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Abstract—Wildfires are the dominant disturbance impacting
many regions in Alaska and are expected to intensify due to
climate change. Accurate tracking and quantification of wildfires
are important for climate modeling and ecological studies in this
region. Remote sensing platforms (e.g., MODIS, Landsat) are
valuable tools for mapping wildfire events (burned or burning
areas) in Alaska. Deep neural networks (DNN) have exhibited
superior performance in many classification problems, such as
high-dimensional remote sensing data. Detection of wildfires is
an imbalanced classification problem where one class contains a
much smaller or larger sample size, and performance of DNNs
can decline. We take a known weight-selection strategy during
DNN training and apply those weights to MODIS variables (e.g.,
NDVI, surface reflectance) for binary classification (i.e., wildfire
or no-wildfire) across Alaska during the 2004 wildfire year, when
Alaska experienced a record number of large wildfires. The
method splits the input training data into subsets, one for training
the DNN to update weights and the other for performance
validation to select the weights based on the best validation-loss
score. This approach was applied to two sampled datasets, such as
where the no-wildfire class can significantly outweigh the wildfire
class. The normal DNN training strategy was unable to map
wildfires for the highly imbalanced dataset; however, the weight-
selection strategy was able to map wildfires very accurately (0.96
recall score for 78,702 wildfire pixels (500× 500 m)).

Index Terms—Deep Learning, MODIS, Wildfire, Imbalanced
Classification

I. INTRODUCTION

Arctic tundra, boreal forests, and peatlands are already

undergoing major changes, which have led to increased fre-

quency and intensity of disturbances (e.g., wildfires) [1], [2].

Predictive ecosystem modeling capabilities for this region

have large uncertainties due to the complexity of interacting

ecosystem components [3] and creating accurate frameworks

for quantification of disturbances are important to long-term

modeling studies, such as those in DOE’s NGEE Arctic [4]

and NASA’s ABoVE [3] projects. Wildfires are the dominant

disturbance impacting the boreal forest [2]. Differences in fire

frequency and size can occur between Alaska’s ecoregions

[5], [6]. Fire events in the boreal zone can repeat at a high

frequency (105 year fire return interval for 1920–2009 [7])

and be very large in extent (>1,000 km2) [8]. While tundra

fire events are typically rare and small in size (average of

30–55 km2) [7], evidence shows that climate change has led

to an increase in fire occurrence and extent in tundra regions

[9]. One example is the 2004 wildfire season when extreme

drought conditions caused a record wildfire year [10].

A popular method for wildfire mapping uses the Nor-

malized Difference Vegetation Index (NDVI), a remotely

sensed indicator of photosynthetic capacity [11]. NDVI is

one of the most commonly used vegetation indices and is

widely available from satellite sensors, such as the Moderate-

Resolution Imaging Spectroradiometer (MODIS), a sensor on

board NASA’s Terra and Aqua satellites that has a spatial

resolution of 250 m2 and daily temporal resolution. The spatial

and temporal resolution makes MODIS a valuable tool for

mapping disturbances over large areas. Additionally, other

MODIS products (i.e., land surface temperature (LST)) have

been shown to be beneficial for wildfire mapping [12].

Deep learning methods have dramatically improved the

state-of-the-art in many different classification applications

[13]. These methods consist of multiple levels of representa-

tion, obtained by transforming the representation at one level

into a representation at a higher, slightly more abstract level

[13]. A deep neural network (DNN) can contain millions of

weights, thousands of internal connected processors called

nodes, and many hidden layers. However, most of the existing

deep learning algorithms do not take the data imbalance

problem into consideration [14]. Imbalanced data classification

exists where one class (e.g., burned areas) contains a much

smaller sample size than the others (e.g., unburned areas) in

classification. It poses a great challenge for DNN architectures,

due to the difficulty in recognizing the minority class [15].

However, there has been a significant amount of research

performed on the class imbalance problems using dataset

resampling [16], cost-sensitive weighting [17], and few-shot

learning [18].

This paper describes application of DNN classification

methods to the detection of wildfire events (i.e., recently

burned land area or areas actively burning) for the 2004

wildfire year in Alaska. To identify the best approach for

detecting wildfire events using imbalanced datasets, we follow

the DNN training approach of Sze-To & Wong [15], where the

original training data set is split into two subsets, one subset

for training (updating weights) and the other for validation (se-

lecting weights). The weights that render the best performance

for the validation set are retained for subsequent classification.
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II. STUDY AREA

The climate across Alaska is highly regionalized due to

complex terrain, proximity to oceans and sea ice, and its large

geographic extent [19]. Across Alaska, the length of the grow-

ing season period is an important factor for determining the

spatial and temporal distribution of green vegetation (detected

through satellite NDVI), which can vary significantly in Alaska

from day of year (DOY) 92–300 for boreal ecosystems and

DOY 130–273 for Tundra [20]. The study area (Figure 1)

covered the interior regions of Alaska and was based on the

climate division boundaries by Bieniek et al. [19]. Interior

Alaska was chosen because of the large number of wildfires

in the boreal region. The study area is bounded to the north

by the Brooks Range and to the south by the Yukon–Tanana

uplands and Alaska Range [19]. It is relatively far from ocean

influences and has a continental climate with relatively low

precipitation [19].

Fig. 1. Study area (yellow lines) and the 2004 wildfire boundaries (red
polygons).

III. MATERIALS AND METHODS

A. Deep Neural Networks

A deep neural network (DNN) is an artificial neural network

that consists of multiple hidden layers between the input

and output layers. This study is focused on feedforward

networks. Each hidden layer consists of many units that act

in parallel, each representing a vector-to-scalar function [21].

If the dataset D =
{(

x(n), y(n)
)}N

n=1
, where x is the n-

dimensional vector and y is the class label associated with

the instance x, then a feedforward neural network models the

data as a nonlinear function of

p
(
y(n) = 1 | x(n), θ

)
= σ

(∑
i

θix
(n)
i

)
, (1)

where θ represents the parameters of the network (e.g.,

weights) and σ represents the activation function that is used

to determine the activation of the output node. A DNN learns

the value of the parameters θ that result in the best function

approximation [21]. This can be represented as

y(n) =
∑
j

θ
(2)
j σ

(∑
i

θ
(1)
ji x

(n)
i

)
+ ε(n), (2)

where ε represents the learning rate. DNN learning also

requires computing the gradients using the back-propagation

algorithm, which calculates the direction and magnitude during

training that is used to update the network weights. Training

a DNN also requires making decisions such as choosing the

optimizer, cost function, activation functions (which are used

to compute the hidden layer values), and the form of the output

units [21].

B. DNN Architecture
The standard strategy of DNN training consists of running

the back-propagation algorithm on the training data to obtain

a smaller loss value, and in each epoch an updated set of

weights are obtained. Sze-To & Wong [15] proposed a strategy

known as the Validation-Loss (VL) strategy that splits the

input training data into two sets, one for training the DNN

to update weights and the other for performance validation

to select the weights [15]. The validation loss is calculated

by the summation of the errors made for each example in the

validation sets by cross entropy. The interpretation is how well

the model is performing, with the main objective to reduce the

validation loss score with respect to the model’s parameters

by changing the weights through backpropagation. The best

weights updated by the VL strategy are selected during DNN

training and saved as the final model for testing. Figure 2

shows the current approach of incorporating the VL strategy.

The validation dataset was partitioned equally across classes,

in order for the weights that are updated to reflect this balanced

dataset.
The deep learning library Keras (http://keras.io/) with the

TensorFlow [22] backend was used to implement DNN in

this study. The DNN has five layers, with the 1st layer

being the MODIS variables. The 2nd, 3rd, and 4th layers are

hidden layers of rectified linear unit (ReLu) as the activation

function [23]. The final layer is an output layer consisting

of the softmax function, which is a categorical probability

distribution that represents the probability that any of the

classes are true. Figure 3 shows a visual representation of the

DNN architecture.

C. Baseline Method
An ensemble model of gradient boosted trees is used to

compare with the DNN methods. Specifically, the XGBoost

algorithm is used, which has been highly successful in a

number of machine learning and data mining challenges [24].

XGBoost is a scalable implementation of gradient boosting

machines, which is an ensemble technique that builds upon

many weak successive trees to produce a strong model [24].

XGBoost provides a new sparsity-aware algorithm for sparse

data and weighted quantile sketch for approximate tree learn-

ing [24]. Also, an additional regularization term and model
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Fig. 2. Flowchart of study when incorporating a standard and Validation-Loss strategy (red box).
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Fig. 3. DNN architecture for classifying MODIS images. The input represents
the 286 MODIS bands (described in section III-D1).

formalization helps to smooth the final weights to avoid

overfitting [24].

D. Datasets

Table I lists the raster datasets used in this study.

The MODIS products were processed in the Google

Earth Engine (GEE) platform (https://earthengine.google.com/

datasets/). The MOD11A2 level-3 MODIS global Land Sur-

face Temperature (LST) and Emissivity 8-day data are com-

posed from the daily 1-kilometer LST product (MOD11A1)

and stored on a 1-km Sinusoidal grid as the average values

of clear-sky LSTs during an 8-day period. The MOD11A2

products are comprised of daytime and nighttime LSTs, qual-

ity assessment, observation times, view angles, bits of clear

sky days and nights, and emissivities. The MODIS Surface-

Reflectance Product (MOD09A1) provides an estimate of the

surface spectral reflectance values at 500 m resolution in a

gridded format. Each pixel for both datasets contains the best

possible observation during an 8-day period, selected as the

one with large observation coverage, a high viewing angle,

an absence of clouds or cloud shadow, and aerosol loading

[25]. The Monitoring Trends in Burn Severity (MTBS) product

(https://www.mtbs.gov) includes all fires 1000 acres or greater

in the western United States, which is used as the target class

for the MODIS variables. MTBS was chosen because of the

accuracy in its representation of the extent of wildfires.

TABLE I
RASTER PREDICTOR VARIABLES.

Description Variable Resolution

MOD09A1 NDVI 500 m at 8 days
MOD09A1 EVI 500 m at 8 days
MOD09A1 SAVI 500 m at 8 days
MOD09A1 Bands 1–7 500 m at 8 days
MOD11A2 Daytime LST (Kelvin) 1 km at 8 days
MTBS Wildfire Extent 500 m

1) Data Processing: Figure 4 shows the main process-

ing steps for the MODIS variables and MTBS dataset. All

MODIS products were processed from early-April through

late-October in 2004. The MTBS vector layers were converted

to raster and resampled to 500 m. Additionally all products

were resampled to 500 m using the nearest neighbor resam-

pling method in GEE. Contaminated pixels can often lead to

false disturbance signatures when analyzing MODIS satellite

time series datasets [26]. Thus, it is important to remove such

data before performing the analysis. The MODIS products

include a quality control (QC) file. Per-pixel QC information in

MODIS products allows for removal of most contamination of

the NDVI signal related to clouds, aerosol and snow [25]. For

all MODIS products, only the good data quality information

from the QC file was kept and the rest were removed. For the

MOD11A2, all pixels that have average LST errors less than

1 K (i.e., QC = 0, 1, 5, 17, 21) were kept, while pixels with

other QC values were removed.

Noise reduction and gap filling in the time series of MODIS

data are active areas of research and needed for accurate time

series analysis [27]. The Savitzky-Golay algorithm was applied

on the filtered MODIS products to fill in the missing pixels
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Golay FIltering
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Fig. 4. Main processing steps for the MODIS variables and MTBS dataset.

and smooth the data. The smoothing is performed to capture

the overall trend of spectral signatures after a wildfire. It has

been shown that the Savitzky-Golay smoothing algorithm is a

popular choice based on MODIS datasets [28]. Savitzky-Golay

applies a moving-window quadratic polynomial function to

the original time-series data and estimates new values for the

center point of each moving-window [28]. Figure 5 shows the

averaged NDVI values of a large wildfire occurring on July

7, 2004, where the dotted line represents the Savitzky-Golay

smoothing. Finally, the MODIS images were concatenated into

one image consisting of 288 variables.

Fig. 5. Plot showing the Savitzky-Golay algorithm averaged over a large
wildfire occurring on July 7, 2004. NDVI values drop significantly after the
wildfire started.

2) Data Splitting and Validation Metrics: The MODIS and

MTBS datasets were split into training and testing categories

for building and validating the model. Overall, the MODIS

and MTBS pixels contained 1,742,618 no-wildfire pixels and

105,072 wildfire pixels, with both classes covering an area of

461,922.5 km2 in Interior Alaska. The original dataset was

split into 2 categories varying the amount of data for each

category, where dataset-0 contains a large amount of training

data and dataset-1 contains a small amount of training data

and a large amount of testing data. The validation set was used

only when the VL strategy was applied and was selected from

the training dataset. It was partitioned to have equal amounts

for each category. Additionally, a single wildfire was removed

from the original dataset and tested using models trained from

dataset-0 and dataset-1. The purpose was to create visual maps

of the single wildfire covering an area of 70 km2 to assess

and illustrate model performance. Table II shows the amount

of data used for the training, testing, validation, and a single

wildfire.

The precision-recall metric was used to evaluate the wildfire

classifications, which is a useful measure of success of predic-

tion when the classes are very imbalanced. A high recall but

low precision returns many results, but most of the predicted

labels are incorrect when compared to the training labels [29].

A system with high precision but low recall is just the opposite,

returning very few results, but most of its predicted labels are

correct when compared to the training labels [29]. An ideal

system will have a high precision and high recall [29].

Precision (P ) is defined as the number of true positives

(Tp) over the number of true positives plus the number of

false negatives (Fp), which can be defined as

P =
Tp

Tp + Fp
. (3)

Recall (R) is defined as the number of true positives (Tp) over

the number of true positives plus the number of false negatives

(Fn), which can be defined as

R =
Tp

Tp + Fn
. (4)

Additionally, a normalized confusion matrix between 0 and 1

was produced to evaluate the quality of the classifier. This was

performed by taking the percentage of elements of the correct

class i that was classified into each class and taking row fixing

the i and divide each element by the sum of the elements in

the row.

IV. RESULTS

A. Conventional DNN Training

Table III shows the results for dataset-0 and dataset-1 when

the conventional DNN training method is used (Figure 2).

Dataset-0 performs the best for mapping wildfires with preci-

sion and recall scores of 0.90 and 0.90, respectively, for the

wildfire class. Dataset-1 performed the worst and was unable

to classify the wildfire class using the test dataset. This is

mainly due to the small amount of training data and the large

amount of test data (Table II) for dataset-1. Figure 6 shows
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TABLE II
NUMBER OF PIXELS (500 × 500) USED FOR TRAINING, TESTING, AND

VALIDATION OF THE DNN ALGORITHM FOR EACH DATASET. THE

VALIDATION COLUMN WAS ONLY APPLIED WHEN USING THE VL
STRATEGY.

Dataset No-Fire Fire Percentage

Dataset-0 Train 1,154,333 70,493 75%
Dataset-0 Test 427,115 26,356 25%
Dataset-0 Validation 7,947 7,947 10%

Dataset-1 Train 384,375 23,477 25%
Dataset-1 Test 1,282,862 78,702 75%
Dataset-1 Validation 2,617 2,617 10%

Single Wildfire 9,724 276 <1%

TABLE III
CONVENTIONAL DNN TRAINING METHOD PRECISION, RECALL, AND

NUMBER OF TEST SAMPLES

Dataset Class Precision Recall Samples

0
Fire 0.90 0.90 26,356
No-Fire 0.99 0.99 427,115

1
Fire 0.00 0.00 78,702
No-Fire 1.00 1.00 1,282,862

the normalized confusion matrices for dataset-0 and dataset-

1. Dataset-0 performs well with a normalized score of 0.90

for the wildfire class, with a small number of false positives.

Dataset-1 was unable to classify the wildfire class, with a large

number of false positives.

1) Single Wildfire Mapping: Figure 7 shows the model

results using the standard DNN training applied to a single

wildfire (100×100 pixel grid) that was held out of the training,

testing, and validation dataset. Figure 8 shows the normalized

confusion matrix for dataset-0 and dataset-1 using the standard

DNN training. Dataset-0 performs the best with a normalized

score of 0.74 for the wildfire class. Dataset-1 performs the

worst and was unable to map the wildfire.

B. VL DNN Training

TableIV shows the results for dataset-0 and dataset-1 using

the VL DNN training method (Figure 2). Dataset-0 had a

precision and recall of 0.68 and 0.95, respectively, for the

wildfire class. Dataset-1 had similar scores with precision and

recall of 0.61 and 0.96, respectively, for the wildfire class.

Dataset-0 and dataset-1 both improved scores from using

the standard DNN training (Table III). This is a significant

improvement for dataset-1 (i.e., most imbalanced dataset)

increasing the recall score from 0.00 to 0.96. Figure 9 shows

the normalized confusion matrices for dataset-0 and dataset-1.

Dataset-1 performs significantly better with a normalized score

of 0.96 for the wildfire class, with a small amount of false

positives. Dataset-0 also performs better with a normalized

score of 0.95 for the wildfire class.

Figure 10 shows the training accuracy scores when using

the VL strategy. The red line indicates validation-loss scores

based on the amount of validation samples (Table II) being

(a) Dataset-0

(b) Dataset-1

Fig. 6. Confusion matrices results using the standard DNN Training for
dataset-0 and dataset-1.

TABLE IV
VL DNN TRAINING METHOD PRECISION, RECALL, AND NUMBER OF TEST

SAMPLES

Dataset Class Precision Recall Samples

0
Fire 0.68 0.95 26,356
No-Fire 1.00 0.97 427,115

1
Fire 0.61 0.96 78,702
No-Fire 1.00 0.96 1,282,862

used to select the weights. Dataset-1 shows higher variation in

the validation loss scores during training compared to dataset-

0. This is due to the amount of data being used during

training and validation for updating the weights (Table II).

Both datasets show the validation-loss reaching the lowest

scores after 20 epochs.

1) Single Wildfire Mapping: Figure 11 shows the model

results using the VL DNN training applied to a single wildfire

(100×100 pixel grid) that was held out of the training,

testing, and validation dataset. Figure 12 shows the normalized

confusion matrix for dataset-0 and dataset-1 using the VL

DNN training. Dataset-0 performs the best with a normalized

score of 0.71 for the wildfire class. Dataset-1 improved on the

standard DNN training, with a normalized score of 0.55 for

the wildfire class, significantly improving the score from 0.00

(Figure 8). Both methods for dataset-0 also identify wildfire
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(a) Original Dataset

(b) Dataset-0

(c) Dataset-1

Fig. 7. Mapping results for a single wildfire (a) of dataset-0 (b) and dataset-1
(c) using the standard DNN training models.

pixels (Figure 7 (b) and Figure 11 (b)) that are outside the main

perimeters delineated by MTBS (Figure 11 (a)), indicating

possible burnt area that were not captured by MTBS.

C. Comparisons with XGBoost Algorithm

Table V shows the results for dataset-0 and dataset-1 for

using the XGBoost method for the entire study region and the

single wildfire. Both datasets perform equally, with precision

and recall scores of 0.95 and 0.85, respectively for the wildfire

class over the study region. For the single wildfire, dataset-0

performed slightly better with precision and recall scores of

0.88 and 0.76, respectively. Overall, XGBoost performed well

given the imbalanced dataset when compared to the standard

DNN training III. However, the VL DNN training method

showed better results IV when compared to XGBoost.

(a) Dataset-0

(b) Dataset-1

Fig. 8. Confusion matrices results for the single wildfire using the standard
DNN Training for dataset-0 and dataset-1.

TABLE V
XGBOOST METHOD SCORES FOR PRECISION, RECALL, AND NUMBER OF

TEST SAMPLES

Dataset Class Precision Recall Samples Region

0

Fire 0.94 0.85 26,356 Study Region
No-Fire 0.99 1.00 427,115 Study Region
Fire 0.88 0.77 276 Single Wildfire
No-Fire 0.99 1.00 9,724 Single Wildfire

1

Fire 0.94 0.85 78,702 Study Region
No-Fire 0.99 1.00 1,282,862 Study Region
Fire 0.88 0.76 276 Single Wildfire
No-Fire 0.99 1.00 9,724 Single Wildfire

V. DISCUSSION

The VL DNN training strategy showed significant improve-

ment over the standard DNN training for dataset-1 when test-

ing against the wildfires. The scores only reflect comparisons

with the perimeters delineated by MTBS, while this method

could also identify other small wildfire burn areas (Figure 11),

which were perhaps not mapped since MTBS only maps

wildfire above 1000 acres [30]. While the results in this paper

were applied only for Interior Alaska, the VL strategy could

be applied for global-scale wildfire mapping, since the method

does not rely on parameters specific to this region.

Google Earth Engine (GEE) was used to process the data
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(a) Dataset-0

(b) Dataset-1

Fig. 9. Confusion matrices results using the VL DNN Training for dataset-0
and dataset-1.

and is a valuable resource for data processing. GEE has a vast

database of remote sensing products and this method could be

used at higher spatial (i.e., Landsat) and temporal resolutions

(i.e., daily). Other datasets, such as land cover and climate

variables, within GEE could provide opportunities for new ma-

chine learning approaches. For example, it has been shown that

prolonged periods of warm and dry conditions enables large

wildfires, while wetting precipitation within a week of ignition

enables smaller wildfires [31]. Additionally, it is important

to validate these methods to existing MODIS-based active

fire maps. It has been shown that MODIS surface reflectance

products (MOD09A1) has been used to successfully map

wildfires using the MODIS active fire product (MOD14A2)

as training data [32]. Future research will investigate using

MOD14A2 and other fire-based products instead of the MTBS

dataset. New machine learning approaches that incorporate

these dynamics will be beneficial for additional strategies to

map wildfire extent.

XGBoost showed high accuracies (Table V) in mapping

wildfires, this could be due to an additional regularization

term, and model formalization helps to smooth the final

weights to avoid overfitting [24]. More advanced deep learning

methods should be investigated for wildfire mapping in Alaska.

It has been shown that convolutional neural networks (CNNs)

are powerful algorithms for generating feature vectors in this

(a) Dataset-0

(b) Dataset-1

Fig. 10. Accuracy and validation loss scores using the validation dataset
(Table II) during VL DNN Training for dataset-0 and dataset-1 using 50
epochs.

region [33]. The VL training strategy could also be applied

to CNNs along with other deep learning architectures that

help with overfitting (e.g., dropout, regularization techniques).

Architectures that leverage sequential data, such as recurrent

neural networks (RNNs), have been shown to provide accurate

classification performance of MODIS datasets [34], [35]. Ad-

ditionally, sequential deep learning architectures have shown

that image preprocessing (noise removal) is handled by the

networks which could alleviate the need for performing such

tasks [36].

Model learning from imbalanced datsets is a significant

challenge for remote sensing datasets. This method splits the

input training data into sets, one for training the DNN to up-

date weights and the other validation set (split equally among

classes) for performance validation to select the weights [15].

While this method was shown to significantly improve per-

formance for the highly imbalanced dataset, other techniques

for model learning that is independent from the global model

optimization should also be investigated.

VI. CONCLUSION

We present a method for training deep neural networks

(DNN) using a validation-loss (VL) weight selection strategy

on imbalanced datasets. The method selects the weights based

on the validation-loss scores during training when using equal

amounts per class to reflect a balanced dataset (Figure 2). The
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(a) Original Dataset

(b) Dataset-0

(c) Dataset-1

Fig. 11. Mapping results for a single wildfire (a) of dataset-0 (b) and dataset-1
(c) using the VL DNN training models.

VL approach showed a significant improvement when using

the heavily imbalanced dataset (i.e., dataset-1), increasing the

recall score from 0.00 to 0.96 when performing on 78,702

wildfire pixels (500× 500 m). It provides a remote sensing

based approach for large scale mapping of wildfires and other

classification problems in ecology that suffers from the issue

of imbalanced data.
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