VECTORIZING THE COMMUNITY
LAND MODEL

Forrest M. Hoffman'
Mariana Vertenstein?
Hideyuki Kitabata®
James B. White 11I'

Abstract

In this paper we describe our extensive efforts to rewrite
the Community Land Model (CLM) so that it provides good
vector performance on the Earth Simulator in Japan and
the Cray X1 at Oak Ridge National Laboratory. We
present the technical details of the old and new internal
data structures, the required code reorganization, and the
resulting performance improvements. We describe and
compare the performance and scaling of the final CLM
Version 3.0 (CLM3.0) on the IBM Power4, the Earth Sim-
ulator, and the Cray X1. At 64 processors, the perform-
ance of the model is similar on the IBM Power4, the Earth
Simulator, and the Cray X1. However, the Cray X1 offers
the best performance of all three platforms tested from 4
to 64 processors when OpenMP is used. Moreover, at low
processor counts (16 or fewer), the model performs signif-
icantly better on the Cray X1 than on the other platforms.
The vectorized version of CLM was publicly released by
the National Center for Atmospheric Research as the
standalone CLM3.0, as a part of the new Community
Atmosphere Model Version 3.0 (CAM3.0), and as a com-
ponent of the Community Climate System Model Version

3.0 (CCSM83.0) on June 23, 2004.
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1 Introduction

1.1 THE MODEL

The Community Land Model (CLM) is a single-column
(snow—soil-vegetation) biogeophysical model of the land
surface. Written in Fortran 90, CLM can be run off-line
(i.e. run in isolation using stored atmospheric forcing
data), coupled to an atmospheric model (e.g. the Commu-
nity Atmosphere Model (CAM)), or coupled to a climate
system model (e.g. the Community Climate System
Model (CCSM)) through a flux coupler (e.g. Coupler 6).
When coupled, CLM exchanges fluxes of energy, water,
and momentum with the atmosphere.

Originally developed as the standalone Common Land
Model (Dai et al., 2003), the code was significantly mod-
ified for integration with the CAM (Bonan et al., 2002)
and the CCSM (Kiehl and Gent, 2004) in 2001 and 2002.
This prior development work targeted cache-based scalar
multiprocessor computer platforms. The availability of
the Earth Simulator in Japan and the Cray X1 at Oak Ridge
National Laboratory (ORNL) spawned renewed interest
in running Earth systems models (including the CLM) on
vector architectures. However, the prior development of
the CLM for multiprocessor architectures had inadvert-
ently resulted in code which would not vectorize. This led
to the need to rewrite the model to provide good perform-
ance on both vector and scalar architectures in 2003.

After the substantial development and testing described
below, the vectorized version of the model was publicly
released by the National Center for Atmospheric Research
(NCAR) as the standalone Community Land Model Ver-
sion 3.0 (CLM3.0), as a part of the new Community
Atmosphere Model Version 3.0 (CAM3.0), and as a com-
ponent of the Community Climate System Model Version
3.0 (CCSM3.0) on June 23, 2004. The CLM3.0 Devel-
oper’s Guide (Hoffman et al., 2004), the CLM3.0 User’s
Guide (Vertenstein et al., 2004), the Technical Descrip-
tion of the CLM (Oleson et al., 2004), and the CLM’s
Dynamic Global Vegetation Model (DGVM): Technical
Description and User’s Guide (Levis et al., 2004) provide
the developer, user, or researcher with details of imple-
mentation, instructions for using the model, a scientific
description of the model, and a scientific description of
the DGVM integrated with the CLM, respectively.
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Fig.1 The CLM subgrid hierarchy.

Several multidecadal simulations have been carried
out with CCSM3.0, and the system will be a major con-
tributor to the Fourth Assessment Report of the Intergov-
ernmental Panel on Climate Change (IPCC). Simulation
output is available from the Earth System Grid at http://
www.earthsystemgrid.org/. An analysis of the results of
these simulations emphasizing the contribution of CLM3.0
will appear with related papers in a special issue of the
Journal of Climate (Dickinson et al., 2005).

1.2 MODEL GRID HIERARCHY

The horizontal land surface heterogeneity in the CLM is
represented by a nested subgrid hierarchy composed of
gridcells, landunits, columns, and plant functional types
(PFTs) as shown in Figure 1. Each gridcell can have a
different number of landunits, each landunit can have a
different number of columns, and each column can have
multiple PFTs. Gridcells represent the computational
grid which is shared with the atmospheric physics.

The landunit, the first subgrid level, is intended to cap-
ture the broadest spatial pattern of subgrid heterogeneity.
It serves primarily to distinguish physical soil properties.
Specific landunits include glacier, lake, wetland, urban,

and vegetated. The column captures variability in soil
and snow state variables within a landunit. Water and
energy states and fluxes are tracked at the column level.
The PFT, the third subgrid level, captures the characteris-
tic biophysical and biogeochemical functions of broad
categories of vegetation and bare soil. Up to four out of
15 possible PFTs differing in physiology and structure
may be contained within a single column.

Biophysical processes are simulated for each subgrid
unit independently, and prognostic variables are main-
tained for each subgrid unit. Processes related to soil and
snow require PFT-level properties to be aggregated up to
the column level. Aggregation is usually accomplished
by computing a weighted sum for each quantity over all
PFTs within a column. Similarly, different PFTs compete
for the resources tracked at the column level. A complete
description of the biophysical processes simulated by the
CLM is available in Oleson et al. (2004).

2 Model Vectorization

The primary obstacles to vectorization were the layout of
the internal data structures and the organization of the
processing loops in CLM2.1. The hierarchical subgrid



organization is reflected in the data structures used in the
model code. In CLM2.1, the hierarchy was implemented
as arrays of pointers to derived data types at each subgrid
level. The flux and state variables were implemented as
scalars in every instance of a derived data type. While this
object-oriented layout is reasonable for cache-based sca-
lar platforms, it is not conducive to vector processing
since it results in large, unpredictable strides among vari-
able elements. In addition, the model had many high-level
loops over various grid and subgrid units. In each loop,
science subroutines were called separately and repeatedly
for each grid or subgrid unit member. The loops within
the science subroutines were all short and contained neg-
ligible work.

Early vectorization experiments, carried out separately
by coauthors Kitabata at CRIEPI on the Earth Simulator
and White at ORNL on the Cray X1, demonstrated signif-
icant performance improvement by eliminating the hier-
archy of derived data types in favor of traditional Fortran
arrays and by moving long grid and subgrid unit loops
“down” into science subroutines where they were then
typically interchanged with short loops (White, 2003).
The Earth Simulator has no cache but has very long vec-
tor pipelines (eight 2304-element pipelines per arithmetic
processor); the Cray X1 has a cache and shorter vector pipe-
lines (four 256-element pipelines per MSP). As a result,
memory contiguity and long vector lengths are more
important on the Earth Simulator than on the Cray X1.

While these experiments were being carried out, a
strategy for rewriting the CLM code was being developed
to meet the requirements put forth by the research com-
munity. Researchers required a single CLM source code
that would run well on both vector and scalar architectures
while maintaining the hierarchical nature of the internal
data structures. The use of conditionally compiled code
blocks (using #1ifdef preprocessor macros) was to be
minimized, and the code modifications could not reduce
the performance on the existing scalar platforms.

2.1 DATA STRUCTURES

After considerable discussion and experimentation on the
Cray X1, a new data structure organization was devel-
oped which would retain the subgrid hierarchy while
allowing for loop vectorization. New data structures were
prototyped in the model by adding them in as vector ver-
sions of individual code branches were added to the code.
A testing methodology (developed by White as a part of
his vectorization experiments) was adopted for validating
simulation results at every time-step. During develop-
mental test runs, new data structures were initialized
from old data structures, the original subroutine was
called to update the old data structures, the new vector-
friendly subroutine was called to update the new data

structures, and the results in the two sets of data struc-
tures were then compared to ensure only round-off differ-
ences resulted from the new code branch. The old data
structures and subroutines were removed from the code
as vector development neared completion.

To begin, a vectorized version of the most costly code
branch, the Biogeophysicsl () routine, which calls the
computationally intensive CanopyFluxes () subrou-
tine, was added to the code. In this experiment, data were
copied from the original data structures into the new data
structures, and then the original Biogeophysicsl ()
subroutine was called, followed by the vectorized version
of the subroutine, which used the new data structures. For
each time-step in the model run, after the non-vector and
vector subroutines were called, the results contained in
the old and new data structures were compared to ensure
that only round-off differences existed between the two
sets of results.

Timing utilities included in the CLM code were used
to measure performance differences between the original
and the new vector versions of the code branch. Using
the proposed hierarchical data structures, the perform-
ance improvement matched that of prior vectorization
experiments (White, 2003). The strategy for further vec-
torization was to use the same testing methodology for
each code branch in turn to ensure that model results
were equivalent at each time-step and to monitor per-
formance improvement. As vectorization progressed, the
code was tested by Kitabata on the Earth Simulator and
by others on NEC platforms to ensure similar perform-
ance gains on these systems. The new data structures and
vectorization strategy were subsequently presented to
and approved by the CCSM Land Model Working Group
and NCAR researchers in the summer of 2003.

The new data structures now in CLM3.0 consist of
derived data types for each subgrid unit as shown in Fig-
ure 2. Each grid and subgrid unit data type in the hierarchy
contains a number of physical and chemical state and flux
data types. These data types typically contain real arrays
for the state and flux variables which were previously
represented as scalars in multiple instances of data types.

Vertical heterogeneity is represented by a single vege-
tation layer, 10 layers for soil, and up to five layers for
snow, depending on the snow depth. Multilayer quanti-
ties are stored as two-dimensional real arrays. Using real
arrays at every level in the hierarchy maximizes opportu-
nities for contiguous memory access, thereby providing
significantly better performance on vector architectures.
All arrays contained in derived data types are imple-
mented as Fortran 90 pointers. Memory for these arrays
is allocated dynamically during model initialization.

Each of these grid and subgrid data types also contains
arrays of integers, which serve as array indices to the
higher subgrid levels or as initial and final bounds on the
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Fig.2 The new CLM3.0 data structure hierarchy.

lower subgrid levels. For example, as shown in Figure 2,
the column-level data type contains landunit and
gridcell integer arrays, which refer to the appropriate
landunit and gridcell for a given column. The column-
level data type also contains integer arrays called pfti,
pftf, and npfts, which refer to the first and last PFTs
and the total number of PFTs, respectively, for a given
column. Each subgrid data type also contains real arrays
for surface areas and area weights at all higher grid levels.

2.1.1 Clumps for Decomposition CLM uses the Mes-
sage Passing Interface (MPI) for distributed memory
parallelism and uses OpenMP for shared memory paral-
lelism. On the Cray X1, the model can also stream across
processing units (called Single Streaming Processors, or
SSPs) within a Multistreaming Processor (MSP) based on
Cray Streaming Directives (CSDs) included in the new
code. In order to provide performance portability across a
wide range of current and future computer architectures, a
decomposition strategy partially implemented in CLM2.1
was fully developed in CLM3.0.

When compiled for distributed memory parallelism
(with the preprocessor macro SPMD defined), each MPI
process will create an instance of the data structures shown
in Figure 2 containing only the subset of data assigned to
that process. A cache-friendly blocking structure is super-
imposed on the data structure hierarchy for improved
computational efficiency. This blocking structure implic-
itly controls the vector length of most computations.
Gridcells are grouped into blocks (called clumps) of
nearly equal computational cost, and these clumps are
subsequently assigned to MPI processes.

The computational cost of a gridcell is approximately
proportional to the number of PFTs contained within it.
However, since computational cost for some PFTs is
higher than for others and since similar PFTs tend to clus-
ter geographically, balancing the workload across MPI
processes requires a more complex scheme than simply
assigning contiguous blocks of gridcells to clumps. To
minimize the potential for load imbalance, gridcells are
assigned in cyclic (or round-robin) fashion to a predeter-
mined number of clumps. The clumps are then assigned



nclumps = get_proc_clumps ()

1SOMP PARALLEL DO PRIVATE (nc,begg,endg,begl,endl, begc, endc, begp, endp)
1CSD$ PARALLEL DO PRIVATE (nc,begg, endg,begl, endl,begc, endc,begp, endp)

do nc = 1,nclumps

call get_clump_bounds (nc, begg, endg, begl,

call Hydrologyl (begc, endc, begp, endp, &

endl, begc, endc, begp, endp)

filter (nc)%num_nolakec, filter (nc)%nolakec, &
filter (nc)%num_nolakep, filter(nc)%nolakep)

end do
1SOMP END PARALLEL DO
ICSDS$ END PARALLEL DO

Fig. 3 Example high-level loop in the driver routine.

in cyclic fashion to available MPI processes. This scheme
has proved to sufficiently distribute gridcells of various
computational costs among MPI processes, yielding very
good parallel load balancing characteristics for most
process counts and surface data sets. A small penalty is
incurred during history output since the data in memory
must be remapped to the standard south-to-north ordering
for output.

Clumps not only define the workload for an MPI proc-
ess, they also serve to block data for shared memory par-
allelism when using OpenMP or streaming on the Cray
X1. The number of clumps per MPI process is determined
by the parallel configuration of the model at run-time, but
it may be set explicitly by setting the clump_pproc
namelist variable to the desired number of clumps per
process. When run serially or with MPI-only parallelism,
one clump per process is used. When OpenMP is enabled,
the number of clumps per process is set to the maximum
number of OpenMP threads available. On the Cray X1
when OpenMP is disabled, CSDs are interpreted by the
compiler in place of OpenMP directives, and the number
of clumps per process is set to four to take maximum
advantage of the four SSP units on an MSP.

2.1.2 Filters for Vector Performance In addition to
clumps, another set of structures, called “filters”, was
added to better support vectorized processing of columns
and PFTs. Filters group like columns or PFTs based on
their process-specific categorization and are used for
indirect addressing into the main data structure hierarchy.

Filters are created for snow, non-snow, lake, non-lake,
and bare soil columns and PFTs for each clump of grid-
cells. Many filters are initialized once, but the snow and
non-snow filters must be reconstructed as snowfall and
melting occur, and the vegetated PFT filter must be recon-
structed in DGVM as die-off and establishment occur.

2.2 CODE REORGANIZATION

Loops over columns and PFTs previously located in the
top-level driver routine were moved down into sci-
ence subroutines to provide opportunities for vectoriza-
tion. In CLM3.0, the highest level loops in the driver
routine run over clumps for each MPI process and pro-
vide for OpenMP or Cray Streaming parallelism. Science
subroutines, called within these loops, are passed local
clump bounds for gridcells, landunits, columns, and
PFTs as needed. Relevant filters, in the form of counts
and vectors of array indices, are also passed as needed to
science subroutines.

Figure 3 shows a portion of a high-level loop from the
driver routine. First, the number of clumps assigned to
the process is obtained and stored in nclumps. The sub-
sequent loop over all clumps is wrapped with OpenMP
and Cray Streaming directives to support shared memory
parallelism. Within the loop, the bounds for gridcells,
landunits, columns, and PFTs are obtained for the clump
being processed by calling get_clump_bounds ().
Then a science subroutine, Hydrologyl (), is called
and passed the column and PFT bounds as well as the



! Assign local pointers to derived type members

clandunit => clm3%g%1%c%$landunit
itype => clm3%g%1%itype

! Assign local pointers to derived type members

cgridcell => clm3%g%1%c%gridcell

t_grnd => clm3%g%1%c%ces%t_grnd
h2osno => clm3%g%1%c%cwssh2osno
snowdp => clm3%g%1%c%cps$snowdp
snowage => clm3%g%1%c%cps%snowage

'dir$ concurrent
lcdir nodep
do £ = 1, num _nolakec

(landunit-level)

(column-level)

c = filter_nolakec(f)

1 = clandunit (c)

g = cgridcell (c)

if (itype(l) == istwet .and. t_grnd(c) > tfrz) then
h2osno(c) = 0._r8
snowdp (c) = 0._r8
snowage(c) = 0._xr8

end if

end do

Fig. 4 Example filter loop in a science subroutine.

non-lake filters for columns and PFTs for the clump being
processed. Additional science subroutines are subse-
quently called within the same loop. The driver routine
consists primarily of two such high-level loops, which
call most of the science subroutines used by the model.

Within science subroutines, vector loops run over grid
or subgrid units. Other short loops run over snow and soil
levels within a column or PFT. In most cases, the vector
loops were inserted into the short loops for vectorization.
Many loops were split into multiple loops and temporary
local arrays (vectors) were used to “carry” data between
them. Many of the vector loops use filters for indirect
addressing of relevant columns and PFTs. Since arrays in
data structures are implemented as pointers, compilers
cannot determine if vector dependences exist. As a result,
compiler directives are required in order to obtain loop
vectorization in most cases on both the Cray X1 and the
Earth Simulator.

Figure 4 shows an example of a filter loop within a sci-
ence subroutine. First, local pointers are created to
shorten the notation used in equations. The subsequent

loop over all non-lake columns is preceded by Cray X1
and Earth Simulator compiler directives. The first direc-
tive tells the Cray X1 compiler that the loop is concur-
rent, meaning it may be streamed and vectorized. The
second directive tells the Earth Simulator compiler that
no vector dependences exist in the loop. Within the loop,
the column index is obtained from the non-lake column
filter vector, the appropriate landunit index is obtained
from the column’s landunit vector, and the appropriate
gridcell index is obtained from the column’s gridcell vec-
tor. Next, the landunit type and the ground temperature
of the column are checked. If the landunit contains water
and the ground temperature is above freezing, three vari-
ables are initialized to zero. Other computations are usu-
ally performed within such loops.

3 Vector Performance

Preliminary vectorization of the CLM was completed in
October 2003. The new vectorized model has a smaller
memory footprint than CLM2.1. The new data structures



simplify history updates and reduce the complexity and
number of MPI gathers and scatters. The new vectorized
model runs 25.8 times faster than the CLM2.1 code on
the Cray X1 and even runs 1.8 times faster on the IBM
Power4 in standalone mode. To gauge overall perform-
ance of the new CLM3.0 and determine optimum run-
time configurations, timing tests were performed on the
IBM Power4, the Earth Simulator, and the Cray X1. The
timing tests consisted of a series of 30-day off-line runs at
T85 resolution (approximately 1.5 degrees) varying both
processor counts (with and without OpenMP) and the
clumps-per-process tuning parameter. The source code
used for the tests was that tagged c1lm2_deva_51 in
the NCAR code repository.

CLM3.0 may be built with a variety of options depend-
ing on the computer architecture and processor configu-
ration to be used. Both MPI and OpenMP may be
independently enabled or disabled. With both MPI and
OpenMP disabled, the model can run serially on a single
processor. With MPI enabled and OpenMP disabled, the
model runs in distributed memory mode across a number
of nodes. With MPI disabled and OpenMP enabled, the
model can run on a single shared memory symmetric
multiprocessor (SMP) node. With both MPI and OpenMP
enabled (hybrid mode), CLM3.0 runs in hybrid distrib-
uted/shared memory mode across a number of SMP nodes.
The optimum configuration for performance depends on
the computer architecture. In general, a hybrid mode con-
figuration provides the best performance on parallel sys-
tems with shared memory processors.

3.1 CRAY X1

On the Cray X1, CLM3.0 can be built with CSDs ena-
bled; however, most CSDs are used only around loops
which also use OpenMP directives. As a result, OpenMP
can be enabled only when CSDs are not. When compil-
ing with OpenMP (ignoring CSDs), the compiler will
still multistream concurrent loops in science subroutines
where possible. Calls to these science subroutines are
typically contained within the high-level loops in the
driver routine where the OpenMP directives and
CSDs are located. Slight modification of these loops
makes possible simultaneous use of OpenMP and CSDs.
The performance impacts of CSDs versus OpenMP on
the Cray X1 are described below.

For the Cray X1 with OpenMP disabled, the number of
MPI processes is equal to the number of MSPs used. Four
threads were used for all tests with OpenMP enabled on
the Cray X1. The curves in the performance graphs pre-
sented here are all colored by the total number of proces-
sors used in the run. For the Cray X1, a processor refers to
one MSP. The clumps-per-process tuning parameter was
varied between 1 and 32 for all performance tests.

Figure 5 shows total run-times for CLM3.0 on the
Cray X1 with both OpenMP and CSDs disabled for 1-
128 MSPs. The number of MPI processes is equal to the
number of MSPs, except that MPI was disabled for the 1
MSP case. For this test, streaming across SSPs occurs
only in concurrent loops within science subroutines. The
best performance is obtained when clumps per process is
set to one, since this setting maximizes the vector length.
Scaling beyond 16 MSPs is poor, but run-time continues
to drop through 64 MSPs. Performance for 128 MSPs is
no better than for 64 MSPs.

Figure 6 shows total run-times for CLM3.0 on the Cray
X1 with OpenMP disabled and CSDs enabled for 1-128
MSPs. The number of MPI processes is equal to the number
of MSPs, except that MPI was disabled for the 1 MSP case.
For this test, streaming across SSPs occurs at the high-
level loops in the driver routine. The best performance
is obtained when clumps per process is set to four since
this setting maximizes the vector length for each of the
four SSPs. Scaling beyond 32 MSPs is poor, but run-time
continues to drop through 64 MSPs. Performance for 128
MSPs is just slightly worse than for 64 MSPs.

Figure 7 shows total run-times for CLM3.0 on the
Cray X1 with OpenMP enabled and CSDs disabled for
4-256 MSPs. Four threads were used per MPI process,
and the number of MSPs shown is equal to the product of
the number of MPI processes and the number of threads.
MPI was disabled for the 4 MSP case. For this test,
streaming across SSPs occurs only in concurrent loops
within science subroutines. The best performance is
obtained when clumps per process is set to four, since
this setting maximizes the vector length for each of the
four shared memory MSPs. Scaling beyond 64 MSPs is
poor, but run-time continues to drop through 128 MSPs.

In all three cases, the best performance is obtained when
vector lengths are maximized. On average, performance
is improved by 20% using clumping and enabling CSDs
around high-level loops to explicitly utilize the four SSPs
on each MSP. However, better scaling is obtained by
using OpenMP instead of CSDs for the same high-level
loops in the driver routine. MPI performance and prob-
lem size limit distributed memory scaling to 64 MSPs, but
adding shared memory processors via OpenMP improves
scaling to 128 MSPs (i.e. 32 MPI processes and four
OpenMP threads). It appears that the compiler does a
good job of multistreaming loops in science subroutines
(thereby keeping the SSPs sufficiently busy). This fact,
combined with the reduced MPI communications,
explains why using OpenMP to parallelize high-level
loops results in better performance beyond eight MSPs.

In an effort to achieve additional performance on the
Cray X1, the high-level loops in the driver routine
were slightly modified so that OpenMP and Cray Stream-
ing could be used simultaneously. The code modification
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is shown in the listing in Figure 8. For this case, the opti-
mum number of clumps per process is 16: four for the
four OpenMP threads times four for the four SSPs.

As shown in Figure 9, this change slightly improves the
performance of the OpenMP-only case up through 64 MSPs.
Beyond 64 MSPs, the addition of CSD loops within
OpenMP loops does not further improve model perform-
ance. The overall performance improvement from using
OpenMP and CSDs simultaneously was smaller than
expected because the vector lengths become too short (i.e.
the problem size is too small) and the overhead of MPI
communications limits further scaling. More importantly,
this result is seen as confirmation that the automatic
streaming of concurrent loops within science subroutines
is very good. The SSPs are kept busy most of the time.

Profiling experiments were performed to further inves-
tigate performance characteristics of CLM3.0 on the Cray
X1. The most time-consuming routines are gettime-
ofday (which is used by the timing utilities), an internal
vector memory copy routine, and canopyfluxes. This
routine is known to represent the majority of the calcula-
tions in the present version of CLM, and it has been
extensively optimized. Additional routines near the top of

the profile listing are the updateinput, areaovr_
point, mkmxovr, and areaave routines, which pro-
vide data exchange and interpolation functionality for the
River Transport Model (RTM). The data exchange and
interpolation functions, which have not been vectorized,
are used repeatedly when running CLM3.0 in off-line
mode; however, they are called only during initialization
when run in fully coupled CCSM mode, so effort has not
been spent optimizing these routines.

When run using two MSPs with CSDs enabled, MPI
is used for communication, and MPI_Gatherv and
MPI_Bcast show up at the seventh and eighth positions
in the profiling report. A small portion of this time is
attributable to synchronization (i.e. waiting for processes
to catch up to the point in the program where the commu-
nication occurs); however, it is likely that MPI perform-
ance of the Cray X1 could be improved. CLM3.0 has very
good load balancing, so synchronization should take very
little time. MPT_Gatherv is used each time-step to gen-
erate a temperature diagnostic, and it is used to accumu-
late data for monthly history output. MPT_Bcast is used
to distribute atmospheric forcing data read from disk by
the master process to all processes on a monthly basis.



1SOMP PARALLEL DO PRIVATE (gnc,nc_beg,nc_end,nc,begg, endg,begl,endl, &
1SOMP & begc, endc, begp, endp)
do gnc = 1,nclumps/4
nc_beg = (gnc - 1) * 4 + 1
nc_end = min (nc_beg+3,nclumps)
1CSD$S PARALLEL DO PRIVATE (nc,begg, endg,begl, endl,begc, endc,begp, endp)
do nc=nc_beg,nc_end
call get_clump_bounds (nc, begg, endg, begl, endl, begc, endc, &
begp, endp)

call Hydrologyl (begc, endc, begp, endp, &
filter (nc)%num_nolakec, filter (nc)%nolakec, &
filter (nc)%num_nolakep, filter (nc)%nolakep)

end do
ICSDS$ END PARALLEL DO
end do
1$SOMP END PARALLEL DO

Fig. 8 Modified clump loop from driver providing both OpenMP and Cray Streaming directives.
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Fig. 9 CLM3.0 total run-time on the Cray X1 using CSD loops (dashed), OpenMP loops (solid), and OpenMP with
CSDs simultaneously (dotted).



CLMS3 Total Run Time on Earth Simulator (30 Day T85 Offline Run with I/O)
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Fig. 10 Curves show total run-times for CLM3.0 on the Earth Simulator using OpenMP directives around high-level
loops in the driver routine for 4-64 processors. Four threads were used per MPI process, so the number of proces-
sors shown is equal to the product of the number of MPI processes and the number of threads.

When run on 32 MSPs, MPI_Bcast and MPI__
Gatherv are the second and third most expensive rou-
tines. Only gettimeofday represents more time sam-
ples. MPTI_Allgatherv, used after each run of RTM,
appears at number 10. With 32 MPI processes, MPI rou-
tines and interpolation for RTM dominate run-time.
While some additional time may be lost to a slightly
larger load imbalance than when using two processes, at
32 MPI processes communication time appears to exceed
calculation time.

Because of the inefficiency of gettimeofday on
the Cray X1, it was replaced by calls to the real-time
clock routine (rtc) in later versions of the timing utili-
ties used by CLM3.0. Nevertheless, disabling model tim-
ers on the Cray X1 results in a 10-15% performance
improvement in overall run-time. Since they are not nec-
essary, it is recommended that the timers be disabled for
normal production runs.

3.2 EARTH SIMULATOR

Similar timing experiments were carried out on the Earth
Simulator. Since the Earth Simulator machine does not

use multistreaming processors, only OpenMP configura-
tions were tested. One set of tests used four OpenMP
threads, while the other used eight OpenMP threads. Like
the timing tests on the Cray X1, the clumps-per-process
parameter was varied from 1 to 32. The results from
these timing tests are shown in Figures 10 and 11. The
number of processors shown is equal to the product of
the number of MPI processes and the number of threads.

As expected, choosing four clumps per process pro-
vides the best performance for the four-thread case while
eight clumps per process provides the best performance
for the eight-thread case. These choices maximize vector
lengths for each configuration. On the Earth Simulator,
as on the Cray X1, the model scales only to about 64
processors. Using eight OpenMP threads yields slightly
better performance than using four threads.

3.3 PERFORMANCE COMPARISON

Figure 12 shows a comparison of the best CLM3.0 total
run-times for the IBM Power4 using four OpenMP
threads; the Earth Simulator using both four and eight
OpenMP threads; and the Cray X1 using CSDs, OpenMP,
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Fig. 11 Curves show total run-times for CLM3.0 on the Earth Simulator using OpenMP directives around high-level
loops in the driver routine for 8-64 processors. Eight threads were used per MPI process, so the number of proces-
sors shown is equal to the product of the number of MPI processes and the number of threads.
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Fig. 12 Curves show performance of the CLM3.0 run in off-line mode on the IBM Power4, the Earth Simulator, and
the Cray X1.



and both CSDs and OpenMP simultaneously. The curve
for the IBM Power4 shows very good scaling to 32 proc-
essors (within a single node) and reasonable scaling to 64
processors. The IBM matches the best Earth Simulator
performance and outperforms the Cray X1 when using
only CSDs at 64 processors.

The shapes of the Earth Simulator and Cray X1 curves
are similar, so the model appears to scale in a similar
fashion on both machines. However, the Cray X1 per-
formance numbers are usually better than those from the
Earth Simulator. When using only CSDs around the
driver loops, the Cray X1 outperforms the Earth Sim-
ulator out to 32 processors. At 64 processors, the Earth
Simulator does slightly better. On the other hand, when
OpenMP is used on the Cray X1 (with or without CSDs),
it always outperforms the Earth Simulator on a per proc-
essor basis. Moreover, at low processor counts (16 or
fewer), the model performs significantly better on the
Cray X1 than on the other two platforms.

4 Conclusions

Vectorizing the CLM required significant changes to the
internal data structures and every science subroutine in
the model. The process of rewriting the code took about
six months (or one man-year) to complete, and the plan-
ning and related development activities impacted model
developers for an entire year. However, the resulting
model code performs better on both vector and scalar
architectures. These performance improvements will result
in more and better research into land-surface processes
and feedbacks as access to vector platforms widens.

The vectorized version of the CLM was publicly
released by the NCAR as the standalone CLM3.0, as a
part of the new CAMS3.0, and as a component of the
CCSM3.0 on June 23, 2004. Model development has con-
tinued since the release with frequent testing on the Cray
X1 platform.

In general, vectorization should be considered during
all model development to ensure performance portability
across myriad computer platforms. As demonstrated here,
internal data structures can often be designed to meet the
goals of researchers while still providing acceptable good
performance on both vector and scalar architectures. Writ-
ing loops so that they will vectorize is worth the up-front
effort since it ensures good performance on a wide variety
of systems. Even today’s personal computers have small
vector units which can be harnessed for high performance
computational science. Guidelines for writing vector-effi-
cient code can be found in various software development
manuals including Cray’s manual for optimizing applica-
tions (Cray Inc., 2004).

As development continues on the CLM, vectorization
should remain a goal. Dynamic land use capabilities

recently added to an experimental version of the model
required that history buffers be updated every time-step
instead of whenever history output is written (usually
monthly). This model change exposed some accumula-
tion routines which were only partially vectorized. Since
these routines were not previously called every time-step,
effort had not been invested in vectorizing them. Model
run-time on the Cray X1 more than doubled. Vectorizing
these routines reclaimed almost the entire factor of 2 in
performance. Frequent performance testing on vector
platforms, in addition to the standard numerical testing,
should help guard against frequent use or introduction of
non-vectorizable code in the model.

The vector performance of the CLM3.0 is reasonable
even when run in off-line mode. When coupled to the
CAM and the CCSM, better performance is realized
since atmospheric data are passed directly to the land
model instead of being read from disk and broadcast to
all MPI processes. At 64 processors, the performance of
the model is similar on the IBM Power4, the Earth Simu-
lator, and the Cray X1. However, the Cray X1 offers the
best performance of all three platforms tested from 4 to
64 processors when OpenMP is used. Moreover, at low
processor counts (16 or fewer), the model performs sig-
nificantly better on the Cray X1 than on the other plat-
forms.
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