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ABSTRACT: Earth system models (ESMs) simulate a large spread in carbon
cycle feedbacks to climate change, particularly in their prediction of cumulative
changes in terrestrial carbon storage. Evaluating the performance of ESMs
against observations and assessing the likelihood of long-term climate predic-
tions are crucial for model development. Here, we assessed the use of atmo-
spheric CO2 growth rate variations to evaluate the sensitivity of tropical
ecosystem carbon fluxes to interannual temperature variations. We found that
the temperature sensitivity of the observed CO2 growth rate depended on the
time scales over which atmospheric CO2 observations were averaged. The
temperature sensitivity of the CO2 growth rate during Northern Hemisphere
winter is most directly related to the tropical carbon flux sensitivity since winter
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variations in Northern Hemisphere carbon fluxes are relatively small. This
metric can be used to test the fidelity of interactions between the physical
climate system and terrestrial ecosystems within ESMs, which is especially
important since the short-term relationship between ecosystem fluxes and
temperature stress may be related to the long-term feedbacks between eco-
systems and climate. If the interannual temperature sensitivity is used to con-
strain long-term temperature responses, the inferred sensitivity may be biased
by 20%, unless the seasonality of the relationship between the observed CO2

growth rate and tropical fluxes is taken into account. These results suggest that
atmospheric data can be used directly to evaluate regional land fluxes from
ESMs, but underscore that the interaction between the time scales for land
surface processes and those for atmospheric processes must be considered.

KEYWORDS: Tropics; Carbon dioxide; Climate models; Model evaluation/
performance; Atmosphere-land interaction; Ecosystem effects

1. Introduction
Evaluating feedbacks between tropical ecosystems and long-term climate

change is crucial since terrestrial ecosystems currently act as a sink for 25%–30%
of annual fossil fuel emissions (Le Quéré et al. 2016), and humid and semiarid
tropical ecosystems are thought to contribute substantially to both the mean
strength and the interannual variability of the sink (Ahlström et al. 2015). Several
studies have noted that these ecosystems are highly sensitive to variations in
temperature (Cox et al. 2013; Wang et al. 2013) and drought stress (Phillips et al.
2009; Gatti et al. 2014), suggesting that the tropical sink may be modified by
changing climate. Tropical ecosystems store an estimated 500 PgC as biomass that
may be vulnerable to long-term climate change (Pan et al. 2011), since under a high
temperature future, ecosystem carbon loss due to higher tree mortality or enhanced
rates of heterotrophic respiration may exceed net uptake by plants. Moreover, gross
ecosystem fluxes in the tropics are large, between 50% and 60% of global primary
productivity (Beer et al. 2010), suggesting that even small changes in climate could
have a large impact on global carbon uptake. Recent studies have suggested that
improving observational inferences about tropical carbon–climate interactions
is necessary, since these ecosystems may be near a high temperature threshold in
which further increases to air temperature reduce net assimilation (Doughty and
Goulden 2008).

Long-term changes in land carbon stocks (DCL; equivalent to cumulative net
fluxes) are commonly attributed to a carbon–concentration feedback and a carbon–
climate feedback [Boer and Arora (2009); Equation (1)]:

DCL5 bDCO21 gLTDT , (1)

where b [PgC ppm21] represents the sensitivity of land carbon stocks to CO2

fertilization, and gLT [PgCK21] represents their sensitivity to long-term temper-
ature changes DT (Friedlingstein et al. 2006). Coupled Earth system model (ESM)
predictions of DCL through 2100 vary widely and do not even agree in sign
(Friedlingstein et al. 2006, 2014). The mechanistic attribution for DCL among
ESMs participating in phase 5 of the Coupled Model Intercomparison Project
(CMIP5; Taylor et al. 2012) likewise disagreed: model b factors differed by a
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factor of 6, while model gLT coefficients differed by a factor of 5 (Arora et al.
2013).

The lack of model agreement in both the magnitude of and the mechanism
driving the land carbon feedback to anthropogenic climate change underscores the
need to evaluate models against observations. When evaluating coupled ESMs,
simulated ecosystem properties may disagree with observational metrics due either
to misparameterization of the relevant biogeochemical or biogeophysical processes
or to biases in the physical climate drivers thereof. Model development and im-
provement, therefore, requires evaluating simulations using metrics that constrain
functional responses—in other words, the relationships between driver and re-
sponse variables—rather than simply comparing time series or spatial distributions
of individual variables (Randerson et al. 2009).

It is further necessary to identify methods to gauge the realism of future pre-
dictions, since model agreement with present-day observations merely improves
confidence that the model represents relevant processes, but cannot ensure pre-
dictive skill (Tebaldi and Knutti 2007; Bonan and Doney 2018). One method that
has become increasingly prominent in climate change literature is the use of
emergent constraints, which provides a methodology to evaluate long-term pre-
dictions within the context of a multimodel ensemble when a correlation exists
between a short-term functional response, which can be evaluated against obser-
vations, and a long-term feedback governed by the same mechanism (Klein and
Hall 2015). For example, Hoffman et al. (2014) showed that in the CMIP5 en-
semble of ESMs, the atmospheric CO2 mole fraction at 2100 was correlated to the
simulated mole fraction in 2010. This relationship forms the basis for an emergent
constraint because 1) the accuracy of the short-term model output (CO2 at 2010)
can be evaluated against observations, and 2) the same processes that govern the
rate of atmospheric carbon accumulation through 2010 [viz., the magnitude of the
b and gLT effects in Equation (1)] are among the important processes that govern
atmospheric carbon accumulation through 2100. While this example relates to
carbon cycle feedbacks, emergent constraints have been used to evaluate the
likelihood of long-term predictions for several different components of the Earth
system, including cryospheric feedbacks (Hall and Qu 2006; Boé et al. 2009) and
cloud feedbacks (Gordon and Klein 2014) to climate change.

Unfortunately, developing functional response metrics for tropical ecosystem
carbon–climate interactions is difficult, in part because of a lack of large-scale
observations of tropical ecosystem function. There are limited tropical sites at
which fluxes are measured directly via eddy covariance (Schimel et al. 2015).
Moreover, these sites may not be representative of the entire tropics, given a high
degree of ecosystem heterogeneity driven both by biological diversity and abiotic
factors, such as soil chemistry and local hydrology (e.g., Araujo et al. 2002;
Townsend et al. 2008). Thus, we propose to exploit long-term observations of the
atmospheric CO2 mole fraction to gain insight into functional relationships within
tropical ecosystems. The atmospheric CO2 mole fraction, which can be observed in
situ, measured via flask sampling, or inferred from remote sensing, integrates
variations in fluxes at spatial scales compatible with the resolution of ESMs (on the
order of 104 to 106 km2) (Keppel-Aleks et al. 2013). Given the large concentration
footprint, atmospheric CO2 variations in space and time are an apt constraint for
regional- to global-scale carbon–climate feedbacks (Keppel-Aleks et al. 2013). A
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previous study that analyzed variations in atmospheric CO2, its isotopic compo-
sition, and the atmospheric O2 mole fraction at both seasonal and interannual time
scales found terrestrial, rather than oceanic, fluxes are the primary drivers of
variations in the atmospheric CO2 mole fraction (Battle et al. 2000), a result cor-
roborated by atmospheric inverse modeling of both CO2 and its isotopic compo-
sition (Rayner et al. 2008). At interannual time scales, therefore, variability in the
atmospheric CO2 growth rate may be used to estimate the sensitivity of terrestrial
ecosystems to variations in climate (Wang et al. 2013; Keppel-Aleks et al. 2014).

Several studies have shown that the single variable to which the interannual CO2

growth rate is most strongly correlated is tropical temperature variations, sug-
gesting high temperature stress in tropical ecosystems (Wang et al. 2013). Cox
et al. (2013) further showed a strong correlation between interannual growth rate
sensitivity to temperature (gIAV; Table 1) and long-term carbon losses in response
to warming gLT [Table 1; Equation (1)] across C4MIP coupled models. By using
50 years of atmospheric CO2 observations to identify the models whose gIAV was
consistent with the observationally derived temperature sensitivity, Cox et al.
(2013) concluded that the most likely long-term sensitivity to warming was weaker
than that of the unconstrained multimodel mean and had narrower uncertainty.
More recently, Wenzel et al. (2014) applied the same method to the CMIP5 en-
semble and found that the constrained value on gLT was consistent between the two
model ensembles.

While the use of emergent constraints provides a promising method to link
contemporary observations to the likelihood of future model outcomes, the results
must be interpreted with caution. Previous studies have acknowledged that dif-
ferent processes, including vegetation mortality and shifts in vegetation, operate at
long time scales, which could cause decoupling between the short-term and long-
term temperature responses (Randerson 2013). Here, we focus on the challenge of
evaluating modeled land fluxes against observed atmospheric CO2 since atmo-
spheric CO2 reflects additional processes, such as atmospheric mixing, that are
characterized by time scales independent of those that affect terrestrial ecosystems.
Furthermore, atmospheric CO2 contains the imprint of drought, temperature, and
fire across the tropics and the Northern Hemisphere (NH) (Keppel-Aleks et al.
2014; Wunch et al. 2013), so accounting for the influence of these drivers on

Table 1. Metrics for carbon–climate feedbacks

Symbol Units Application

Long-term carbon cycle
feedbacks

gLT PgCK21 Temperature sensitivity of land carbon stocks to
long-term climate change

b PgC ppm21 Fertilization effect of enhanced atmospheric CO2

on land carbon stocks
Functional response
diagnostics

gobs
IAV PgC yr21 K21 Interannual sensitivity from observations; must

be inferred from atmospheric data
gIAV PgC yr21 K21 Interannual sensitivity from simulations; can be

inferred either from integrated fluxes or from
simulated atmospheric CO2

Emergent constraint
diagnostic

g
opt
LT PgCK21 Temperature sensitivity of land carbon stocks to

long-term climate change constrained by
model agreement with gobs

IAV
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atmospheric growth rate variability is necessary in developing a functional re-
sponse metric focused on tropical ecosystems.

The goal of this paper is to identify methods to use atmospheric CO2 observa-
tions to isolate the temperature sensitivity of tropical net terrestrial exchange (gobs

IAV;
defined in Table 1). As a second step, we seek to quantify the difference between
using land fluxes and atmospheric CO2 observations for calculating the gIAV from
simulations. Finally, we extend the application of this metric as an emergent
constraint for the long-term temperature sensitivity (gLT; Table 1); this step will
permit quantification of the uncertainty embedded in the emergent constraint ap-
proach due to uncertainties in the observational constraint. Overall, we hypothesize
that any dissimilarity between the model output used to quantify short-term vari-
ations and the observations used as benchmarks may contribute bias both to the
functional response metric and to the emergent constraint. For example, Cox et al.
(2013) spatially integrated global land fluxes to represent the variation in atmo-
spheric CO2, implicitly assuming the atmosphere is instantaneously well mixed. In
reality, atmospheric CO2 varies with location due to atmospheric transport patterns
and is sampled only at discrete points in space and time. The gIAV estimated from
atmospheric CO2 therefore depends on the extent of spatial and temporal averaging
of the observations (Keppel-Aleks et al. 2014). The structure of the paper is as
follows: in section 2, we describe the method to calculate CO2 interannual varia-
bility and its relationship to temperature for both observations and ESMs. In
section 3, we report results using atmospheric observations for benchmarking ESM
sensitivities. Finally, in section 4, we describe implications for using atmospheric
CO2 as a benchmark for functional responses and requirements for future model
development.

2. Methods

2.1. CO2 growth rate from atmospheric observations

We calculated the temperature sensitivity of the atmospheric CO2 mole fraction
growth rate derived from observations at marine boundary layer (MBL) sites in the
NOAA network (Dlugokencky et al. 2016; Table 2). These sites are located away
from fossil fuel sources and regions of strong terrestrial uptake, and monthly mean
data are derived from flask samples that are accurate to within 0.2 ppm of theWMO
scale with a 1s precision of 0.1 ppm (Conway et al. 1994). We calculated the
interannual component of variability by detrending the monthly mean CO2 time
series from each site, using a 3rd-order polynomial over the 24-yr period from 1982
to 2005 and then subtracting the mean annual cycle (Keppel-Aleks et al. 2013).
Site-specific interannual variability [IAV (ppm)] was averaged within six latitude
belts corresponding to the tropics (08–238), midlatitudes (238–608), and high lati-
tudes (608–908) of each hemisphere, and a global mean time series of CO2 vari-
ability was then calculated as the area-weighted average of IAV within these
latitude belts (Figure 1). We analyzed the time period after 1982 since there are
multiple observing sites within all latitude belts. Furthermore, our zonal averaging
approach ensured that the globally averaged CO2 variability was not overly influ-
enced by the Northern Hemisphere, where the sampling network is more dense. For
consistency with previous work (e.g., Cox et al. 2013;Wang et al. 2013;Wenzel et al.
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2014), we filtered out CO2 IAV from measurements during the 24 months following
the major volcanic eruptions of El Chichon (1982) and Mt. Pinatubo (1991).

We aggregated the monthly mean CO2 interannual variability into either quarters
(e.g., January–March and April–June) or years and differenced across sequential
periods to calculate a growth rate (ppm yr21). The seasonal growth rate anomalies
were therefore centered on 1 January (winter; difference between JFM and OND),
1 April (spring; difference between AMJ and JFM), 1 July (summer; difference
between JAS and AMJ), and 1 October (fall; difference between OND and JAS),
and the annual mean growth rate was centered on 1 January. Growth rate anomalies

Table 2. NOAA flask sampling sites within the MBL used in this analysis. Sites were
selected with nearly continuous data coverage between 1982 and 2005, the end of
the historical period for CMIP5 models.

Region Station Acronym Lat Lon

608–908N Alert, AK ALT 82.5 262.5
Ny-Ålesund, Svalbard ZEP 78.9 11.9
Barrow, AK BRW 71.3 2156.6
Stórhöfði, Iceland ICE 63.4 220.1

238–608N Mace Head, Ireland MHD 53.3 29.9
Shemya, AK SHM 52.7 174.1
Terceira Island, Azores AZR 38.8 227.4
Tudor Hill, Bermuda BMW 32.3 264.7
Sand Island, Midway MID 28.2 2177.4
Key Biscayne, FL KEY 25.7 280.2
Pacific Ocean 258N POCN25 20.0 221.0

08–238N Pacific Ocean 208N POCN20 20.0 225.0
Cape Kumukahi, HI KUM 19.5 2155.6
Pacific Ocean 158N POCN15 15.0 217.0
Mariana Islands, Guam GMI 13.4 144.8
Ragged Point, Barbados RPB 13.2 259.4
Pacific Ocean 108N POCN10 10.0 213.0
Pacific Ocean 58N POCN05 5.0 209.0
Christmas Island CHR 1.7 202.8

08–238S Seychelles SEY 24.7 55.2
Pacific Ocean 58S POCS05 25.0 201.0
Ascension Island ASC 28.0 214.4
Pacific Ocean 108S POCS10 210.0 197.0
Tutuila, American Samoa SMO 214.3 2170.6
Pacific Ocean 158S POCS15 215.0 193.0

238–608S Pacific Ocean 208S POCS20 220.0 189.0
Pacific Ocean 258S POCS25 225.0 186.0
Pacific Ocean 308S POCS30 230.0 183.0
Pacific Ocean 358S POCS35 235.0 2180.0
Cape Grim, Australia CGO 240.7 144.7
Baring Head BHD 241 174
Crozet Island CRZ 246.45 51.85

608–908S Palmer Station, Antarctica PSA 264.0 264.0
Syowa, Antarctica SYO 269.0 39.6
Halley Bay, Antarctica HBA 275.6 226.5
South Pole SPO 290.0 224.8

Earth Interactions d Volume 22 (2018) d Paper No. 7 d Page 6



at all temporal frequencies were then converted to units of PgC yr21 using the
global mass of atmospheric dry air.

The interannual growth rate anomaly was related to variations in tropical tem-
perature via linear regression to estimate gIAV (Figure 2). We calculated an area-
weighted tropical land temperature between 238S and 238N using the gridded Hadley
Centre Climate Research Unit (CRU) dataset at 48 3 58 resolution (Jones et al. 2012).
The tropical land temperature time series was linearly detrended and the mean annual
cycle removed to reveal interannual variations at monthly time steps, which were
averaged to the same quarterly or annual resolution as the atmospheric CO2 obser-
vations. Because the atmospheric CO2 growth rate is calculated as a difference and
therefore centered at the start of each quarter (e.g., 1 January and 1 April) or calendar
year, and the temperature anomaly is centered midquarter or midyear, we averaged
two successive quarters or years of temperature anomalies over land (cf. Cox et al.
2013) before calculating gIAV via linear regression of the two quantities.

Climate variability is not normally distributed, so the length of and gaps in the
CO2 and temperature records may affect the estimate of gIAV. We quantified un-
certainty in the regression coefficient due to data gaps and outliers using bootstrap
Monte Carlo to generate 1000 synthetic datasets of length 24 years by sampling
observed CO2–temperature pairs with replacement, and we report the median and
standard deviation of gIAV across these realizations. The same method was used to
calculate gIAV from simulated carbon cycle diagnostics (section 2.2).

2.2. CMIP5 carbon cycle diagnostics

We analyzed the interannual climate sensitivity of terrestrial carbon uptake for
historical simulations in eight CMIP5 ESMs (Table 3) whose outputs were

Figure 1. Time series of global atmospheric CO2 interannual variability calculated at
annual, quarterly, and monthly frequencies from MBL observatories.
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obtained from the Earth System Grid Federation (Williams et al. 2011). The his-
torical simulations covered the period 1850–2005 and were forced with historical
atmospheric composition changes, including greenhouse gas and aerosol concen-
trations resulting from anthropogenic and natural sources. CMIP5 models were

Figure 2. Relationship between the observed CO2 growth rate anomaly and tropical
temperature variations at (a) annual, (b) monthly, and seasonal time
scales for (c) winter (JFM), (d) spring (AMJ), (e) summer (JAS), and (f) fall
(OND). The gIAV value is given by the slope of the relationship in units
PgCyr21 K21.
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also forced with historical land-use change patterns, although the implementation
varied across models (Taylor et al. 2012). From these simulations, we analyzed
temperature and net biospheric production (NBP) output. NBP encompasses all
terrestrial processes that leave an imprint on atmospheric CO2, including net eco-
system exchange (NEE; defined as the sum of gross primary production and eco-
system respiration), carbon loss from disturbance, and harvest (Chapin et al. 2006).
Each CMIP5 ESM is fully prognostic, meaning the carbon cycle in each model was
coupled to different patterns of internal climate variability. Thus, evaluation of the
interannual variability requires a functional response metric, since the timing and
magnitude of internal climate variations, such as those from El Niño, are unique to
each model run.

To examine our hypothesis that neglecting atmospheric processes induces a bias
between gIAV inferred frommodeled fluxes and the gobs

IAV that must be calculated from
atmospheric CO2, it was necessary to use an offline atmospheric transport model to
simulate atmospheric CO2 at the MBL observatories since only a few CMIP5 models
propagated surface carbon fluxes through their own atmospheric model. To simulate
the imprint of transport, we used the GEOS-Chem atmospheric transport model
(version 9.1.2; Nassar et al. 2010) to simulate the spatial distribution of CO2 from
CMIP5 NBP. GEOS-Chem was driven by MERRA reanalysis data (Rienecker et al.
2011) at 48lat3 58lon horizontal resolution, with NBP data from each CMIP5 model
regridded to the resolution of the transport model. We ran the model from 1979
through 2005, discarding the first 3 years to allow for the CO2 tracer to spin up. We
then sampled monthly mean CO2 output from GEOS-Chem at the locations of
NOAAMBL sites and detrended the model output using the method described for the
observations. Simulated gIAV values were likewise determined by regressing the CO2

growth rate against each model’s tropical land temperature anomaly.
We note that in comparing the simulated atmospheric CO2 to the observations,

we neglect nonterrestrial influences on the observations. For example, the observed
CO2 growth rate anomaly includes a small contribution from ocean and fossil
fluxes (Keppel-Aleks et al. 2014), while the simulated CO2 growth rate includes
only the influence of NBP. Thus, any covariance between temperature and ocean

Table 3. CMIP5 models and the temperature sensitivities of land carbon processes.
CMIP5 temperature sensitivities have been calculated directly from simulated land
fluxes and indirectly using simulated atmospheric CO2. The observed temperature
sensitivities are calculated only from atmospheric CO2.

Model name gLT
gIAV [PgC yr21 K21]

[PgCK21] Global NBP Tropical NBP Annual CO2 Winter CO2

CESM 26.7 0:961:1 0:960:8 1:961:4 1:960:8
CanESM2 274.3 8:260:9 6:560:7 10:861:5 8:460:8
GFDL-ESM2G 2116.4 12:462:1 10:261:3 16:862:9 9:662:7
HadGEM2-ES 260.2 8:261:2 8:161:3 7:561:6 7:161:4
IPSL-LR 222.9 5:661:0 5:860:9 7:061:5 7:461:9
MIROC-ESM 258.4 4:961:0 3:260:9 7:661:5 3:761:1
MPI 278.3 5:460:6 2:860:3 6:760:6 2:160:6
NorESM 27.2 3:261:6 3:161:1 4:262:3 2:961:3
Model mean 253638 6:163:5 7:864:6 7:063:8 7:263:4
Observations 6.5 6 1.8 5.0 6 2.0
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carbon fluxes or fossil fuel emissions will modify gobs
IAV but none of the model

diagnostics.
In addition to calculating gIAV for the CMIP5 ensemble members using simu-

lated atmospheric CO2, which most closely resembles the observations available to
evaluate ESMs, we calculated gIAV directly from an area-weighted integral of NBP.
This quantity represents the apparent CO2 growth rate that would be measured in
an instantaneously well-mixed atmosphere and contains a source of bias in addition
to those described above since it further lacks the imprint of atmospheric mixing.
We calculated gIAV by regressing globally integrated NBP at both monthly and
annual time steps against the tropical temperature anomaly, similar to the method
used for atmospheric CO2. We also calculated gIAV from NBP confined to the
tropics. In terms of developing a tropical functional response metric, this is the
most relevant target; however, it is a quantity that is not directly observed. Thus,
much of the focus of this paper is on identifying an atmospheric-based metric that
can be used to evaluate the gIAV inferred from model tropical NBP and temperature
variations. Since both the NBP and the temperature anomalies were centered in the
middle of the calendar month or year, we simply used monthly or annual land
temperature averages, rather than averaging two successive time periods, as was
required for the regressions against the atmospheric CO2 growth rate.

2.3. Calculating a constraint on gLT

We calculated an emergent constraint on the long-term temperature sensitivity of
terrestrial carbon storage g

opt
LT based on the agreement of gIAV calculated from

annual model data (described in section 2.2) with the observed gobs
IAV (section 2.1).

We used the gLT value for each CMIP5 model reported in Wenzel et al. (2014),
which were calculated from simulations with a 1% increase in radiative forcing by
comparing the response in runs with and without biogeochemical coupling. We fit a
slope and intercept to the gIAV and gLT data, allowing error in both variables (York
et al. 2004). To parameterize errors on gIAV, we used the standard deviation from
bootstrap Monte Carlo, and we set the errors on gLT to 10 PgCK21, the value that
minimized the reduced x2 value of the fit. It was necessary to assume an error on
each model’s gLT to obtain reasonable error estimates on the regression coeffi-
cients. The error affected the width of the probability density function for the
constrained g

opt
LT; however, the constrained estimate for gopt

LT was insensitive to the
choice of the error between 1 and 30 PgCK21. We derived the probability density
function for gopt

LT by propagating the uncertainty in the observational constraint
(gobs

IAV calculated at the corresponding monthly or annual time step) and the error on
the fitted slope and intercept.

3. Results

3.1. Temperature sensitivities inferred from atmospheric CO2

observations

The observed temperature sensitivity of land carbon uptake (gobs
IAV) depended

strongly on the season analyzed and the frequency over which observations were
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averaged (Figure 2). The gobs
IAV determined from annual mean data was 6:56 1:1

PgC yr21 K21 (Figure 2a), compared to a value of 5:46 1:3 PgC yr21 K21 de-
termined from monthly data (Figure 2b). Both values for gobs

IAV are consistent
with previous estimates from global atmospheric CO2 (Cox et al. 2013; Keppel-
Aleks et al. 2014), but it is worth noting that the methodological uncertainty
(a 1.1 PgC yr21 K21 difference between annual and monthly averaging) is as large
as the uncertainty on the fits themselves (1.1–1.3 PgCyr21K21). Calculating gIAV
separately for each quarter revealed strong seasonality to the relationship between the
atmospheric CO2 growth rate and tropical temperature variations (Figures 2c–f). The
quarterly growth rate for the NH spring (Figure 2d) had the highest slope (5.96 2.2),
while the quarterly growth rate centered on fall (Figure 2f) had a modest temperature
sensitivity (2.46 1.0). When quarterly regressions between the CO2 growth rate and
temperature anomalies were performed for NH CO2 and tropical CO2 separately, we
found weaker correlations (not shown), suggesting that it was necessary to aggregate
CO2 observations from stations globally to define a relevant constraint for model
benchmarking.

When the monthly or quarterly CO2 growth rate and tropical temperature
anomalies were recentered by the annual mean values before fitting a gIAV value,
there were only weak relationships between the two quantities (Figure 3), sug-
gesting that global CO2 growth rate anomalies are most responsive to slowly
varying temperature anomalies at annual time scales, as opposed to more rapid
fluctuations in temperature at monthly time scales. We note that there is little
structure to the residuals as a function of time (colors in Figure 3). The slopes fit to
monthly and seasonal residuals were generally weakly positive (Figures 3a–d),
with the exception of fall residuals (Figure 3e), indicating that high-frequency
temperature stress induced further net carbon release to the atmosphere (Figures 3b–d).
For NH fall, the residuals were negatively correlated (Figure 3e), suggesting that after
accounting for annual mean temperature anomalies, anomalously warm autumns
were associated with more carbon uptake.

3.2. A functional responsemetric for gIAV for tropical ecosystem fluxes

Since our goal was to develop a functional response metric for the tropical eco-
system temperature sensitivity, we first analyzed the difference in temperature sen-
sitivity owing to tropical versus global fluxes. In section 3.1., we showed that annual
temperature variations were a more important driver of variations in the observed
CO2 growth rate than temperature variations at higher frequencies; therefore, we
analyzed the annually integrated response of land carbon fluxes from CMIP5 sim-
ulations. Across the model ensemble, the gIAV values inferred from both global and
tropical NBP spanned an order of magnitude due to differences among model
structures and parameterizations (Table 3), consistent with previous results (Wenzel
et al. 2014). For most individual models, the temperature sensitivity of tropical land
fluxes was different from the temperature sensitivity calculated from global fluxes.
Across the model ensemble, the ratio of these two sensitivities ranges from 0.5 to 1.2,
with a median value of 0.9. This is a key result because it confirms that for most of
the models (six out of eight), extratropical carbon fluxes are also positively correlated
with tropical temperature variations, consistent with a prominent role for El Niño–
driven teleconnections outside the tropics (Keppel-Aleks et al. 2014). With respect to
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model evaluation, it confirms that the use of global diagnostics (e.g., globally inte-
grated fluxes or the global atmospheric growth rate) to make inferences about the
tropics introduces substantial bias.

Second, we analyzed the impact that atmospheric transport leaves on gIAV
by comparing results from globally integrated land fluxes with those from

Figure 3. Relationship between observed CO2 growth rate anomaly and tropical
temperature variations when each quantity has been recentered by the
annual mean. The fit between the residuals is shown at (a) monthly and
seasonal time scales for (b) winter (JFM), (c) spring (AMJ), (d) summer
(JAS), and (e) fall (OND).
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atmospheric CO2. For most models, the gIAV derived from annual NBP was smaller
than that derived from annual CO2 growth rate, with differences from 25% to
200% (Table 3). On average, the atmospheric CO2 growth rate within a model was
30% larger than the corresponding annual integrated net fluxes. If the atmospheric
CO2 time series derived from the available MBL stations were representative of the
entire atmosphere, this quantity would be unity by mass balance. The 30% average
difference arises from atmospheric transport processes. Because we used the same
atmospheric transport to advect terrestrial fluxes for all members of the ensemble, the
different ratio from model to model was due to cross-model differences in the spatial
distribution of fluxes relative to dominant patterns of atmospheric transport.

Throughout the manuscript, we calculated the atmospheric CO2 growth rate
from a subset of atmospheric observations within the MBL. Typically, air samples
are obtained at these sites within 100m of the surface; therefore, this type of
observation does not reflect the vertical gradients in CO2 that arise due to the
interaction of atmospheric transport and fluxes at the surface. As a sensitivity test,
we calculated the total column-integrated CO2 mole fraction from the GEOS-
Chem model output at the same MBL sites, emulating the total column CO2

currently observed by satellites, such as OCO-2 (Eldering et al. 2017) and GOSAT
(Yokota et al. 2009). When using total column CO2, the ratio between gIAV cal-
culated from fluxes and from atmospheric total column CO2 was reduced but still
represented a 20% mismatch, owing to the fact that the spatially sparse sampling
network is not uniformly sensitive to global vegetated land surfaces.

Together, these results suggest that a functional response metric to evaluate the
temperature sensitivity of tropical ecosystems should be 1) minimally sensitive to
the imprint of extratropical fluxes to better isolate the temperature sensitivity of
tropical fluxes and 2) maximally representative of the spatially integrated fluxes
despite sparse atmospheric sampling. With these criteria in mind, the relationship
between the tropical land-derived gIAV and the atmosphere-derived gIAV was
highest among CMIP5 models when gIAV was calculated using the January-
centered (winter) atmospheric CO2 growth rate (Figure 4). Using the seasonal
diagnostic, the slope between gIAV from tropical fluxes and gIAV from atmospheric
CO2 was 0.9 6 0.3 (R2 5 0.86), showing both improved correlation and smaller
error on the slope, compared to the relationship between the annual growth rate and
tropical fluxes (slope of 1.2 6 0.8 and R2 5 0.71). In other seasons, the R2 value
ranged from 0.4 to 0.7, the slope showed greater deviation from 1, and there was
larger fractional uncertainty on the slope.

The strong relationship between tropical land-derived gIAV and the winter
atmospheric-derived gIAV arises from a seasonally quiescent Northern Hemisphere
biosphere. This result was corroborated in two ways: first, the relationship between
Northern Hemisphere land-derived gIAV and the gIAV derived from the winter CO2

growth rate was minimal for the winter quarter output (R2, 0.05), suggesting that
Northern Hemisphere ecosystems do not contribute to the seasonal temperature
sensitivity. Second, the gIAV value from winter-only tropical land fluxes was highly
correlated with the gIAV value fromwinter atmospheric CO2, with a slope of 1.06 0.2
and an R2 of 0.96, confirming minimal interference from the Northern Hemisphere
biosphere during the winter season. Together, these relationships confirmed that the
winter atmospheric gIAV value isolates the temperature sensitivity of the tropical
carbon–climate functional responses.
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3.3. An emergent constraint on long-term tropical sensitivity

The winter CO2 growth rate metric can be used not only to evaluate model
representations of tropical carbon fluxes at contemporary time scales, but also to
calculate an emergent constraint on the long-term sensitivity of tropical carbon
fluxes. When the gIAV value derived from tropical NBP in each CMIP5 model (Table 3)
was evaluated against the observed gIAV from winter CO2 growth rate, the esti-
mated long-term climate sensitivity was 58 6 16 PgCK21 (Figures 5a, 6), in
contrast to a value of 71 6 16 PgCK21 when the observational constraint is from
annual CO2 growth rate (Figures 5b, 6). The 20% high bias when using annual,
rather than seasonal, atmospheric CO2 results from the positive sensitivity between
temperature and Northern Hemisphere fluxes for seasons other than NH winter.
Extratropical fluxes thereby increased the apparent tropical temperature sensitivity,
and a subset of models with greater interannual sensitivity was identified as con-
sistent. In contrast, when the winter gIAV was used, the consistent model ensemble
was weighted toward a lower long-term sensitivity (Figures 5a,b). As expected, the
optimized gLT value was consistent when CMIP5 gIAV values were calculated from
each model’s winter CO2 growth rate (Figure 5c), as opposed to directly from
tropical land (Figure 5a). We found, however, that both these values were shifted
toward a higher sensitivity than the emergent constraint on gLT derived from annual

Figure 4. Relationship for gIAV derived from tropical carbon fluxes (x axis) and the
corresponding gIAV calculated from the atmospheric CO2 growth rate.
Parameter gIAV inferred from winter atmospheric CO2 observations (red
squares) more closely reflects the gIAV calculated directly from land fluxes
across ESMs (slope 0.9 6 0.3, R2 5 0.86), compared to gIAV from annual
CO2 observations (blue circles; slope 1.2 6 0.8, R2 5 0.71).
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CO2 (Figure 5d; 48 6 14 PgCK21). Again, it is noteworthy that the methodology
used to determine the observational constraint introduces as much uncertainty into
the emergent constraint (13 PgCK21) as does the uncertainty in the fit itself.

4. Discussion
Our results suggest that atmospheric observations can provide direct constraints

on tropical land fluxes. We identified a functional response metric to diagnose the

Figure 5. Emergent constraint on the long-term sensitivity of tropical ecosystems to
climate change (gLT). (a),(b) The gIAV from models is calculated only using
tropical NBP fluxes. (c) The model-derived gIAV is from the winter CO2

growth rate. (d) The gIAV values were calculated using the annual CO2

growth rate. The observational constraint (gray shading) is the winter
season gIAV from atmospheric CO2 for (a),(c), leading to the constrained
gLT values shown by blue shading. For (b),(d), the emergent constraint is
calculated using the annual mean gIAV from CO2, leading to different
estimates for gLT (red shading). For each permutation of model variable
and observational constraint, a different set of models is consistent with
the observational benchmark (square symbols).
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sensitivity of tropical carbon fluxes to local temperature variations using the winter
seasonal atmospheric CO2 growth rate. When winter atmospheric CO2 growth rate
anomalies were used to evaluate the temperature sensitivity of net tropical eco-
system exchange, the interference from Northern Hemisphere ecosystems was
minimized. Additionally, bias from sparse atmospheric CO2 sampling was small,
based on offline analysis from eight CMIP5 ESMs whose terrestrial fluxes have
been advected using an atmospheric tracer transport model. We found that a dif-
ferent set of models was consistent with the observational constraint, depending on
whether atmospheric CO2 data were integrated annually versus isolating only one
season, a finding that affects the benchmarking and subsequent tuning of ESMs. In
this study, six ESMs whose tropical gIAV ranged from 2.8 to 8.1 PgC yr21 K21

were consistent with the observational constraint. Moreover, we found that the
predicted long-term temperature sensitivity of tropical ecosystems was 58 6 16
PgCK21, a value that was smaller by 20% than if an annual constraint had been
used.

Atmospheric CO2 observations provide one of the few regional- to global-scale
diagnostics for carbon cycle processes. Although atmospheric CO2 has been used
previously for model benchmarking in terms of the long-term increase (Hoffman
et al. 2014) or seasonal diagnostic (Keppel-Aleks et al. 2013), determining func-
tional responses that can be used to benchmark large-scale feedbacks in the context
of biogeochemical and land model benchmarking systems [e.g., the International
Land Model Benchmarking Project (ILAMB); Mu et al. 2014; Hoffman et al. 2017]

Figure 6. Probability density functions for the long-term sensitivity of ecosystem
fluxes to climate change (gLT). The gLT for the tropics, constrained by
winter CO2 data, is 58 6 16 PgCK21, 20% less sensitive than when the
emergent constraint is defined by annual CO2 data (716 16 PgCK21). The
shift in the most likely value for gLT due to the methodology used to av-
erage observations is as large as the uncertainty on the fit itself.
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is important for improving the predictions of terrestrial models. Determining robust
ways to work with atmospheric CO2 presents challenges, however, since it integrates
land, ocean, and anthropogenic fluxes over a range of geographic scales. Developing
a CO2 metric that isolates a single functional response, as we have done here, opens
up possibilities to use observations in different ways to isolate each of these different
sensitivities that control long-term feedbacks. Especially in the context of an
emergent constraint, tropical and Northern Hemisphere ecosystems will likely ex-
perience different responses to long-term temperature increases and, thus, must be
considered separately.

In the context of an emergent constraint, our analysis shows that different av-
eraging time scales for the observations affect the optimized constraint, as does
using atmospheric CO2 to evaluate land fluxes directly, rather than evaluating
fluxes transported through an atmospheric model. In the introduction, we identified
two key components to an emergent constraint: the ability to evaluate short-term
predictions against observations and a mechanistic link between the short- and
long-term model-predicted quantities. While substantial attention has been paid in
the literature to concerns that long-term feedbacks may include processes that do
not contribute substantially to present-day interannual variability in land carbon
storage (Randerson 2013; Keppel-Aleks et al. 2014), less attention has been given
to how differences among model output and observations affect an emergent
constraint. Here, we showed that there is potential for bias in emergent constraints
when the differences between observed and simulated quantities are ignored. In
fact, our results suggest that the method used to average the observational con-
straint for functional response metrics or for emergent constraints is as important as
the fitting uncertainty itself.

Our results indicated that the emergent constraint on terrestrial temperature
sensitivity from a multimodel ensemble shows a systematic dependence on the
choice of observational constraint and the treatment of model output. There was a
20% difference in the expected value for the tropical gLT when the annual versus
winter atmospheric CO2 growth rate was used to evaluate short-term variations.
This difference can be explained by the fact that annual CO2 growth rate anomalies
include the additional temperature sensitivity of extratropical Northern Hemi-
sphere ecosystems. It is more difficult to explain, however, why the emergent
constraint on gLT derived from the annual CO2 growth rate from CMIP5 models
and as the observational constraint (Fig. 5d) yields a lower value for gLT (48 6 14
PgC K21), beyond noting that small differences in the gIAV values can lead to large
differences in the fitted slope. Thus, the error on the optimized gLT may be un-
derestimated by the error propagation and quantification methods generally used in
the calculation of emergent constraints. The error on gLT may further be under-
estimated because the interannual variations in the CO2 growth rate used to calculate
gLT may not be predictive of nonlinearities within the carbon cycle due to, for
example, changes in vegetation mortality or fire, which are not well represented in
CMIP5 ESMs. These nonlinearities may change the long-term trajectory of tropical
ecosystems and invalidate the entire approach of calculating an emergent constraint.

Given the persistent uncertainties in prediction of the land carbon sink over the
twenty-first century and the fact that CMIP5 coupled models simulated as large of a
spread in cumulative net carbon uptake as did an earlier generation of C4MIP
models (Friedlingstein et al. 2006, 2014), analyzing model output fields that have

Earth Interactions d Volume 22 (2018) d Paper No. 7 d Page 17



direct relationships to observational datasets is crucial. Our results show that there
is a 25% bias when gIAV was calculated from atmospheric data versus integrated
NBP within the model ensemble (Table 2). In the analysis presented here, it was
necessary to translate fluxes through a transport model or emulator to reproduce
model data as similar to the atmospheric observations as possible. However,
using atmospheric transport inconsistent with the climate used to force land
surface fluxes contributes additional uncertainty that could be avoided by making
the time-varying, three-dimensional structure of atmospheric CO2 a standard
model output.
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