al. 2013; J. Wang et al. 2016).

The Amazon’s ecological response to ENSO is delayed

by a series of cascading effects. ENSO teleconnections with

the Amazon are strongest during boreal winter, with El

Niño events decreasing precipitation between November

and April (Chen et al. 2017). These months coincide with

the dominant wet season for most of the Amazon. There-

fore, even though years that begin underElNiño conditions
may receive anomalously low precipitation during these

months, the terrestrial ecosystem may not respond

immediately, as water availability is not a limiting factor

during thewet season. TheAmazon rain forest is known to

sustain plant growth during the dry season by utilizingwater

from deep soil, which can be hydraulically redistributed to

the surface by deep roots (Nepstad et al. 1994; Lee et al.

2005) and transferred from groundwater into the root zone

through capillary rise (Miguez-Macho and Fan 2012).

Therefore, wet season precipitation deficits and concurrent

radiation surpluses may reduce the soil moisture store for

the subsequent dry season, leading to decreased evapo-

transpiration and primary production (Negrón Juárez et al.
2007; Chen et al. 2013; Hilker et al. 2014; Bowman et al.

2017; Liu et al. 2017; Swann and Koven 2017).

Here, we were motivated by the hypothesis that some

portion of theAmazon temperature anomalies associated

with ENSO was due to land–atmosphere coupling re-

sulting from the cascading effects of precipitation and

subsequent soil moisture anomalies. We posited that fol-

lowing El Niño events, drier soils in the Amazon would

inhibit evaporative cooling, indirectly contributing to

warmer temperatures above and beyond direct SST forc-

ing. Furthermore, we hypothesized that the temperature

FIG. 1. Conceptual diagram of the hypothesized pathways

through which SST and soil moisture variability impact tempera-

ture and the carbon cycle. TSST is the portion of surface air tem-

perature anomalies driven directly by remote SST forcing. TSM is

the portion of temperature anomalies driven indirectly by SST-

driven soil moisture anomalies via land–atmosphere coupling.CSST

is the portion of the carbon cycle anomalies driven by TSST. CSM is

the portion of the carbon cycle anomalies driven directly by soil

moisture anomalies along with the portion of the temperature

signal driven by soil moisture anomalies TSM.
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anomalies driven by land–atmosphere coupling may have

contributed to variability in CO2 fluxes between the ter-

restrial ecosystem and the atmosphere. This hypothesis is

illustrated conceptually in Fig. 1.

To test this hypothesis, we performed a series of

mechanism-denial experiments in an Earth systemmodel.

As described in section 2b, we first ran a control simulation

driven by observed SSTs and with fully interactive land–

atmosphere feedbacks.We thenmodified the land surface

model to assimilate soil moisture in order to isolate the

atmospherically mediated effects of remote SST variabil-

ity on land surface temperature from those occurring in-

directly as a result of SST-induced soilmoisture anomalies.

Our goal was to determine howmuch the cascading effects

of SST anomalies on soil moisture anomalies contribute to

interannual variability in surface air temperature and the

net CO2 flux over the Amazon basin.

2. Methods

a. Model description

We used version 0.3 of the Energy Exascale Earth

System Model (E3SM), a branch of the Community

Earth SystemModel (CESM), version 1.3 beta, that is now

under development by the United States Department of

Energy Office of Science (Terai et al. 2018). Global E3SM

simulations were run in a configuration similar to the

Atmospheric Model Intercomparison Project (AMIP)

(Gates et al. 1999), with an interactive atmosphere and

land surface, and with prescribed SSTs and sea ice frac-

tions. The atmosphere was simulated by version 5.3 of the

Community Atmosphere Model (Neale et al. 2012) with

the spectral element dynamical core (CAM-SE) (Dennis

et al. 2012), with the land surface simulated by version 4.5

of the Community Land Model with prognostic bio-

geochemistry (CLM4.5-BGC) (Oleson et al. 2013).

The prescribed SST and sea ice time series were from

version 2 of theNOAA1/48 dailyOptimum Interpolation

Sea Surface Temperature (OISSTv2) (Banzon et al.

2016). We chose this observationally based dataset in

order to simulate the climatic response to the ENSO time

series that took place during the observational record.

Radiative forcing of greenhouse gas and aerosols was

fixed at levels from the year 2000, so that the forced

component of interannual variability would be due

entirely to SST anomalies.We ranE3SM simulations on a

cubed-sphere grid of NE30 (;100-km grid spacing), with

30 vertical layers in the atmosphere and 10 hydrologically

active soil layers with exponentially increasing thick-

nesses to a depth of ;3.8m. History fields were con-

servatively regridded to a 18 uniform equirectangular

grid.

b. Experimental setup

The control run (hereafter referred to as the AMIP

simulation) was forced with SSTs and sea ice fractions

from daily OISSTv2 data from 1982 through 2016. Soil

moisture was simulated interactively by CLM4.5-BGC,

and recorded in each layer at every time step. We used

this interannually varying time series of soil moisture

from the AMIP simulation, as well as its climatology,

to prescribe soil moisture in our subsequent experi-

mental simulations (described below, and summarized

in Table 1).

In the first experimental simulation (SSTvar), we main-

tained interannual variability in the SST forcing, but we

prescribed soil moisture in each layer to the annual cli-

matology of the data from the AMIP simulation. This

served to isolate the direct influence of SSTs on interannual

variability in theAmazonian temperatureTSST (Fig. 1) and

carbon cycle CSST, while excluding the influence of soil

moisture (TSM and CSM). Our approach was similar to the

Global Land–Atmosphere Coupling Experiment of phase

5of theCoupledModel IntercomparisonProject (GLACE-

CMIP5) (Seneviratne et al. 2013), but with prescribed SSTs

that capture the observed ENSO time series.

In an additional experimental simulation (SMvar), we

used a climatology of OISSTv2, but retained the in-

terannual variability of soil moisture by prescribing the

full time series of data from the AMIP simulation. This

approach, which enabled us to isolate the indirect effects

of SST-driven soil moisture variability from the direct

effects of SST on atmospheric circulation, is similar to

part of the experiment in Orth and Seneviratne (2017),

but with a soil moisture time series that was created by

forcing the climate model with observed SSTs. Finally,

we performed a simulation that we refer to as NOvar, in

which both SSTs and soil moisture were prescribed to a

climatology. Comparing results from this simulation

to the AMIP simulation enabled us to quantify the

TABLE 1. Description of E3SM experiments and applicability to the conceptual pathways from Fig. 1.

Simulation SST source Soil moisture Pathways

AMIP Time-varying observations Interactive from CLM4.5 All

SSTvar Time-varying observations Prescribed from AMIP climatology TSST and CSST

SMvar Observations climatology Prescribed from AMIP (time varying) TSM and CSM

NOvar Observations climatology Prescribed from AMIP climatology None
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unforced internal variability of the atmosphere apart

from any contributions from either remote SST forcing

or local soil moisture response.

c. Observations and reanalysis

The Amazon is a region where interannual variability of

climate is known to be strongly related to interannual SST

variability (Marengo 1992; Foley et al. 2002; Chen et al.

2011; de Linage et al. 2013). The AMIP simulation, driven

byobserved SSTs,was expected to reproduce the portion of

the actual interannual variability of the Amazon climate

that is controlled by SST-driven teleconnections, to the

extent that the associated atmospheric bridge mechanisms

are represented in the model. We benchmarked tempera-

ture, precipitation, and total water storage anomalies from

theAMIP run with observational and reanalysis datasets in

order to determine how well E3SM was able to reproduce

ENSO teleconnections impacting the land surface.

For benchmark temperature data, we used version

4.01 of the Climatic Research Unit Time Series (CRU

TS4.01; Harris et al. 2014), the European Centre for

Medium-RangeForecasts interim reanalysis (ERA-Interim;

Dee et al. 2011), and version 2 of the Modern-Era Retro-

spectiveAnalysis forResearchandApplications (MERRA-2;

Gelaro et al. 2017). For benchmark precipitation data,

we used version 2.3 of the Global Precipitation Climatol-

ogy Project (GPCP v2.3; Huffman et al. 2009) and the

CPC Merged Analysis of Precipitation (CMAP; Xie and

Arkin 1997). Temperature and precipitation benchmark

datasets were conservatively regridded to the same 18
equirectangular grid as the model. For total water storage

benchmarks,weusedversion2of theGravityRecovery and

Climate Experiment (GRACE) Jet Propulsion Laboratory

(JPL)RLO5Mmascon solution (Watkins et al. 2015;Wiese

et al. 2015). GRACE data were preserved in their original

resolution of 38 mascons on a 0.58 grid, while modeled

totalwater storage datawere regridded to the same0.58 grid
and subsequently averaged over each of the 38 GRACE

mascons.

d. Temporal classification and aggregation

We calculated a Niño-3.4 index that represented the

mean SST anomaly averaged over the eastern tropical

Pacific (58S–58N, 1708–1208W). The monthly OISSTv2

data were smoothed with a 3-month center-mean mov-

ing window, and the anomalies were estimated using a

monthly climatology constructed from the entire time

series (1982–2016). El Niño and La Niña years were

defined as years that begin during an interval in which

the Niño-3.4 index exceeds a threshold of 10.58C and

20.58C, respectively, for 5 or more consecutive months.

According to these criteria, El Niño years in our analysis
were 1983, 1987, 1988, 1992, 1995, 1998, 2003, 2005, 2007,

2010, 2015, and 2016, and LaNiña years were 1985, 1989,
1996, 1999, 2000, 2001, 2008, 2011, and 2012.

To focus on interannual variability, we calculated

monthly anomalies by subtracting linear trends and

long-term means. Several of the analyses described be-

low involved aggregating monthly anomalies into wet

and dry seasons. We defined wet and dry seasons from a

terrestrial perspective, based on the mean annual cycle

of total water storage in the Amazon basin measured by

GRACE. As such, the wet season comprised the

3 months with the largest increase in total water storage

(January–March), whereas the dry season included the

3 months with the largest decrease (July–September).

The SST anomalies used to define ElNiño and LaNiña
years generally exhibited their largest values (positive or

negative) during or soon before the wet season. The ini-

tial onset of El Niño and La Niña conditions generally

occurred around the end of the dry season. In consider-

ation of the cascading response of the Amazon to ENSO

(Chen et al. 2017), we associated the dry season that

follows the peak of the SST anomaly with the El Niño or

La Niña years. For example, the SST anomalies that de-

fined the 1983 El Niño began at the end of the 1982 dry

season, but we considered only the dry season in 1983 to

be associated with this particular El Niño event.

e. Data analysis

1) TEMPERATURE VARIABILITY DECOMPOSITION

We assessed the relative contributions of various drivers

of temperature variability by comparing the variance of

temperature anomalies from the AMIP simulation with

those from the experimental simulations. Themagnitude of

temperature variability resulting from remote SST forcing

and local land–atmosphere coupling may not be additive,

because feedbacks with the atmosphere are prevented in

the simulations with prescribed soil moisture. However,

subtracting the variance of temperature anomalies in the

NOvar from those of SSTvar and SMvar provides a useful

indication of how much additional variability is due solely

to the direct SST forcing and subsequent soil moisture re-

sponse, respectively. Normalizing these quantities by the

variance of the AMIP simulation indicates the relative

importance of each of these mechanisms in explaining the

overall variability of temperature.

2) MODEL BENCHMARKING

To determine mean state biases, we compared wet- and

dry-season multiyear means of temperature and accumu-

lated precipitation in both the AMIP simulation and the

benchmark data.We computed summary statistics (Taylor

2001) comparing monthly anomalies from benchmark

datasets with those of the equivalent quantity in theAMIP
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simulation to evaluate how well E3SM v0.3 was able to

simulate observed interannual variability. To assess how re-

alistically the model responds to ENSO, we compared cor-

relations of the Niño-3.4 index with both model and

benchmark data during the wet and dry season. Finally, to

gauge whether the model exhibited the correct sensitivity of

temperature to soil moisture, we replicated the analyses de-

scribed below with the benchmark temperature datasets.

3) EL NIÑO–LA NIÑA CONTRAST

We calculated mean anomalies of surface air temper-

ature, terrestrial ecosystem fluxes, and relevant bio-

geophysical variables using all of theElNiño and LaNiña
years, respectively. The resulting mean El Niño and La

Niña composites do not represent the temporal structure

of individual years within the ENSO cycle. Nevertheless,

they serve as useful indicators of the timing of the different

drivers of variability across the experimental simulations.

We defined the ENSO-driven contrast as the difference

between the mean El Niño and LaNiña composites during

theAmazonianwet anddry seasons.Calculating thismetric

for temperature and the net CO2 flux provided the basis

upon which we quantitatively estimated the conceptual

pathways in our hypothesis (Fig. 1). We did not expect

ENSO-driven contrasts to necessarily sum linearly between

simulations, due to internal variability in addition to soil

moisture feedbacks in the coupled AMIP simulation that

were not captured by the mechanism-denial simulations.

Therefore, we estimated each pathway as the range boun-

ded on one side by the fraction of the contrast produced by

including that mechanism, and on the other side by the

fraction that denying that mechanism failed to produce.

The width of the ranges provided an estimate of the im-

portance of nonlinearities and soil moisture feedbacks (as

well as any internal variability that may be present) in ex-

plaining the full contrast of the coupled AMIP simulation.

For example, to consider the conceptual pathways for

temperature (TSST andTSM in Fig. 1), we first calculated the

ENSO-driven contrast (EC) in temperature for the AMIP,

SSTvar, and SMvar simulations, notated as ECAMIP, ECSST,

andECSM respectively, and then estimated each pathway as

T
SST

2
�
x

���� ECSST

EC
AMIP

# x#

�
12

EC
SM

EC
AMIP

��
(1)

and

T
SM

2
�
x

���� ECSM

EC
AMIP

# x#

�
12

EC
SST

EC
AMIP

��
, (2)

with an equivalent set of estimates for carbon fluxes

(CSST and CSM in Fig. 1) based on the ENSO-driven

contrast of NEE.

3. Results

a. Drivers of interannual variability in temperature

The overall variability in detrended monthly surface

air temperature as simulated by E3SM had a variance of

about 0.158–0.458C2 throughout most of the Amazon

(Fig. 2a), with a mean variance of 0.328C2 across the

entire watershed. The fractions of the variance attrib-

utable to each driver were approximately additive, and

indicated the relative importance of each driver across

the watershed. The variability was relatively high in the

south, as a consequence of contributions from internal

atmospheric variability (Fig. 2b). In central and west-

ern portions of the basin, where the total variability was

low, the variability was mostly driven by SST (Fig. 2c).

The contribution from soil moisture variability was

mainly observed in the eastern part of theAmazon basin

(Fig. 2d).

b. Benchmarking E3SM with observations and
reanalysis

1) MODEL VALIDATION

E3SM produced mean annual temperature within the

range of the benchmark datasets over most of the Am-

azon, with the exception of the Andes. The AMIP run

was warmer than the CRU TS4.01 data by approxi-

mately 28–38C, cooler than the ERA-Interim data by

approximately 18–28C, and within about 18C of the

MERRA-2 data over the nonmontane portion of the

basin (see Fig. S1 in the online supplemental material).

The disagreement across benchmark data means that

the bias between the model and any one dataset is less

than the bias between the gridded observations from

CRU and the reanalysis data. E3SM represented the

magnitude of interannual variability within the range of

the benchmark data (Fig. S2) and did a reasonable job

simulating its timing (Fig. S3).

E3SM simulated a mean precipitation that was con-

siderably lower than the observations from GPCP

throughout most of the Amazon, producing excess

rainfall only at the Andean margin (Fig. S4), with a bias

pattern in this region consistent with other CMIP5

models (Joetzjer et al. 2013; Yin et al. 2013). A similar

spatial pattern was evident in the magnitude of vari-

ability, as the ratio of modeled to observed standard

deviations (of monthly anomalies) was low throughout

most of the Amazon while high in the Andes (Fig. S5).

Despite relatively low correlation of modeled pre-

cipitation anomalies with those of both precipitation

datasets (Fig. S6), modeled terrestrial water storage

anomalies during the dry season were correlated rela-

tively highly with GRACE in the eastern Amazon
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(Fig. S7). This apparent contradiction likely results from

the greater spatial homogeneity of water storage relative to

precipitation; even if themodel could not capture the precise

spatial structure of precipitation anomalies, runoff distrib-

uted the resulting water storage anomalies more evenly.

2) BENCHMARKING THE ENSO–AMAZON

TELECONNECTION

E3SM simulated reasonably well the relationship

between Niño-3.4 SSTs during December–February

and precipitation anomalies during subsequent wet

(January–March) and dry (July–September) seasons

(Fig. 3). SST anomalies were negatively correlated with

wet-season precipitation in most of the northern Ama-

zon basin, particularly toward the east, which was

consistent with both benchmark datasets. Statistically

significant positive correlations in the southern Amazon

were present in E3SM but not in the benchmark data.

During the dry season, E3SM showed a stronger nega-

tive correlation in the eastern Amazon than the GPCP

precipitation data and, to a lesser extent, the CMAP

data. However, the impact of this correlation bias only

weakly affected soil moisture variability because of the

smaller overall amount of precipitation during this time

of year and carry-over in moisture storage from the

previous wet season.

FIG. 2. Decomposition of interannual variability of surface air temperature in E3SM for

1982–2016. (a) Variance of detrended monthly temperature anomalies (8C2) from the AMIP

simulation. (b) Ratio of the variance of temperature anomalies from the NOvar simulation to

that of the AMIP simulation. (c) Ratio of the difference between the variances of tempera-

ture anomalies from the SSTvar and NOvar simulations to that of the AMIP simulation.

(d) Ratio of the difference between the variances of temperature anomalies from the SMvar

and NOvar simulations to that of the AMIP simulation.
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E3SM simulated ENSO teleconnections with total

water storage in the Amazon qualitatively better than

precipitation, compared with the available data from

GRACE (Fig. 4). In the wet season, E3SM andGRACE

showed a similar pattern, suggesting that evapotranspi-

ration and runoff must have had compensating biases.

In the dry season, there was less agreement between

E3SMandGRACE in thewest and central Amazon, but

both the model and observations showed significant

correlations in the east, despite less significant dry-

season correlations in the benchmark precipitation data.

Although there were large differences among bench-

mark datasets, bothmodel and benchmark data showed a

positive correlation between the Niño-3.4 index and the

surface air temperature anomalies in the Amazon during

both the wet and dry seasons (Fig. 5). The correlations

were higher in the wet season than in the dry season

across all datasets. The dry season exhibited both the

FIG. 3. Pearson’s correlation coefficient comparing the Niño-3.4 index averaged over

December–February with precipitation anomalies from (top) E3SM (AMIP simulation),

(middle) GPCP v2.3, and (bottom) CMAP averaged over (left) the wet season (January–

March) and (right) the dry season (July–September) for 1982–2016. Cross-hatching indicates

the correlation coefficient was statistically significant at p# 0:05.
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greatest disparity between benchmark datasets as well

as the greatest disagreement between the model and

benchmark data. E3SM and MERRAv2 both showed

significant correlations acrossmost of theAmazon during

the dry season, but the ERA-Interim and CRU TS4.01

datasets each showed less.

c. Amazon temperature response to ENSO forcing

1) THE ENSO-DRIVEN CONTRAST

The ENSO-driven contrast in temperature from the

different model experiments revealed the season when

and location where temperature anomalies originated

from direct SST forcing and land–atmosphere moisture

coupling (Fig. 6). During the wet season, El Niño years

exhibited higher temperatures than La Niña years through-
out the Amazon, with most of the difference in the AMIP

simulation attributable to forcing from remote SSTs

(the SSTvar simulation) and very little from land–

atmosphere moisture coupling (the SMvar simulation).

During the dry season, however, the ENSO-driven

contrast was stronger in the SMvar simulation, partic-

ularly in the eastern part of the basin. Thus, land–

atmosphere moisture coupling played a major role in

determining the ENSO–temperature teleconnection dur-

ing the dry season, and, more generally, in extending the

duration of ENSO-induced temperature anomalies within

the Amazon.

We further examined temperature anomalies in the

eastern Amazon (east of 608W) by exploring their

temporal evolution during a full ENSO cycle (Fig. 7).

Table 2 summarizes the seasonal means of wet- and dry-

season contrasts in this region, which were used to

quantitatively estimate our hypothesized conceptual

pathways reported in Table 3. During the wet season

in the eastern Amazon, the fully coupled (AMIP)

temperature anomaly was 0.818C higher for El Niño
years than it was for La Niña years. Direct SST forcing

FIG. 4. Pearson’s correlation coefficient comparing the Niño-3.4 index averaged over

December–February with total water storage anomalies from (top) E3SM (AMIP simula-

tion) and (bottom)GRACE averaged over (left) the wet season (January–March) and (right)

the dry season (July–September) for 2003–16. Cross-hatching indicates the correlation co-

efficient was statistically significant at p# 0:05.
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FIG. 5. Pearson’s correlation coefficient comparing the Niño-3.4 index averaged over

December–February with temperature anomalies from (top to bottom) E3SM (AMIP sim-

ulation), CRU TS4.01, ERA-Interim, and MERRA-2 averaged over (left) the wet season

(January–March) and (right) the dry season (July–September) for 1982–2016. Cross-hatching

indicates the correlation coefficient was statistically significant at p# 0:05.
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reproduced 81% of that anomaly when isolated in

SSTvar, and failed to reproduce 82% when denied in

SMvar. Thus, wet-season TSST was estimated as 81%–

82%, and, similarly, TSM as 18%–19%. During the dry

season, the AMIP temperature anomaly showed a sec-

ond peak of nearly the same magnitude (0.718C).
However, during this season, land–atmosphere moisture

coupling was the dominant driver (TSM 5 67%–82%),

while direct SST forcing had only a secondary effect

(TSST 5 18%–33%).

2) DRIVERS OF THE ENSO TEMPERATURE

CONTRAST

The role of land–atmosphere coupling in the eastern

Amazon was evident in the time series of evapotrans-

piration, downwelling shortwave radiation (insolation),

FIG. 6. Difference between surface air temperature anomalies averaged across El Niño and

La Niña years during (left) the wet season (January–March) and (right) the dry season (July–

September) in the (top) AMIP, (middle) SSTvar, and (bottom) SMvar simulations. Cross-

hatching indicates that the difference between El Niño and La Niña means is statistically

significant at p# 0:05.
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and vapor pressure deficit (VPD) anomalies (Fig. 8).

During the wet season, evapotranspiration and its drivers

(insolation and VPD) from the AMIP simulation ex-

hibited a positive relationship with the ENSO phase,

consistent with an evaporative regime that is not moisture-

limited (Seneviratne et al. 2010). This positive relationship

was also present in the SSTvar simulation (though some-

what weaker), and there was no wet-season evapotrans-

piration contrast in the SMvar simulation, indicating that

evapotranspiration was limited by radiation, rather than

moisture availability.

During the dry season, the AMIP simulation main-

tained a positive relationship between the ENSO phase

and VPD, but the relationship with evapotranspiration

was reversed, consistent with a moisture-limited evap-

orative regime. The similarly large contrasts in the SMvar

simulation were consistent with the interpretation that

soil moisture anomalies drove the temperature contrast

during the dry season. Insolation contrasts were rela-

tively low across the mean composites, but there was a

large degree of noise in the individual years and high

contrast in the NOvar simulation, indicative of higher

internal variability during the dry season.

3) ENSO-DRIVEN TEMPERATURE CONTRAST IN

BENCHMARK DATASETS

The E3SM temperature response to ENSO variability

in the eastern Amazon falls within the range of available

benchmark datasets (Fig. 9). Both the ERA-Interim

and, in particular, the CRU TS4.01 datasets showed a

much weaker contrast throughout the year, and partic-

ularly during the dry season, than the E3SM AMIP

simulation. However, MERRA-2 showed a somewhat

stronger temperature contrast than the E3SM AMIP

simulation, and it is the only benchmark dataset that,

like E3SM, showed a dry-season contrast as strong as the

FIG. 7. Temporal evolution of monthly temperature anomalies in the eastern Amazon in the (left to right) AMIP, SSTvar, SMvar, and

NOvar E3SM simulations. Monthly surface air temperature anomalies were averaged across all grid cells in the Amazon watershed east of

608W from the July preceding each El Niño (red) and La Niña (blue) year through the following December. Individual years are plotted

with dashed lines, with a solid line for the mean of El Niño and La Niña years. Gray regions delineate the months in the wet season

(January–March) and dry season (July–September). Monthly data were smoothed with a 3-month centered moving average for clarity.

TABLE 2. Differences between mean El Niño and mean La Niña anomalies in eastern Amazon (east of 608W). The net ecosystem

exchange is a positive flux to the atmosphere. It is the balance between net primary production (positive is flux to the land surface) and

heterotrophic respiration (positive is flux to atmosphere), though the rows may not sum perfectly due to rounding error.

Wet season (JFM) Dry season (JAS)

AMIP SSTvar SMvar AMIP SSTvar SMvar

Temperature (8C) 0.81 0.67 0.15 0.71 0.13 0.48

Vapor pressure deficit (hPa) 55.1 24.2 23.0 204 31.9 162

Insolation (Wm22) 7.69 2.04 4.34 1.83 2.13 20.65

Evapotranspiration (mmday21) 0.12 0.08 0.03 20.27 0.01 20.31

Net primary production (gCm22 day21) 20.16 20.07 20.07 20.47 20.02 20.43

Heterotrophic respiration (gCm22 day21) 20.01 0.07 20.08 20.16 0.00 20.17

Net ecosystem exchange (gCm22 day21) 0.16 0.14 20.01 0.32 0.03 0.27
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one from the wet season. The disagreement between

benchmark datasets presented a challenge to evaluating

the model; however, there was some indication that the

temperature response to ENSO in E3SM may be too

strong, particularly in response to soil moisture vari-

ability during the dry season.

4) LAG-CORRELATION ANALYSIS

A lag-correlation analysis demonstrated how soil

moisture variability in E3SM served to intensify and

prolong the response of temperature in the eastern

Amazon to SST forcing from the Niño-3.4 region

(Fig. 10a). The SSTvar simulation exhibited the maxi-

mum correlation between SST anomalies and eastern

Amazon surface air temperature anomalies with a 2- or

3-month lag in air temperature. The SMvar simulation

exhibited aweaker but still significantmaximumcorrelation

TABLE 3. Contribution of SST and soil moisture variability to the

differences in temperature and the net CO2 flux (see Fig. 1) between

mean El Niño and mean La Niña anomalies, as percentage of the

difference in theAMIP simulation, in easternAmazon (east of 608W).

Temperature Net ecosystem exchange

TSST TSM CSST CSM

Wet season 81%–82% 18%–19% 89%–108% 28%–11%

Dry season 18%–33% 67%–82% 9%–15% 85%–91%

FIG. 8. Temporal evolution of monthly anomalies of biogeophysical variables in the easternAmazon in the (left to right) AMIP, SSTvar,

SMvar, and NOvar E3SM simulations. Monthly anomalies of (top) vapor pressure deficit (VPD), (middle) downwelling shortwave radi-

ation (insolation), and (bottom) evapotranspiration (ET) were averaged across all grid cells in the Amazon watershed east of 608W from

the July preceding each El Niño (red) and La Niña (blue) year through the following December. Individual years are plotted with dashed

lines, with a solid line for the mean of El Niño and La Niña years. Gray regions delineate the months in the wet season (January–March)

and dry season (July–September). Monthly data were smoothed with a 3-month centered moving average for clarity.
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with a longer time scale (i.e., air temperature lagging

SST by 7 or 8 months). The lag-correlation structure of

the AMIP simulation was in between those of the SSTvar

and SMvar simulations.

For the first few months of lag time, correlations from

the AMIP simulation resembled those of the SSTvar

simulation, consistent with initial forcing by SST. But

the AMIP structure then attained a higher peak corre-

lation at a longer lag time, and the predictability was

prolonged consistent with support from the soil mois-

ture interaction revealed by the SMvar correlation. The

lagged correlations from benchmark datasets peaked

somewhat earlier and lower than those from the AMIP

simulation (Fig. 10b). This could also be interpreted as

an indication of temperature responding too strongly

to soil moisture in E3SM. Alternatively, the timing in-

consistency could have resulted from a tendency for

ESMs to exhibit a delay in the seasonal cycle of pre-

cipitation in this region (Joetzjer et al. 2013).

d. ENSO response of the carbon cycle

The ENSO-driven contrast in net ecosystem exchange

(NEE; positive flux to atmosphere) across the E3SM

experimental simulations showed a similar seasonal par-

titioning of drivers to that of the temperature contrast

(Fig. 11). During the wet season, the AMIP simulation

showed a positive contrast throughout theAmazon basin,

resulting from positive NEE anomalies (an increased

source and/or reduced sink of atmospheric CO2) during

El Niño and negative anomalies during La Niña. This
contrast was present, though reduced in strength, in the

SSTvar simulation, and was largely reversed in the SMvar

simulation. During the dry season, there was a strong

regional difference, particularly in the eastern Amazon,

in both the AMIP and SMvar simulations that was absent

in the SSTvar simulation. This partitioning of drivers was

particularly apparent in the east, which we further ex-

amined through the time series of NEE and the ecohy-

drologic drivers of NEE (Fig. 12).

Interannual anomalies in net primary production

(NPP) were driven primarily by soil moisture variability

rather than direct SST forcing. NPP was suppressed by

drier soils under El Niño conditions and enhanced by

wetter soils under La Niña conditions throughout the

year in both the AMIP and SMvar simulations, with a

substantially larger contrast in the dry season than in the

wet season. During the wet season, direct SST-driven

temperature and radiation anomalies of the same sign

(Figs. 7 and 8) had opposite effects on NPP, but the in-

fluence of temperature was dominant (e.g., higher El

Niño temperatures reduced NPP more than it was en-

hanced by increased sunlight). However, these NPP

contrasts were small compared with those caused by soil

moisture variability, particularly during the dry season.

Soil moisture variability was also the dominant driver

of anomalies in heterotrophic respiration, but not nec-

essarily for NEE. Dry El Niño soils reduced respiration

and wet La Niña soils increased it throughout the year,

particularly during the dry season. However, the mag-

nitude of these effects relative to NPP led to distinct

differences between the wet and dry seasons.

During thewet season, the coupledENSO-driven contrast

in eastern Amazon NEE was 0.16 gCm22 day21 (Table 2).

Soil moisture effects on NPP and respiration were ap-

proximately equal, yielding only a small NEE contrast

in the SMvar simulation. At the same time, respiration

anomalies driven by direct SST forcing on temperature

had a similarmagnitude to the concurrentNPP anomalies

FIG. 9. As in Fig. 7, but for (left to right) the E3SM AMIP simulation and CRU TS4.01, ERA-Interim, and MERRA-2 benchmark

datasets.
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but with the opposite sign. As a result, wet-season NEE

anomalies were larger than the constituent NPP and

respiration anomalies in both the AMIP and SSTvar

simulations. Therefore, despite substantial soil moisture

effects on thecomponentsofNEE,wet-seasonCSMwas close

to zero while CSST was close to 100% (Table 3).

By the dry season, the fully coupled NEE anomalies

grew to twice the magnitude of those occurring during

the wet season, with an ENSO-driven contrast of

0.32 gCm22 day21. Soil moisture effects on NPP and res-

pirationwere still of the same sign, but the effect onNPPwas

larger.Therefore,while respirationanomalies dampened the

effect of NPP anomalies, there was still a strong NEE con-

trast in both the SMvar andAMIP runs. By this time of year,

direct impact of SST forcing on temperature and radiation

had weakened, and soil moisture variability was the domi-

nant driver, with a dry season CSM of 85%–91%.

4. Discussion

a. Land–atmosphere coupling and ENSO

Our mechanism-denial experiments with E3SM il-

lustrate how soil moisture variability served to intensify

and extend the temperature response of the Amazon to

forcing from ENSO. SST anomalies, which peaked during

December–February, drove changes to atmospheric cir-

culation and meteorology in the Amazon with little or no

delay. The direct impact of these changes, absent any soil

moisture interaction, was responsible for over four-fifths

of the wet-season temperature response to ENSO in the

eastern Amazon. Concurrent precipitation anomalies led

to a soil moisture memory that persisted into the following

dry season, resulting in a delayed temperature response via

land–atmosphere coupling. This indirect impact of soil

moisture was responsible for two-thirds to four-fifths of

the contrast between El Niño and La Niña dry-season

temperatures. These results highlight how temperature

anomalies set up by ocean–atmosphere climate modes are

amplified and extended by land–atmosphere coupling.

Our results also illustrate the importance of soil mois-

ture variability in the ENSO-modulated carbon cycle re-

sponse of the easternAmazon. During the wet season, soil

moisture impacts on NPP and heterotrophic respiration

counteracted each other, leading to a net neutral impact on

NEE, while direct SST forcing on each of these fluxes

amplified impacts on NEE. This gives direct SST forcing

the appearance of driving nearly all of the wet-season

ENSO-drivenNEE contrast, despite soil moisture impacts

on the constituent NPP and respiration anomalies. During

the dry season, the carbon cycle response was driven pri-

marily by soil moisture variability, which limited NPP

more than heterotrophic respiration.At the same time, the

temperature anomalies resulting from land–atmosphere

coupling affected NPP with the same sign as the net soil

moisture effect, with the NPP response dominating the

overall NEE signal. This portion of the temperature

anomaly TSM combines with the direct control of soil

moisture onNEE, leading to the dominance ofCSM during

the dry season.

b. Uncertainties and limitations

While our experiment demonstrated the importance

of land–atmosphere coupling in E3SM, extrapolation to

the real Earth systemmust be tempered by consideration

FIG. 10. Temporal structure of Niño-3.4 correlations with lagged

surface air temperature in the eastern Amazon for (a) E3SM experi-

ments and (b) benchmark datasets. Monthly temperature anomalies

averaged across all grid cells in the Amazon watershed east of 608W
were correlated with the Niño-3.4 index using lead and lag times up to

12 months. Dashed horizontal lines indicate correlation coefficients

that are statistically significant at p# 0:05.Monthly datawere smoothed

with a 3-month centered moving average for clarity.
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of the disagreement in the ENSO-driven temperature

contrast between observations and reanalyses. The

AMIP simulation was able to reproduce the mean tem-

perature within the uncertainty of the benchmark tem-

perature data, but it showed a stronger dry-season

contrast than two of the three benchmark datasets. This

may have resulted from unrealistically strong land–

atmosphere coupling in this model, which would be con-

sistent with previous studies that found land–atmosphere

coupling to be too strong in the models on which E3SM

is based (Dirmeyer 2006; Zeng et al. 2010; Mei and

Wang 2012; Levine et al. 2016).

Land surface temperatures are more sensitive to

moisture availability when that becomes the limiting

factor for evapotranspiration, which mostly occurs

under semiarid conditions (Seneviratne et al. 2010).

Therefore, any errors in the model that pushed the

Amazon from its generally moist state toward drier

FIG. 11. Difference between NEE (positive flux to atmosphere) anomalies averaged across El

Niño and La Niña years during (left) the wet season (January–March) and (right) the dry season

(July–September) in the (top) AMIP, (middle) SSTvar, and (bottom) SMvar simulations. Cross-

hatching indicates that the difference between El Niño and La Niña means is statistically sig-

nificant at p# 0:05.
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conditions could have biased the land–atmosphere

coupling strength. The dry bias in the AMIP simula-

tion is a well-known feature of many ESMs, includ-

ing the precursors to E3SM (Joetzjer et al. 2013; Yin

et al. 2013), and could have caused excessive land–

atmosphere coupling that led to an unrealistically large

temperature contrast in the dry season. In addition,

CLM4.5 does not include any hydraulic redistribution

by deep roots (Tang et al. 2015; Y. Wang et al. 2016),

which sustains dry-season plant growth and evapo-

transpiration in the Amazon (Nepstad et al. 1994;

Lee et al. 2005; Oliveira et al. 2005). This may also

have pushed the model toward drier conditions, by

making water inaccessible by plants and unavailable for

evapotranspiration.

On the other hand, there is also evidence that supports

the possibility that E3SM may have underestimated the

response to ENSO. The precipitation bias applied not

only to the mean state, but also to the magnitude of in-

terannual variability. Land–atmosphere coupling in the

model ensured that errors in wet-season precipitation

that yielded errors in subsequent dry-season water

storage anomalies would have led to errors in temper-

ature, and potentially NEE as well. Insufficient pre-

cipitation variability in the eastern Amazon did not lead

to insufficient water storage variability, at least over the

FIG. 12. Temporal evolution of monthly anomalies of ecosystem variables in the eastern Amazon in the (left to right) AMIP, SSTvar,

SMvar, andNOvar E3SM simulations. Monthly anomalies of (top) net primary production (NPP), (middle) heterotrophic respiration (RH),

and (bottom) net ecosystem exchange (NEE) were averaged across all grid cells in the Amazon watershed east of 608W from the July

preceding each El Niño (red) and La Niña (blue) year through the following December. Individual years are plotted with dashed lines,

with a solid line for themean of El Niño and LaNiña years. Gray regions delineate themonths in the wet season (January–March) and dry

season (July–September). Monthly data were smoothed with a 3-month centered moving average for clarity.

1288 JOURNAL OF CL IMATE VOLUME 32



limited time span of the GRACE record. However, in

the places where water storage variability was too low,

the temperature anomalies resulting from land–atmosphere

coupling would also have been too low, which could

have caused the simulated response to ENSO to be too

weak.

c. Implications for future research

Our results suggest that attempts to partition the rel-

ative importance of temperature and hydrology in the

carbon cycle response to ENSO should consider the

interdependence between these variables. In particular,

studies that employ offline models that are forced by

non-interactive temperature and precipitation (or soil

moisture) time series may overestimate the sensitivity of

CO2 fluxes to temperature and underestimate the sen-

sitivity to hydrology (e.g., Piao et al. 2013; Wang et al.

2013). While our experiments could not separate the

direct ecosystem carbon response to soil moisture from

the effect of soil moisture on temperature, they demon-

strated that the largest ENSO-driven carbon cycle

anomalies, in the eastern Amazon during the dry season,

are spatiotemporally collocated with the strongest land–

atmosphere coupling. Future work could use tempera-

ture time series from an experiment such as ours to drive

an offline model, in order to further constrain how much

of CSM is directly due to TSM.

The disagreements between the benchmark temper-

ature datasets highlight the need to reduce uncertainties

in observations and reanalyses. CRU TS4.01 is based

on station observations, so in sparsely observed regions

such as the Amazon spatial interpolation could decrease

interannual variability, which could have caused the overall

low contrast in this dataset. Reanalysis datasets showed

stronger contrasts, but they are constrained at the surface by

land surface models that may themselves suffer from the

same bias in land–atmosphere coupling strength as E3SM.

The ongoing efforts toward improving these data products

are important for understanding remote but climatically

significant regions such as the Amazon.

5. Conclusions

We performed an experiment with a set of global

E3SM simulations to decouple the direct effects of SST

variability from the resulting soil moisture variability in

the Amazon. We found that soil moisture anomalies

served to intensify and prolong the response of the eastern

Amazon climate to ENSO. The immediate component of

the response toElNiñowas driven directly by atmospheric

circulation changes that increased temperatures and re-

duced precipitation during the wet season. Soil moisture

anomalies persisted into the dry season, causing a delayed

temperature response from land–atmosphere coupling.

SST-driven soil moisture anomalies explained two-thirds

to four-fifths of the eastern Amazon’s dry-season tem-

perature response to ENSO in E3SM. Observational and

reanalysis data suggest that E3SMmay have overestimated

the temperature response toENSO,perhaps due to abias in

land–atmosphere coupling strength.

The drivers of the carbon cycle response to ENSO in

E3SM were similar to those for temperature. In the east-

ern Amazon, soil moisture did not affect the net carbon

cycle response to ENSO during the wet season, but it

drove the majority of the dry season response. ENSO

had a larger impact on dry-season carbon fluxes than those

of the wet season, resulting from soil moisture limitations

on ecosystem function combined with land–atmosphere

coupling affecting temperature. This indicates the need to

consider the interdependent relationship between tem-

perature and the hydrologic cycle when attributing mech-

anisms to ENSO-driven variability in the tropical terrestrial

carbon cycle.
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