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A B S T R A C T   

Timely and accurate knowledge about the geospatial distribution of crops at regional to continental scales is 
crucial for forecasting crop production and estimating crop water use. The United States (US) is one of the 
leading food-producing countries, but lacks a nationwide high resolution crop-specific land cover map available 
publicly during the current growing season. The goal of this study was to map crops across the Continental US 
(CONUS) before the harvest, and to estimate the earliest date of classification by which crops can be mapped 
with sufficient accuracy (90% of full-season accuracy). The study employed a scalable cluster-then-label model 
that was trained on multiple years of MODIS NDVI using ground truth data in the form of US Department of 
Agriculture (USDA) Cropland Data Layer (CDL) products. The first step in the crop classification was to perform 
Multivariate Spatio-Temporal Clustering (MSTC) of annual MODIS-derived NDVI trajectories to create pheno
logically similar regions, or phenoregions. The second step was to assign crop labels to phenoregions based on 
spatial concordance between phenoregions and crop classes from CDL using Mapcurves. Assigning crop labels to 
phenoregions was performed within ecoregions to reduce classification errors due to spatial variability in phe
nology caused by variations in climate, agricultural practices, and growing conditions. The crop classifier was 
trained and validated on the years 2008–2014, then tested independently on 2015–2018. Ecoregion-level crop 
classification performed better than state-level and CONUS-level classification. Pixel-wise accuracy of classifi
cation for eight major crops by area was around 70% across the major corn-, soybeans- and winter wheat- 
producing areas, whereas regions characterized by high crop diversity had slightly lower accuracy. Classification 
accuracy for dominant crops like corn, soybeans, winter wheat, fallow/idle cropland and other hay/non alfalfa 
improved with time as they grew, reaching 90% of year-end accuracy by the end of August over each of the four 
unseen years in the test period. For corn and soybeans, the earliest dates of classification were found to be much 
earlier in the central regions of the Corn Belt (parts of Iowa, Illinois and Indiana) than in peripheral areas. The 
ability to map growing crops may permit near real-time monitoring of the health status and vigor of agricultural 
crops nationally.   

1. Introduction 

Accurate and timely monitoring of crops over national scales is 
critical for crop production forecasts, water management, assessment 
and management of disaster and disturbance impacts and character
izing land use for Earth system modeling (Justice and Becker-Reshef, 
2007; Waldner et al., 2015b). Federal agencies and private businesses 
involved with crop insurance, food and feed processing and financial 
markets need alerts of impending crop failures and yield shortfalls to 
avoid human and livestock famine. Extreme events like the 2010 heat 

wave in Russia and the 2012 drought in the United States (US) result in 
crop price volatility for food-insecure regions of the world, necessi
tating an early warning system for agricultural production shortfalls 
(Welton, 2011; Boyer et al., 2013). The Global Agricultural Monitoring 
(GLAM) Project (Becker-Reshef et al., 2010) of the US Department of 
Agriculture (USDA) Foreign Agriculture Service (FAS), the Food and 
Agricultural Organization (FAO) Global Information and Early Warning 
System (GIEWS) (FAO, 2019), and the Famine Early Warning System 
Network (FEWS NET) (USAID, 1985) are continental or global agri
cultural monitoring systems that provide information on crop 
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conditions and production forecasting for different countries in the 
world. These systems use a combination of social and remote sensing 
information, but are generally limited to estimating net production 
rather than spatially mapping crops. 

Mapping the spatial extent and distribution of crops in a timely 
manner is necessary for near real-time crop health monitoring (Waldner 
et al., 2015b). The US is a leading food producer in the world, gen
erating about 20% of world grain exports (USDA, 2019c); however, no 
spatially explicit national crop map is available publicly during the 
current growing season (Cai et al., 2018). The USDA National Agri
cultural Statistics Service (NASS) produces the annual Cropland Data 
Layer (CDL) (Boryan et al., 2011), a crop-specific land cover map for 
the CONUS at 30 m resolution, but the CDL is not released until the 
spring of the year following the current growing season, at least four 
months after the current harvest. Although the USDA issues weekly 
Crop Progress and Condition Reports (CPCR), tallying growth stages for 
major crops (USDA, 2019a), these are aspatial, tabular statistics that are 
often spatially aggregated to administrative units like counties or states. 

Past studies have shown the possibility of mapping individual major 
crops like corn and soybeans with sufficient accuracy as early as 
July–August (Zhong et al., 2016; Cai et al., 2018) and winter wheat by 
the end of April (Skakun et al., 2017). Dahal et al. (2018) showed it was 
possible to map major crops across CONUS by the end of September of 
the current growing season. However, the scope of these studies was 
limited either to only a few crops, or to particular counties, states, or 
groups of states. Near real-time national scale crop mapping is chal
lenging because 1) crop phenology changes quickly over relatively 
short time scales, thus requiring remote sensing data with a high tem
poral frequency, 2) crop-specific land cover maps, required for model 
development, need to be available over large spatial scales, 3) crop 
phenology varies across space due to differences in environmental 
growing conditions, 4) interannual variations in crop phenology caused 
by variations in climate make a classifier trained on a single year per
form poorly in another year, and 5) a spatial crop classifier needs to be 
efficient to be nationally scalable. 

Unsupervised methods like k-means clustering, the ISODATA algo
rithm and Gaussian mixture models have been used in the past to 
cluster features derived from a time series of remotely sensed vegeta
tion indices (Gumma et al., 2016; Skakun et al., 2017; Xiong et al., 
2017; Wang et al., 2019). Crop type labels were then assigned to these 
clusters using spectral matching techniques or using spatially ag
gregated crop statistics at the administrative level. Supervised methods 
like decision tree algorithms (Pittman et al., 2010), support vector 
machines (Waldner et al., 2015a), random forests (Shao and Lunetta, 
2012), neural networks (Shao et al., 2010) and, more recently, deep 
learning approaches (Kussul et al., 2017; Zhong et al., 2019) have also 
been successfully applied for crop classification at small scales. The 
choice of classification algorithm requires considering the type and 
volume of data, target accuracy, ease of use, speed and scalability, 
usually posing trade-offs and compromises (Gómez et al., 2016). Recent 
studies have opted for a generalized classifier trained on multiple years, 
instead of training on just one year (Zhong et al., 2014). Training on 
multiple years makes the model more robust to phenology shifts due to 
interannual variations in climate. A model trained on a sufficient 
number of years would not require re-training for the mapping year, 
allowing faster near real-time crop mapping. Massey et al. (2017) used 
a generalized classifier to map major crop types across the CONUS, and 
found its performance to be almost at par with training and mapping 
within the same year. 

One of the challenges in large area crop mapping is the variation in 
the timing of crop phenological development across climate zones, 
since it is influenced by climate, soil, topography, etc., as well as farm 
technology, management practices, fertilization, irrigation, etc. 
Growing degree days (GDD) can account for some variations in crop 
development (Zhong et al., 2014; Skakun et al., 2017). Other studies 
performed crop classifications at the scale of smaller administrative 

units like Agriculture Statistics Districts (ASDs) (Sakamoto et al., 2011), 
states (Zhong et al., 2016), or Agro-ecological zones (AEZs) (Massey 
et al., 2017), as defined by the United Nations FAO for the year 2000 
(Fischer et al., 2000). However, these approaches either do not take 
into account variations in precipitation and soil properties, or are run 
within administrative or political boundaries that are not relevant to 
crop phenology, or are too large to capture phenological variability 
with climate. Ideally, modeled regions would be described based on 
environmental variables that reflect crop growing conditions, and 
would be of small size, created using quantitative analytical methods 
that are both empirical and reproducible. Multivariate Geographic 
Clustering algorithms have been successfully used (Hargrove and 
Hoffman, 2004) to create ecoregions: regions on a map within which 
exist similar combinations of ecologically relevant conditions like 
temperature, precipitation, soil and topographic properties. 

The objectives for this study were as follows:  

• To create a national, crop-specific land cover map (with all of the 
crop types, as included in the CDL) for the CONUS using time series 
of MODIS-derived Normalized Difference Vegetation Index (NDVI) 
as inputs to a generalized cluster-then-label crop classifier. The model 
was trained at the scale of individual quantitative ecoregions in order 
to address the spatial variability in phenology. No national-scale 
cropland maps are available prior to 2008. One of the goals of this 
study is to generate national-scale crop maps for the years 
2000–2007 using MODIS NDVI, before the CDL began. Having na
tional crop maps back to 2000 could help researchers studying land 
use/land cover change or modeling long-term crop yield.  

• To create crop maps in near real-time during the current growing 
season and to study the rate of increase in mapping accuracy as the 
season progresses for 8 major crop types grown in the US: corn, 
soybeans, winter wheat, fallow/idle cropland, other hay/non alfalfa, 
alfalfa, sorghum and rice. While accuracy may start low early in the 
growing season, it should improve as the crops grow and mature. 
The ultimate goal was to estimate the earliest time by which each of 
the eight major crop types can be mapped with reasonable accuracy 
across the entire CONUS within the current growing season. 

2. Study area and datasets 

2.1. Study area and training data 

The Cropland Data Layer (CDL), a crop-specific land cover raster 
map available for the CONUS at 30 m resolution since 2008, was used 
as the ground truth for classification. USDA NASS creates the CDL using 
a decision tree-based classifier that uses remote sensing data from 
Resourcesat-1 Advanced Wide Field Sensor (AWiFS), Deimos-1, UK 
Disaster Management Constellation-2, Landsat-5/7/8 and MODIS as 
inputs. Crop type and acreage information collected in surveys from 
farmers during the current growing season are used to train the CDL 
classifier. Non-agricultural areas in the CDL are taken from the National 
Land Cover Database (NLCD) land cover, imperviousness and canopy 
categories. The CDL has self-reported crop mapping accuracies in the 
range of 85–95% for major crop categories (Boryan et al., 2011), but 
the surveys used for training are not made publicly available. 

We downloaded the CDL for 2008–2018 from the USDA NASS Data 
Portal (USDA, 2019b). Our crop classification model was trained over 
2008–2014 and applied to the period 2000–2018. The period of 
2015–2018 was used as test years for the classifier. Our analysis focused 
on about 100 major agricultural land cover types out of 122 categories 
included in the CDL. The study area for each year was obtained by 
masking out non-agricultural land cover categories like forests, pasture 
lands, shrub lands, open water, developed spaces, etc. based on the CDL 
for that year. Provided in Albers Conic Equal Area projection, the CDL 
was re-projected to Lambert Azimuthal Equal Area for the analysis 
using a nearest-neighbor resampling technique. 
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2.2. Remote sensing data 

Time series of smoothed and gap-filled NDVI generated from 
Collection 5 data streams from Terra (MOD13Q1) and Aqua 
(MYD13Q1) satellite instruments for the CONUS were downloaded 
from the Oak Ridge National Laboratory (ORNL) Distributed Active 
Archive Center for Biogeochemical Dynamics (DAAC) for the period 
2000-01-01 through 2018-12-31 (Spruce et al., 2016). The MODIS 
NDVI data set, at a spatial resolution of 231 m and an 8-day temporal 
frequency, was generated using the NASA Stennis Time Series Product 
Tool (TSPT) (Spruce et al., 2011) to remove clouds and otherwise clean 
and filter the time series temporally. The smoothed, gap-filled data set 
is nearly complete, with few missing values, and is ideal for many 
phenological analyses and applications. Files are available in netCDF 
format, one per year, for the period 2000–2018, as a time series of 8- 
day maximum-value composited MODIS NDVI in Lambert Azimuthal 
Equal Area projection. 

3. Methods 

3.1. Development of Phenoregions 

Phenoregions are regions having similar annual profiles of NDVI 
“greenness” phenology through space and time (White et al., 2005). 
Phenoregions capture the gradients of climate and features of known 
vegetation at large scales. Hargrove and Hoffman (2004) developed 
Multivariate Spatio-Temporal Clustering (MSTC) based on a non-hier
archical k-means algorithm (Hartigan, 1975) for classification of phe
noregions (White et al., 2005), classification of remote sensing data 
(Hoffman et al., 2010), analysis of dynamic climate regimes in Global 
Circulation Models (GCMs) (Hoffman et al., 2008), and detection of 
disturbance from phenological time series (Mills et al., 2011). A de
centralized scalable parallel implementation of the method (Kumar 
et al., 2011) was employed for the creation of phenoregions in this study 
(Fig. 1(a)). The entire MODIS NDVI time series (2000–2018) was used 
with MSTC to delineate 5000 phenoregions having similar annual phe
nological profiles. For this study, the exact number of phenoregions is 
not critical as long as they are fine enough to separate phenological 
diversity sufficiently to distinguish different crop types. MSTC does not 
explicitly use geographic location during classification and does not 
impose spatial contiguity. Thus, a phenoregion may be comprised of 
many spatially disjoint agricultural fields, so long as they have similar 
phenological profiles. After being classified among 5000 phenoregions, 
the data are mapped back to geographical space to create a spatial map. 
Our method created 19 annual phenoregions maps, one per year during 
2000–2018. While MODIS NDVI-based phenoregions were generated at 
231 m resolution, they were regridded to 30 m using the nearest- 
neighbor resampling technique to match the CDL resolution. Upsam
pling MODIS resolution phenoregions to CDL resolution does not add any 
information content, but allows all analysis to be performed at native 
CDL resolution. The reverse option of downsampling CDL to MODIS 
resolution would have led to loss of information content in CDL. For 
each year during 2008–2018, the phenoregions corresponding to non- 
crop areas were masked out using the cropland extent from the CDL for 
that particular year, as shown in Fig. 1(b). 

3.2. Spatio-temporal variability in crop phenology 

We partitioned variability in crop phenology across time from pheno
logical variability over space. Weather conditions experienced by agri
cultural regions exhibit immense inter-annual temporal variability that has 
key implications for planting and harvesting dates, and for the choice of 
crops planted. Fig. 2(a) shows temporal variability in phenology during 
2008–2012 in a highly diverse agricultural region spanning parts of 
southern Nebraska and northern Kansas. At the continental scale, agri
cultural regions show spatial variability in phenological timing caused by 

climate, soils, growing conditions, and crop rotation and management 
practices. For example, corn growing in northern and southern Kansas 
during the year 2013 exhibits different phenology, perhaps caused by dif
ferences in planting dates, in cultivars and in growing conditions (Fig. 2(b)). 
At such spatial scales, phenological signatures of a crop type can show large 
variations, thus causing an overlap with the timing of other crops types, 
leading to poor classification accuracies. This spatio-temporal variability in 
crop phenology adds complexity in phenology-based identification of crop 
types. We address temporal variability by training the classifier on multiple 
years, and we address spatial variability using ecoregions (Section 3.3), thus 
developing a more robust and accurate general crop classification model. 

3.3. Climatic ecoregions 

To avoid classification errors due to spatial variability in phenology, 
we used ecoregions to segment the landscape, and we developed a se
parate crop classification model optimized within each ecoregion. 
Ecoregions group together areas with similar climatic, topographic and 
edaphic conditions. Clustering algorithms have been widely used for 
classification of ecoregions (Hargrove and Hoffman, 2004; Williams 
et al., 2008; Kumar et al., 2011). We used the same MSTC algorithm 
(Hargrove and Hoffman, 2004) to divide the CONUS into 500 synoptic 
ecoregions, representing regions with similar crop growing conditions 
(Fig. 1(c)). The ecoregions were developed using 15 environmental 
variables characterizing bioclimate (Fick and Hijmans, 2017), topo
graphy (Saxon et al., 2005) and soil conditions (Global Soil Data Task 
Group, 2000; Saxon et al., 2005) at 1 km resolution (Table S1). 

3.4. Crop classification model 

Since they result from a statistical unsupervised classification, phe
noregions lack any kind of label identifying any particular crop or ve
getation type. As part of a cluster-then-label classification approach, a 
supervision step was applied to map each phenoregion to a particular 
crop type, using the CDL. This supervision step was not manual, but was 
automated, requiring no human interpretation or intervention. Fig. 1(d) 
summarizes the workflow for this study. Since the CDL is available only 
since 2008, the model was trained and validated on the years 
2008–2014 and tested independently on the years 2015–2018. 

3.4.1. Cluster-then-label model training 
We labeled each entire phenoregion with a single crop type, based on 

majority spatial overlap, using the CDL as a training data set. To ac
count for spatial variability, crop type assignments were conducted 
independently within each ecoregion across all years in the training 
period (2008–2014). Crop pixels from the CDL and the spatially con
cordant pixels from phenoregions present within each ecoregion were 
randomly divided into training (70%) and validation (30%) sets for 
each year (Fig. 1(d i)). Mapcurves, a quantitative method that calculates 
the spatial concordance between two or more categorical maps and 
provides an assignment of labels between the maps (Hargrove et al., 
2006), was used to compare phenoregions with the CDL and assign crop 
type labels to entire phenoregions. Mapcurves calculates a pairwise 
Goodness-of-fit statistic (GOF) over all categories in the two maps being 
compared. The GOF statistic between a phenoregion, P, with a crop type, 
C, was defined as follows: 

= ×GOF A A
A

A A
A

,P C
P C

P

P C

C
, (1) 

where AP and AC represent the area under P and C, respectively, and 
AP ∩ AC represents the area that is common to P and C. The GOF statistic 
increases when areas in the two maps are spatially coincident, but 
decreases from areas that are not overlapping, so that large crop areas 
are not selected preferentially. The crop label having the highest GOF 
statistic was assigned to all the cells within that phenoregion, as shown 
in Fig. 1(d ii). Accounting for temporal variability, Mapcurves was 
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Fig. 1. Steps followed in the cluster-then-label -based classification approach: (a) Creation of phenoregions using Multivariate Spatio-Temporal Clustering of MODIS 
NDVI time series. (b) For each year in 2008–2018, phenoregions corresponding to non-crop areas were masked out using the cropland extent from CDL for that 
particular year. (c) Crop type assignment for each phenoregion was performed separately within each ecoregion, to control for spatial variability in farming methods 
and growing conditions. (d) Workflow for Mapcurves-based training and testing. 
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applied to phenoregion and CDL maps over all years during the training 
period to generate a translation table, listing each phenoregion and its 
single corresponding best-fit crop type label. With 5000 phenoregions, 
many phenoregions will be assigned to the same crop type label, each 
representing a variation in climate, edaphic conditions, cultivar, 
planting date, fertilization, irrigation, and other agricultural factors 
that may be used or encountered when producing the same crop. In this 
way, automated supervised labeling of phenoregions across all agri
cultural regions within CONUS was done using Mapcurves, while ac
counting for spatio-temporal variability in crop phenology. The ecor
egion-specific Mapcurves models were applied to validation data sets, 
the random 30% of data that was set aside each year during 
2008–2014, and resulting crop classifications were compared with the 
CDL to assess accuracy. 

3.4.2. Model evaluation within the test period 
In addition to evaluating on the validation data collected during the 

period 2008–2014, we used the cluster-then-label approach to create 
crop maps for the test years 2015–2018. Once the model was trained 
over the period 2008–2014, unseen years 2015–2018 represented the 
operational scenario in which trained models were applied and eval
uated for their accuracy and applicability at CONUS scale, including 
within-season classification. 

3.4.3. Within-season mapping of crops 
We developed a methodology to map croplands at national scale in 

near real-time as they grow every 8 days (i.e., MODIS composited 
temporal frequency). The partial phenological MODIS NDVI to date at 
each cropland pixel within CONUS was assigned to the most-similar 
phenoregion thus far. The assignment was made by identifying the ex
isting phenoregion whose profile minimizes the multivariate difference 
between the existing portions of the two NDVI profiles. Once assigned 
to a phenoregion, the existing trained cluster-then-label models (Section 
3.4.1) were applied to determine the crop type for each pixel. However, 
the cluster-then-label approach always assigns the best-fitting crop label 
to a partial NDVI trajectory, even before the crop itself has been planted 
or has emerged. Early in the season, before crops have substantially 
emerged, these closest crop type projections are unreliable, yet the best- 
fitting crop type will still be assigned. To prevent these early mis
classifications, partial-year crop classifications were discarded until a 
minimum spring greenness threshold, defined as 20% of annual am
plitude of projected phenoregion, was reached (Fig. 3). For each crop in 
an ecoregion, the earliest within-season date by which the crop can be 
mapped with 90% of the full-season accuracy was identified. 

3.5. Evaluation metrics 

3.5.1. Accuracy assessment 
While all crop types contained in the CDL were analyzed and 

mapped in our study, we focus our accuracy assessment here on the 8 
dominant crop types (by area across CONUS): corn, soybeans, winter 
wheat, fallow/idle cropland, other hay/non alfalfa, alfalfa, sorghum 
and rice (but see Table S2 for accuracies for all 102 crops, included in 
the Supplementary Material). Crop types other hay/non alfalfa and 
fallow/idle cropland are referred to as other hay and fallow, respec
tively in all tables and figures. Three metrics were used to evaluate the 
accuracy of classification: Producer's Accuracy, User's Accuracy and 
Overall Accuracy, as defined in Eqs. (2), (3) and (4). Producer's Accuracy 
is the accuracy of the map from the map producer's point of view, 
quantifying the probability that a feature class on the ground is cor
rectly classified by the map. User's Accuracy is the accuracy from the 
user's perspective, and quantifies the reliability of the map, i.e., the 
probability that a feature on the map will actually be present on the 

Fig. 2. Crop phenology exhibits a wide range of spatio-temporal variability, thus posing a challenge for national-scale crop mapping. a) Temporal variability in 
phenology during the period 2008–2012 in a small diverse agricultural region that spans parts of southern Nebraska and northern Kansas. b) Two corn-growing 
regions within the state of Kansas show large variability in phenology during the same year 2013. (Plot shows the median (solid line), 25th-75th percentile range (dark 
shade), and 5th-95th percentile range (light shade) of the annual NDVI profile.) 

Fig. 3. Assigning crop labels to partial phenological trajectories using the 
cluster-then-label approach was restricted to only those cropland pixels that 
satisfy a minimum greenness threshold. This greenup threshold was defined as 
20% of the annual amplitude (difference between the maximum and minimum) 
of NDVI for the phenoregion (shown in blue), which is the most similar to the 
partial-year NDVI trajectory (shown in red). (For interpretation of the refer
ences to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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ground. Overall Accuracy quantifies the fraction of the reference CDL 
pixels that are correctly mapped by our crop classification method. 
User's Accuracy is the most relevant for a farmer or resource manager; 
thus, we focus our discussion on User's Accuracy, and include the Pro
ducer's Accuracy statistics in the Supplementary Material. Errors in 
classification sometimes happen due to similarity in the phenological 
signatures of multiple crops, but such confusion can be insightful. We 
report a confusion matrix with statistics, showing how omission and 
commission errors are distributed across crop types. 

= ×Producer’s Accuracy Number of correctly classified pixels of a crop type
Total number of pixels of that crop type in the CDL map

100

(2)  

= ×User s Accuracy’ Number of correctly classified pixels of a crop type
Total number of pixels of that crop type in the classified map

100

(3)  

= ×Overall Accuracy Sum of all correctly classified pixels for all crop types
Total number of pixels for all crop types

100

(4)  

3.5.2. Shannon diversity of crop types 
Omission and commission errors due to confusion between crop 

types are larger in regions with diverse crop types, and when the cul
tivated field sizes are smaller than the resolution of MODIS products. 
We calculate the Shannon Diversity Index (H) to quantify the diversity 
of crop types within an area: 

=H p plog ,
i

i i
(5) 

where pi is the proportion of map grid cells belonging to a crop type i in 
the mapped area. When only one kind of crop exists in an area, H has a 
value of zero, and crop classification is easy. H increases when there are 
more crop types present and their probabilities are more uniform within 
the area. Predictability of crop types decreases with greater crop di
versity and greater similarity in the proportional abundances of the 
crops grown in a region. 

4. Results 

4.1. Model training to address spatial variability 

To address the spatial variability in phenology, independent cluster- 
then-label models were trained within each ecoregion (Section 3.3), al
lowing models that are optimized for each region for higher accuracy. 
To test the benefits and efficacy of ecoregion-specific model training, we 
also conducted the cluster-then-label model training by individual state 
for each of the 48 states, and as a single model for the entire CONUS.  
Fig. 4 shows the User's Accuracy and Producer's Accuracy for the model 
tested for 2015 when trained at the scales of CONUS, by state, and by 
ecoregion, respectively. Training for smaller regions reduced the spatial 
variability and thus allowed more specialized models for those regions. 
Ecoregions, derived based on climate, soil and topographic properties, 
consistently performed the best across all crop types, but models 
trained at the scale of states provided good accuracy as well. Dominant 
crops like corn, soybeans and winter wheat are often grown in large 
fields in concentrated regions of the country, with similar regional crop 
cultivars and management practices. For such dominant crops, even a 
single model trained at CONUS-scale produced fairly accurate results. 
Improvements in models trained at smaller scales of states and ecor
egions are especially pronounced for crop types that are spatially dis
tributed and/or exhibit a wide range of phenology. For the rest of this 
paper, we present results based on models trained at the scale of ecor
egions. 

4.2. Mapping crop types across the continental United States 

Ecoregion-wise cluster-then-label models developed over the training 
period 2008–2014 were applied to the annual MODIS NDVI-derived 
phenoregions for 2000–2018 to produce crop type maps for each year. 
The developed crop maps were statistically compared to the CDL to 
evaluate their accuracy. Evaluation using the 30% validation data set 
across the period 2008–2014 shows a pixel-wise Overall Accuracy of 
60–61% for all crop types within CONUS, over 102 crop types (accuracy 
ranges for individual crops varied widely, and were best for dominant- 
acreage crops, see Table S2 in the Supplementary Material). User's 
Accuracy for dominant crop types like corn, soybeans and winter wheat 
varies between 61 and 67%, 58–65% and 60–72% respectively, while 
for fallow/idle cropland, other hay/non alfalfa, alfalfa, sorghum and 
rice varies between 50 and 60% (Fig. 5). Producer's Accuracy (Fig. S1) 
for dominant crops like corn and winter wheat varies from 65 to 75% 
and 69–80%, respectively, and fluctuates between 30 and 40% for less 
dominant crops like sorghum and rice. 

The cluster-then-label model was also applied to the test data set with 
four never-seen-before years 2015–2018. Overall Accuracy for the years 
2015–2017, over all 102 crop types, is slightly lower (compared to 
2008–2014) at ~58% and is 53% for 2018. User's Accuracy (Fig. 6) for 
the eight major crops are fairly consistent over the four test years, with 
a small reduction compared to the 2008–2014 period, and perform with 
~60% accuracy for primary crops like corn, soybeans and winter wheat 
except for 2018, when the User's Accuracy for corn drops to 54%. Pixel- 
wise Producer's Accuracy for the eight major-area crops (Fig. S2) show 
similar patterns except for sorghum and rice, which have ~40% accu
racy for all the years, and soybeans in 2018, the accuracy of which 
drops to 39%. 

Crop type spatial distribution predicted by the cluster-then-label 
model shows broad-level agreement with the CDL (Fig. 7(a)). Three 
small areas (A, B, and C) from geographically distributed agricultural 
regions with a wide range of crop diversity were selected for a closer 
look (Fig. 7(b)). Region A from the Corn Belt, where corn and soybeans 
are the dominant crops, shows broad agreement between the cluster- 
then-label-based map and CDL. Disagreements between the two maps 
were prominent along the boundaries of the cultivated fields owing to 
the coarser resolution of MODIS NDVI products. Region B in winter 
wheat-producing areas in Kansas demonstrates broad agreement be
tween the two maps. While CDL (at 30 m resolution) is able to resolve 
the center pivot-irrigated fields very well, our cluster-then-label-based 
map lacks sharpness along fine field boundaries. Region C from Central 
Valley, California, exhibits immense diversity in crop types grown 
across small-sized fields and thus represents a difficult-to-classify re
gion; yet the cluster-then-label model is able to classify the crop types in 
this region with reasonable accuracy. Specialty crops like peas, grapes, 
almonds, walnuts, pistachios, etc. are often challenging to classify ac
curately (Table S2) as they are grown on small, distributed fields that 
are smaller than the resolution of MODIS, and may not exhibit distinct, 
identifiable phenology. Even in the CDL, such specialty crops are based 
on reported data and are known to have very limited accuracy (Boryan 
et al., 2011). The cluster-then-label model performs well in terms of 
Overall Accuracy (Fig. 8(a)) in major crop growing regions with large 
field sizes and lower diversity, but has comparatively lower accuracy in 
regions with high crop diversity and smaller field sizes (Fig. 8(b)). 

The ecoregion-wise Overall Accuracy of pixel-wise classification for 
2015 (Fig. 8(a)) is ~70% across much of the Corn Belt, spanning 
eastern Nebraska, Kansas, Iowa, Illinois, Indiana and western Ohio. 
Accuracy exceeded 85% in certain regions in major wheat-producing 
states like Kansas, Oklahoma and Texas. Accuracy in more diverse crop- 
producing regions like eastern North and South Dakota, western Mis
sissippi and eastern Arkansas and Wisconsin is around 60%. Accuracy is 
around 50% in the Central Valley, California. Fig. 8(b) shows the 
Shannon Diversity of crop types (H) across the agriculturally-dominant 
ecoregions in CONUS. Much of the Corn Belt, growing mostly corn and 
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soybeans, is uniform and has a low value of H. The Central Valley in 
California, which provides more than half of the fruits, vegetables and 
nuts grown in the US, has a high H, indicating a high diversity of crops, 
as do North and South Dakota, which grow multiple crops like corn, 
soybeans, wheat, hay, sunflower, etc. 

Table S2 show the model User's Accuracy for all 102 crop types in
cluded in the study. Crop types which are grown in limited regions with 
low acreage, show high variability and modest to low classification 
accuracy. Such rare crops offer limited samples for model training, and, 
in addition, training data quality is limited due to the limited accuracy 
of the CDL. Nevertheless, over time, as the time series of available 
training data grows, we expect the prognostic power of our models to 
improve. 

4.3. Crop mapping accuracy at the scale of administrative units 

Some users of agricultural data need actual, spatially-explicit crop 
type maps, but many government agencies, private sector organiza
tions, and scientists are interested only in tabular summaries of crop 
acreage totals over scales of administrative units like counties or states. 

Classified pixels from the cluster-then-label method were aggregated to 
calculate acreage for each crop type at the county and at the state scale, 
and totals were compared to corresponding acreages from the CDL 
(Fig. 9). For the eight area-dominant crop types across the CONUS, 
good agreement exists between the aggregated cluster-then-label model 
and expected CDL acreage at both county (Fig. 9a) and state (Fig. 9b) 
scales. There is a slight over-prediction in corn acreages and under- 
prediction in acreages for soybeans at both scales during the test period 
(2015–2018), possibly due to confusion between the two crop types. 
Fallow/idle cropland has a relatively lower value of R2, attributed to a 
wide range of conditions (from bare soil to annual cover crop) that 
fallow/idle cropland may represent; thus, making it more prone to 
misclassification. Aggregated tabular crop acreage summary products 
from the cluster-then-label model provide a high level of accuracy for 
applications at the scale of county or state administrative units. 

4.4. Within-season mapping of crops 

Within-season crop type classification was applied as crops grew in 
each of the four years from the test period (2015–2018) to test the 
practicality of mapping crops during the growing season. The model 
was applied iteratively at every new eight-day interval using the par
tial-year NDVI observations to-date. Fig. 10(a) shows the performance 
of within-season crop type classification for the eight area-dominant 
crop types across CONUS. As the growing season progresses, more crop 
pixels (shown on Fig. 10(a)) surpass the minimum greenness threshold 
and are able to be classified. 89% and 94% of all crop pixels of alfalfa 
and other hay grown across CONUS pass the greenup minimum by 
early-May and early-June, respectively. For major crops like winter 
wheat, corn and soybeans, more than 90% of pixels reach the minimum 
greenness threshold by early-June, mid-July and mid-August, respec
tively. More than 90% of rice and sorghum pixels exceeded the 
minimum greenup threshold by mid-August. Pixel-wise User's Accuracy 
improves as crops mature through the growing season and more phe
nology observations become available. While the accuracy of classifi
cation is low during early winter months, a large improvement is ob
served during July when corn and soybeans reach maturity. The earliest 
possible date of classification, defined as the date by which the within- 
season classification accuracy for a crop reaches 90% of the full-season 
accuracy, varies across crop types, based on differences in their phe
nology profiles. Fig. 10(a) shows the earliest possible date of classifi
cation for eight major crop types for the year 2015. Winter wheat, corn 
and soybeans are classified at 90% accuracy by early-August, mid-Au
gust and late-August, respectively. Fallow/idle cropland and other hay/ 

Fig. 4. The cluster-then-label model shows an improvement in accuracy when trained and customized for smaller regions, with ecoregion-based models showing 
consistently better performance for all the crop types. (a) Producer’s Accuracy when the model is trained at CONUS, state and ecoregion scale. (b) User’s Accuracy 
when the model is trained at CONUS, state and ecoregion scale. 

Fig. 5. Evaluation of the cluster-then-label model on 30% validation data col
lected across the period 2008–2014 gives good User's Accuracy for eight com
monly grown crop types across CONUS. 
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Fig. 6. The cluster-then-label model was evaluated on the test data set from never-seen-before years (2015–2018). User's Accuracy for the eight major crops is similar 
across all the four years, except for fallow/idle cropland and sorghum in 2017 and 2018 and corn in 2018. 

Fig. 7. Comparison of the cluster-then-label-based crop map with the USDA Crop Data Layer (CDL) for the year 2015 at different scales. (a) Comparison of the cluster- 
then-label-based crop map with the CDL shows similar patterns at the scale of the CONUS. (b) A closer look at three select regions (A, B, and C) shows a broad-level 
spatial agreement with CDL, but with some lack of sharpness and accuracy along field boundaries due to the coarser resolution of MODIS products 

V.S. Konduri, et al.   Remote Sensing of Environment 251 (2020) 112048

8



non alfalfa are successfully classified by mid-August, and alfalfa can be 
mapped by late-September. The earliest possible date of classification 
for crops like sorghum and rice is around mid-November. These dates 
show some inter-annual variability during 2015–2018, probably driven 
by different meteorological conditions during the growing season, 
among other factors (Fig. 10(b)). Earliest dates of classification oc
curred around late-July to mid-August for corn, varied between mid- 
July and late-August for soybeans, and varied between the end of July 
and mid-August for winter wheat. The earliest date of classification for 
other hay/non alfalfa varied between July to early August over the four 
test years. Sorghum and rice had the earliest dates of classification, 
around mid-September to mid-November, and late-August to mid-No
vember, respectively. Variability in earliest classification date was re
latively small for major crop types, and was larger for less dominant 
crops like other hay, rice and sorghum. 

Earliest possible dates of classification are also spatially variable.  
Fig. 11(a) shows spatial variability in earliest date of classification 
across the top ten corn-producing states for the year 2015. Corn-pro
ducing regions can be classified with 90% of full-season accuracy by 
mid-May across southern Minnesota, southern Wisconsin and northern 
Iowa. By early-June, corn can be identified with 90% accuracy across 
eastern Iowa, much of Illinois, western Indiana and eastern Missouri. By 

early-August, corn can be identified in western Iowa, eastern South 
Dakota and eastern Nebraska, and by late-October for eastern Indiana 
and western Ohio. Earliest date of classification for soybeans is gen
erally later than corn, achievable only by early-July across western 
Ohio, Indiana, parts of western Iowa, southern Minnesota and eastern 
Nebraska. By the end of August, soybeans can be identified across much 
of Illinois and Iowa, but cannot be identified until early-October in 
eastern parts of North and South Dakota and northern Missouri. 

5. Discussion 

The goal of this study was to map crops across the CONUS during 
the active current growing season as they grow, a critical step in near 
real-time crop health monitoring. The framework outlined here could 
be extended to make periodically updated projections of yield as cur
rently planted crops develop, thus aiding resource and economic 
planning and management at regional to national scales. 

A cluster-then-label-based scheme was developed in this study that 1) 
classifies the croplands among dynamic phenoregions based on MODIS- 
based phenology and then 2) using CDL as training data, independently 
trains models within each ecoregion, to assign a crop label to an entire 
phenoregion. Ecoregions help to address spatial variability in phenology 

Fig. 8. Pixel-wise Overall Accuracy for cluster-then-label-based crop classification were found to be lower in regions with higher crop type diversity. (a) Ecoregion-wise 
Overall Accuracy of cluster-then-label-based crop classification for eight area-dominant crop types. (b) Shannon Crop Diversity for agriculturally-dominant ecor
egions across the CONUS. The Overall Accuracy/Shannon Crop Diversity values were calculated only for those ecoregions which have at least 20% of their area 
covered by cropland. 
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due to differences in climate, soil and other growing conditions. 
Accuracy in crop type classification was improved when cluster-then- 
label models were trained within each ecoregion, compared to being 
trained for individual states or the entire CONUS. However, the in
crease in accuracy when going from state to ecoregion was modest for 
most crops, showing that even a state-level crop classification was fine 
enough to capture most local geographic changes in climatic and 
edaphic conditions, and farming practices like seed varieties, planting, 
fertilization and irrigation. Increasing spatial specificity to ecoregions 
yields diminishing returns in increased accuracy for major crops, but 
improvements are still substantial for less-common crops. 

Pixel-wise Producer's Accuracy and User's Accuracy for major crops 
like corn, soybeans and winter wheat were greater than those of less- 
commonly grown crops during both training and testing periods. Major 
crops are generally grown on large, spatially dense fields relative to the 
size of MODIS pixels (231 m), whereas less dominant crops are grown 
on smaller, scattered fields, resulting in mixed-pixels at MODIS re
solution. We compared our pixel-wise accuracies and R2 values for 
county-aggregated acreages with those from two recently published 
studies on MODIS NDVI-based CONUS-scale crop mapping, Massey 
et al. (2017) and Dahal et al. (2018) (Tables S3 and S4 in the supple
mentary section). In spite of considering a greater number of crops, 
generating and comparing maps at the CDL resolution (30 m) and 
training and testing on different sets of years, among other differences, 
our classification accuracies are comparable to these two prior studies. 
The CDL's published accuracy also tends to be lower for lesser grown 
crop varieties (Boryan et al., 2011). Accuracy was lower (~10%) for all 
eight major crop types when the model was run on testing data from 
unseen-years (2015–2018), as compared to the validation data set re
presenting 30% of the data from 2008 to 2014. The testing data came 
from unseen-years that were not used in training, thus potentially 
adding new phenological variation. Re-training after exposing the 
model to additional phenological variability from these additional years 
would presumably increase classification accuracies even further. 

While the cluster-then-label method exploits the salient differences in 
phenological development of the crops, errors in the crop type classi
fication sometimes remain, due to the inherent similarity in NDVI 
profiles among crop types. Fig. S3 shows box-and-whisker plots of NDVI 
profiles collected only from pure crop pixels (single crop type growing 
throughout the entire 231 m MODIS pixel) for major crops grown across 

Kansas in 2010. Corn and soybeans profiles show close similarity, with 
soybeans having a slightly later time to peak, due to their later sowing 
date. Phenology for winter wheat and fallow/idle cropland also are 
similar. Land left fallow often has grass cover, which grows quickly at 
the onset of spring, potentially leading to confusion with winter wheat. 
At the national scale, many of the classification errors occur between 
corn and soybeans, winter wheat and fallow/idle cropland and other 
hay/non alfalfa and alfalfa (Table 1). 

Pixel-wise User's Accuracy for corn and Producer's Accuracy for soy
beans are unexpectedly lower in 2018 as compared to the other test 
years (2015–2017). User's Accuracy for corn decreases from 69% to 57% 
for the four states: Iowa, Illinois, Indiana and Nebraska (Table 2) and 
the Producer's Accuracy for soybeans drops from 58% to 27%. The R2 for 
corn and soybeans increases after the year 2018 is dropped from the 
analysis (Fig. S4). Soybeans were planted early in 2018 across these 
states (Fig. S5), which made its shifted NDVI profile more similar to that 
of corn, increasing confusion between these two crop types. Other crop 
types everywhere, as well as corn and soybeans in other geographic 
regions showed pixel-wise classification accuracies in 2018 that were 
similar to the rest of the novel testing years 2015–2017. 

The cluster-then-label method for within-season classification classi
fied major crops like corn and soybeans with 90% of full-season accu
racy by the end of August, almost two to three months before harvest 
(Fig. 10). Other hay/non alfalfa can be mapped earlier in the growing 
season (early-August). Earliest dates of classification for smaller-area 
major crops like rice and sorghum is later in the growing season (be
tween mid-September to mid-November), despite having roughly the 
same planting and harvest schedules as corn and soybeans. Classifica
tion of rice and sorghum with reasonable accuracy takes longer in part 
because of confusion with dominant crops like corn and soybeans. 
Classification accuracies for rice and sorghum increase in October and 
November, about when corn and soybeans are harvested. 

Winter wheat is phenologically different from the other seven area- 
dominant crops in terms of its planting, growth and harvest schedule. 
While we often tend to think of phenological cycle in terms of 
Gregorian calendar (e.g., Fig. 2), crop phenological cycles are more 
meaningful in terms of growing season. Winter wheat is planted around 
September and is harvested in the summer or early Fall of the following 
calendar year. Hence, the phenological year for winter wheat spans 
across two calendar years. Fig. 10 shows that winter wheat can be 

Fig. 9. Comparison of aggregated acreage estimated by cluster-then-label model with CDL during the test period 2015–2018 for eight area-dominant crops across 
CONUS. The dashed line represents the 1:1 line while the red line shows the linear fit for estimated vs expected acreage. Accuracies for aggregated areas show 
substantial improvement over pixel-wise accuracies in almost all cases, making cluster-then-label ideal for tabular crop acreage summaries. (a) Scatter plots comparing 
county-aggregated crop acreages for cluster-then-label-based crop map and CDL (b) Scatter plots comparing state-aggregated crop acreages for cluster-then-label-based 
crop map and CDL. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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mapped with sufficient accuracy by early- to mid-August. There is a 
sudden increase in the User's Accuracy for winter wheat from June to 
August. Separate special confusion matrices constructed for wheat 
classification in May, June and July show that this improvement in 
accuracy is due to a decrease in confusion with corn and soybeans. In 
order to perform mid-season mapping for winter wheat, the monitoring 
period should ideally begin from September of the previous year. 
Waiting to begin the monitoring in January results in a loss of distinct 
phenological information in the first three to four months of wheat 
growth. Winter wheat would be the only green crop during this period, 
presumably improving discrimination of this unique crop type. 

Earliest possible dates of classification at 90% of full-season accu
racy show spatial variability across ecoregions, with dates ranging from 
early-May to late-October for both corn and soybeans. In general, 90% 
of full-season mapping accuracy is achieved early in the central regions 
of Corn Belt (parts of Iowa, Illinois and Indiana), as compared to the 
peripheral areas. Earliest dates of classification in the central Corn Belt 
were earlier for corn (June–July) than for soybeans (July–August). 

6. Limitations, challenges and future steps 

The ability to create a gap-filled remote sensing product that spans 
the whole CONUS is critical for near real-time crop health monitoring 
and commodity yield predictions. It requires remote sensing products 
that are corrected for missing values due to clouds/snow cover. NDVI 
values were used as an integrative proxy to capture crop land surface 
phenology. Past studies have included additional spectral bands span
ning optical, Near Infrared, Short Wave Infrared (SWIR) and Synthetic- 
Aperture Radar (SAR), as well as indices that are derived from them, 
like Enhanced Vegetation Index (EVI), Green Chlorophyll Vegetation 
Index (GCVI), Land Surface Water index (LSWI), Normalized Difference 
Tillage Index (NDTI), among others. The addition of these bands and 
indices has been shown to improve classification accuracy, and future 
studies could include such additional metrics. The 231 m spatial re
solution of MODIS is coarse for capturing the phenology of less domi
nant crops, which are typically grown on smaller fields, which may 
contribute to lower classification accuracies for these rarer crop types. 
Cross-sensor fusion could create a data product with high spatial and 
temporal frequency, thereby addressing the problem of mixed-pixel 
effect. The Mapcurves algorithm and cluster-then-label model assigned a 
single crop label (having the best Goodness-of-fit) to the entire phe
noregion based on a single majority “winner takes all” strategy; how
ever, other overlapping crop types might also be significant. A fuzzy 
labeling approach could be applied, or even more phenoregions could 
be used to distinguish even more-similar crop type phenology profiles 
from each other. Given the amount of remote sensing and CDL data 
available, more sophisticated machine learning, deep learning or 
Bayesian algorithms could also be tested. 

Prior work has shown impressive results, but often with more spe
cialized models classifying fewer crops, on smaller geographic regions, 
and/or tested on the same years as they were developed. We tested our 
general crop classification and mapping rigorously, on novel future 
years with which the model had no prior experience. Practical appli
cation of our crop classifier will likely be on the next unfolding growing 
season in the upcoming year, with unknown phenological deviations, 
and with which the model has no prior experience. Despite the en
hanced difficulty of realistic testing on unseen years, the R2 values of 
our general model were reasonable across all eight area-dominant crops 
during normal phenological years within the CONUS. 

Summing crop acreages by type up to ever-larger accounting units 
also generally increases the accuracies. As we spatially aggregated, it is 
possible that some of the classification errors at the pixel level might be 
canceling out, leading to a dramatic improvement in accuracy results. 
Some prior efforts reported only these greater accuracies from such 
spatially aggregated results, instead of cell-by-cell accuracy/confusion 
results. The scale of results that are needed depends on the intended 
use, but, if actual spatially explicit national maps of crops are required, 
then the relevant accuracies are those reported at that finest spatial 
scale. These results are already nationally-scaled and predict all crop 
types, which are the desired features of a fully functional production 
system. We also have produced annual CDL-style maps from 2000 to 
2007, during which no CDL maps were produced, and have made them 
available to download for general use. 

Shifts in crop phenology from year to year were the major source of 
variability in crop mapping accuracy. Extreme weather conditions, such 
as floods or droughts, that may significantly affect timing of crop 
planting, resulting in unexpected shifts of deviations in phenology, can 
affect the accuracy of our phenology based classifications. For the year 
2018, crop classification accuracies were unexpectedly low for the two 
crops, corn and soybeans, in one particular four-state geographic area, 
the US “breadbasket”. Accuracies for other crops in this same location, 
and for all crops outside this region, were comparable with the other 
novel years during the testing period. Unusually early planting of soy
beans, coupled with unusually fast phenological development of soy
beans (Fig. S5), led to increased confusion between corn and soybeans 

Fig. 10. Pixel-wise classification accuracy for national crop mapping within the 
growing season, and the earliest possible date of classification across the test 
period (2015–2018). (a) Improvement in pixel-wise User’s Accuracy through 
time for national crop mapping during the growing season for the year 2015 is 
variable for different crops, but most can be mapped with 90% of full-season 
accuracy by July–September (stars/numbers represent the percent of corre
sponding crop pixels which have exceeded the minimum greenup threshold by 
that time). (b) Inter-annual variability in the earliest possible date of classifi
cation is small for major crops like corn and soybeans, compared to crops like 
sorghum and rice that show larger variability, and are growing in smaller, more 
spatially scattered fields 
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within this region during this year. 
These results underscore the overarching importance of inter-year 

phenological variability, and the resultant effects on the timing of 
planting and development. The relatively fine distinctions between 
“normal” phenologies of soybeans and corn can be overwhelmed by the 
magnitude of between-year phenological variability in some locations 
during some years. Similarly, crop failures and late re-planting will 
lower pixel-wise accuracies, as will any agricultural practices that alter 
the expected timing of phenological development upon which the se
paration of crop types are distinguished. 

The CDL, which served as our training data, itself is a classification 
product and likely contains errors that will be propagated forward. 
Underlying ground-based observations used to train CDL themselves are 
not publicly available for independent use or testing, due to privacy and 

proprietary agri-business concerns. The CDL, therefore, represents the 
only data source for training and testing crop classification approaches 
such as ours. As crop mapping models increase in prognostic power, this 
limited availability of public, error-free training data may become the 
greatest limitation to future progress in remote sensing-based national 
crop classification. 

The cluster-then-label method developed here could be fully auto
mated and integrated into an online mapping system, like the United 
States Forest Service's ForWarn (https://forwarn.forestthreats.org/). 
ForWarn is a vegetation change recognition and tracking system that 
provides near real-time change maps for the continental United States 
that are updated every eight days, using MODIS NDVI. ForWarn tracks 
disturbance in all vegetation, not just forests, including potential dis
turbances in rangeland vegetation and agricultural crops. Unlike forests 
that (usually) remain growing in the same places from year to year, 
farmers often plant different crops in the same field, using an un
predictable rotation system. If the crop planted this year has been 
changed, the normal NDVI value that is used for baseline comparison 
with the current observed NDVI will be inappropriate, and the relative 
crop health status shown by ForWarn will be incorrect. However, if 
ForWarn could be provided with temporally improving maps of crop 
types planted in this current growing season, then crop health could be 
monitored nationally every 8 days, along with the health of forests and 
rangelands. Such spatially explicit crop predictions are possible, 
starting as early as August of the current growing season. 

Fig. 11. Earliest possible date of crop classification for corn and soybeans during the year 2015 is highly variable across space. In general, corn is identified with 90% 
of full-season accuracy several weeks before soybeans. Earliest dates of classification are calculated for only those ecoregions which have at least 5% area of the 
respective crop. (a) Earliest possible date of crop classification for the top ten corn-producing states by area. (b) Earliest possible date of classification for the top ten 
soybeans-producing states by area. 

Table 1 
Pixel-wise confusion matrix for 2015 national crop type mapping (area in thousands of hectares). Diagonal values (shaded) re
present crop classifications that agreed with the USDA Crop Data Layer (CDL). Winter Wheat abbreviated as Win Wht. Common 
classification confusions were corn for soybeans, winter wheat for fallow/idle cropland, and other hay/non alfalfa for alfalfa. 

Table 2 
Pixel-wise mapping accuracy for the unusual year 2018 was lower in the four 
major crop-producing states: Iowa, Illinois, Indiana and Nebraska due to earlier 
planting of soybeans, which resulted in lower accuracy at CONUS-scale.     

Accuracy Metric 2018 2015–2017  

User's Accuracy for Corn (%) 57 69 
Producer's Accuracy for Soybeans (%) 27 58    
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7. Conclusions 

Developing crop maps over large areas during the growing season is 
important for forecasting crop yield and food production at national 
scales. The goal of this study was to produce national-scale crop maps at 
8-day intervals during the growing season. We first developed a cluster- 
then-label approach to create end-of-growing season crop maps for 
CONUS. This was done using a generalized classification approach 
consisting of two steps: 1) creating phenoregions based on Multivariate 
Spatio-Temporal Clustering of annual time series of 8-day NDVI col
lected for every 231 m pixel on the ground across CONUS for the years 
2000–2018, and 2) assigning crop labels to phenoregions based on the 
degree of spatial concordance between crop growing areas and entire, 
individual phenoregions. Spatial and temporal variability in phenology 
increases the challenges of national crop mapping and were addressed 
by training the cluster-then-label models within each ecoregion and on 
multiple years (2008–2014), respectively. The resulting maps compare 
well with the CDL. Overall accuracy of classification was around 70% 
across major corn, soybeans and winter wheat-producing regions, while 
accuracy was lower in areas with greater crop diversity. 

We then used this approach to generate crop maps for CONUS well- 
before harvest, and to estimate the earliest time during the growing 
season by which crops could be mapped with sufficient accuracy. Major 
crops like corn, soybeans, winter wheat, fallow/idle cropland and other 
hay/non alfalfa could be mapped as early as August across CONUS with 
90% of the full-season accuracy. We also produced CDL-like maps for 
the years 2000–2007, before any such maps existed, and we have made 
them available to download. More than a demonstration of feasibility 
on a limited geographic area or for only a few crop types, our cluster- 
then-label method provides a fully scaled production capability for 
practical near real-time mapping of all crops as they grow and mature 
across CONUS. Running updated projections of final crop yields for 
each planted crop during the growing season, estimated from historical 
productivity data per hectare within each ecoregion, may be a feasible 
next step. 

Data availability 

The data products from this study are publicly available at 
doi:https://doi.org/10.5281/zenodo.3478335. The data collection in
cludes annual crop type maps for the period 2000–2018. It also includes 
the earliest dates of classification for eight dominant crop types (corn, 
soybeans, winter wheat, fallow/idle cropland, alfalfa, other hay/non- 
alfalfa, sorghum, and rice) during 2015. 
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