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Abstract.   Heterotrophic respiration (HR), the aerobic and anaerobic processes mineralizing organic 
matter, is a key carbon flux but one impossible to measure at scales significantly larger than small exper-
imental plots. This impedes our ability to understand carbon and nutrient cycles, benchmark models, 
or reliably upscale point measurements. Given that a new generation of highly mechanistic, genomic-
specific global models is not imminent, we suggest that a useful step to improve this situation would 
be the development of “Decomposition Functional Types” (DFTs). Analogous to plant functional types 
(PFTs), DFTs would abstract and capture important differences in HR metabolism and flux dynamics, 
allowing modelers and experimentalists to efficiently group and vary these characteristics across space 
and time. We argue that DFTs should be initially informed by top-down expert opinion, but ultimately 
developed using bottom-up, data-driven analyses, and provide specific examples of potential dependent 
and independent variables that could be used. We present an example clustering analysis to show how 
annual HR can be broken into distinct groups associated with global variability in biotic and abiotic fac-
tors, and demonstrate that these groups are distinct from (but complementary to) already-existing PFTs. 
A similar analysis incorporating observational data could form the basis for future DFTs. Finally, we 
suggest next steps and critical priorities: collection and synthesis of existing data; more in-depth analyses 
combining open data with rigorous testing of analytical results; using point measurements and realistic 
forcing variables to constrain process-based models; and planning by the global modeling community for 
decoupling decomposition from fixed site data. These are all critical steps to build a foundation for DFTs 
in global models, thus providing the ecological and climate change communities with robust, scalable 
estimates of HR.
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Introduction: Heterotrophic Respiration 
and its Scaling

Heterotrophic respiration (HR) is the respi-
ration rate of heterotrophic organisms (animals 
and microbes) integrated over ground or water 
area and through time (Chapin et al. 2006). The 
earliest published references to HR at ecosystem 
scales come from Odum (1956, 1959), and subse-
quently other authors applied this term to terres-
trial ecosystems in a manner fully consistent with 
current usage (Kira and Shidei 1967, Woodwell 
and Whittaker 1968).

HR comprises a large and relatively uncertain 
component of ecosystem to global-scale carbon 
(C) cycles. In most terrestrial ecosystems, HR and 
net primary production (NPP) are the dominant 
fluxes determining the overall C balance; pub-
lished data range widely, but annual HR is gener-
ally 48–99% of NPP in published studies (Fig. 1), 
varying two orders of magnitude from 11  to 
1050  gC·m−2·yr−1 at the ecosystem scale. Global 
HR is generally estimated to be 51–57 Pg  C/yr 
(Potter and Klooster 1998, Bond-Lamberty and 
Thomson 2010c, Hashimoto et  al. 2015), a flux 
5–6 times larger than annual anthropogenic 
emissions (Le Quéré et  al. 2014). In general, 
regional- to global-scale HR has been correlated 
with mean annual temperature and precipitation 
(Wang et al. 2010). It is thus critical to understand 
how HR will respond to future climate chang-
es, as models suggest it will strongly influence 
the dynamics of the global C cycle and climate 
system (Friedlingstein et al. 2006).

The high uncertainty of terrestrial HR, at 
scales from the measurement chamber (<1  m2) 
to the global flux, comes from a number of 
sources. As a by-product of microbial growth 
and maintenance (Luo and Zhou 2006), HR is 
influenced by a wide variety of processes in-
cluding mortality (from individual parts to en-
tire populations killed by disturbance), grazing, 
and poorly understood soil stabilization mech-
anisms (Wynn et al. 2006, Harmon et al. 2011). 
In addition, partitioning the soil-to-atmosphere 
C flux, the dominant component of HR in most 
ecosystems, into its autotrophic and heterotro-
phic components has significant uncertainties 
for both methodological and biological reasons 
(Bond-Lamberty et  al. 2004, Baggs 2006, Ngao 
et al. 2007). This translates into high spatial and 

temporal heterogeneity in HR fluxes, and sig-
nificant uncertainty in upscaled estimates (Kim 
et al. 2010, Leon et al. 2014).

Unlike most other major C fluxes, HR cannot be 
directly measured at scales larger than a relatively 
small chamber. Thus, for any spatial domain larg-
er than roughly a square meter, it must be either 
computed as a residual (e.g., in eddy covariance 
estimates as the difference between net ecosys-
tem exchange and gross primary production, 
GPP), estimated from statistically upscaled point 
measurements, or derived using models with lit-
tle ecological or biological process-level fidelity 
(Schimel 2013). This results in severe spatial and 
temporal scale mismatches between in situ HR 
observations and HR estimates from global Earth 
System Models (ESMs), limiting model bench-
marking and analysis (Shao et al. 2013).

Ecosystem- to global-scale models, the latter 
including ESMs, generally simulate HR using rel-
atively simple, first-order kinetics, typically scal-
ing a base respiration rate by C pool size(s), soil 
temperature, and soil moisture. This semimecha-
nistic formulation implicitly incorporates micro-
bial physiology (Schimel 2013), and presumably 
future ESMs will include more explicit treatment 
of microbial dynamics (Wieder 2014). More so-
phisticated models such as DAMM (Davidson 
et  al. 2012) that combine Michaelis–Menten ki-
netics and classic Arrhenius functions are anoth-
er, promising way forward, but will depend on 
robust parameterizations that are spatially and 
temporally variable. Thus, there is a clear need 
for better, data-driven HR estimates at tower to 
pixel scales (i.e., larger than can be observed di-
rectly) to serve as an intermediate step between 
observations and future highly mechanistic mod-
els of, for example, soil physical heterogeneity 
and micro-organisms (Schmidt et al. 2011).

Decomposition Functional Types as an 
Intermediate Step

One intermediate step toward upscaling HR 
and better representing its underlying processes 
would be DFTs, “decomposition functional 
types” characterizing the behavior and sensi-
tivities of heterotrophic-derived C fluxes, in 
particular as related to C turnover time. This 
approach would build on a long history of 
PFTs (plant functional types) and EFTs 
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(ecosystem functional types) in ecological and 
Earth system modeling. PFTs have been used 
extensively (see references in Bonan and Levis 
2002) in both ecology and ecological modeling 
(Bormann and Likens 1979, Chapin et al. 1996), 
as an effort to simplify complex ecosystems 
into generalizable—and not incidentally, param-
eterizable—units. Efforts have also been made 
to define satellite-derived EFTs (Alcaraz-Segura 
et  al. 2013) characterizing regional patterns of 
ecosystem function based on the magnitude, 
variability, and timing of canopy primary pro-
duction. Both PFTs and EFTs can be highly 
correlated with functional characteristics at the 
ecosystem scale (Welp et  al. 2007, Kuiper et  al. 
2014) that are useful for, and highly relevant 
to, models.

Robust, clearly defined DFTs would be con-
ceptually analogous to PFTs and EFTs. Their 
goal would be to capture important differences 
in metabolism, dynamics, and abiotic response, 
particularly with respect to the integrated HR 

flux at the ecosystem (or larger) scale. DFTs 
would be complementary to PFTs and EFTs, 
but not necessarily correspond to their spa-
tial or functional distribution. In addition to 
predicting the mean of these properties, DFTs 
would ideally usefully predict distributions and/
or likelihoods, as well as how these properties 
vary in space and time. For example, the tem-
poral variability in turnover times might vary 
more in DFTs associated with forested regions, 
compared to those associated with grasslands, 
because stochastic disturbances greatly increase 
the amount of decomposing wood in the former 
ecosystems. Alternatively, DFTs might vary sig-
nificantly according to soil texture, such as san-
dy and clayey (Wynn et al. 2006, Haddix et al. 
2011), or soil mineralogy (Lawrence et al. 2015) 
because of differences in C stabilization mech-
anisms. Because we expect that DFTs will be 
affected by both plant and soil properties, we 
expect they will be spatially distinct from PFTs; 
this assumption is tested below.

Fig. 1. Summary of published studies of soil heterotrophic respiration (HR) relative to net primary production 
(NPP), by biome. Vertical dashed lines show median of 0.71 (black line, N = 165) and 25% and 75% quantiles 
(gray). Data from version 20150826a of a global soil respiration database (Bond-Lamberty and Thomson 2010a).
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Toward a Bottom-up Identification 
of DFTs

How would meaningful DFTs be derived or 
identified? A number of previous studies have 
found that objective, bottom-up (i.e., data-
driven) analyses produce results similar to those 
of subjective, top-down (i.e., expert opinion) 
ones (Díaz et al. 1992, Chapin et al. 1996). Initial 
top-down analyses based on expert opinion 
offer undeniable benefits in terms of hypothesis 
generation, motivating researchers to gather 
data necessary to test them. Nonetheless we 
suggest that the top-down option is poorly 
suited for identifying DFTs, given our relatively 
poor understanding of the highly variable soil 
processes and microsites controlling HR emis-
sions (Davidson et  al. 2014), compared to the 
depth of understanding for aboveground pro-
cesses in plants, for example. In addition, by 
their nature top-down expert analyses are sub-
jective, and thus neither reproducible nor well 
suited for drawing inferences from large vol-
umes of data.

In contrast, a robust, bottom-up analysis of HR 
dynamics would control for and elucidate many 
different factors to specify DFTs. This would help 
generate insights and hypotheses for field exper-
imentalists; be useful for up- and down-scaling 
data and model results; and ultimately provide a 
platform for model development and validation. 
Data-driven analyses are routinely used to gen-
erate hypotheses and identify unexpected rela-
tionships between driving variables and depen-
dent variables (e.g., Carvalhais et al. 2014), and 
a DFT analysis could quantify variance, identify 
representative sites for particular domains of in-
terest, and support model uncertainty quantifica-
tion for HR processes.

A critical question with respect to DFTs is 
what the object(s) of analysis would be, as this 
choice will affect our a priori selection of traits, 
approach or algorithm, and final data set struc-
ture and size. Potential candidates include car-
bon turnover rates (Carvalhais et  al. 2014); the 
relative contribution of HR sources (i.e., from 
mineral soil, organic matter, aboveground dead 
wood, or other); the relative influence of bacte-
ria and fungi on HR (Strickland and Rousk 2010, 
Waring et al. 2013); the balance between aerobic 
and anaerobic processes; the annual flux of HR 

to the atmosphere, and/or its ratio to NPP (Fig. 1) 
or detritus production (Noormets et  al. 2015); 
the temperature and moisture sensitivities (and 
thresholds) of HR fluxes; carbon use efficiency at 
a variety of scales (Eiler et al. 2003, Sinsabaugh 
et al. 2013, Li et al. 2014); and the temporal dy-
namics of HR processes (cf. Alcaraz-Segura et al. 
2013). These are all characteristics that can be ex-
pected to encapsulate the HR response to a wide 
range of abiotic drivers and biotic processes, and 
while they could be analyzed separately, an ideal 
analysis and classification would consider them 
all simultaneously.

Ancillary and/or independent variables in a 
DFT analysis could include a wide variety of 
field measurements, remote sensing observa-
tions, and a priori knowledge. For example, the 
dominant decomposers groups (Högberg and 
Read 2006); vegetation type and structure (part 
of PFTs), especially fine root data stored in data-
bases such as TRY (Kattge et al. 2011); depth of 
a wide variety of processes (e.g., rooting, thaw-
ing, wetting, root exudation) and soil properties 
(Hengl et  al. 2014); the expression of function-
al attributes related to soil taxon; stoichiometry 
constraints; vegetation phenology and season-
ality (a component of EFTs); temporal lags be-
tween organic matter inputs and HR fluxes; the 
diversity of active soil enzymes related to HR; 
atmospheric deposition rates of fertilizers and 
pollutants (Vet et al. 2014); short- and long-term 
climate drivers (e.g., Hijmans et al. 2005); distur-
bances (van der Werf et al. 2006, Harmon et al. 
2011); and management (Noormets et  al. 2015) 
and land-use history (Arevalo et  al. 2011). In 
addition, a growing body of research suggests 
that the presence of arbuscular mycorrhizae vs. 
ectomycorrhizae exerts both direct and indi-
rect effects on soil C cycling (Ekblad et al. 2013, 
Soudzilovskaia et  al. 2015) and ecosystem res-
piration (Vargas et al. 2010), spurring the devel-
opment of global databases of such properties. 
Recent high-resolution global soil data sets (e.g., 
Hengl et  al. 2014) would provide information 
about soil properties; soil order, in particular, 
might condense a great deal of information into 
a simple categorical variable. This (probably in-
complete) list of factors that might be useful in 
an HR upscaling analysis can be grouped into 
(1) data that are imperfect but straightforward 
to obtain at the global scale (e.g., climate, soils, 
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vegetation, land-use history data); and (2) data 
for which no or very limited global data sets cur-
rently exist (everything else).

A variety of algorithmic approaches could 
be used for such an analysis. Machine learn-
ing, for example, includes decision trees, neu-
ral networks, and Bayesian classifiers (Jordan 
and Mitchell 2015). These methods are typically 
robust to overfitting and correlated predictors, 
probabilistic (as opposed to deterministic), 
data-driven, and bottom-up: the algorithms 
know nothing about biology, for better and for 
worse, and generally start with minimal or no 
predefined model structures. Multivariate geo-
graphic clustering, used in the delineation of 
ecoregions (Hargrove and Hoffman 2004) and 
the design of the NEON network (Keller et  al. 
2008), offers another approach that might be 
well suited for identifying and assigning DFTs. 
For example, the k-means algorithm (Hartigan 
1975) equalizes the full multidimensional vari-
ance across clusters calculated from an arbitrary 
number of observation vectors (here, HR and 
its candidate predictors). It has the advantage 
of not depending on a single dependent vari-
able, and could thus optimize for a variety of 
HR-related characteristics simultaneously (see 
above).

Exploring Possible DFT Definitions: 
Methods and Results

To illustrate the possibilities of such an ap-
proach for delineating DFTs, we conducted a 
cluster analysis based on 11 global climatic, 
edaphic, modeled HR and GPP fluxes, and 
topographic characteristics. Figure  2 shows the 
five and 50 most-different land regions when 
considering all these variables simultaneously. 
Climate data consisted of decadal mean and 
standard deviations of temperature and pre-
cipitation from WorldClim (Hijmans et al. 2005). 
Edaphic variables included water holding ca-
pacity, bulk density, and carbon and nitrogen 
content in soils (Global Soil Data Task Group 
2000). Decadal mean annual fluxes of HR and 
GPP were obtained from a contemporary sim-
ulation of the Community Land Model version 
4.0 (CLM4.0) (Oleson et  al. 2010). A unitless 
compound topographic index (CTI), calculated 
from GTOPO30 (U.S. Geological Survey 1996), 
was also included in the analysis. These data 
were analyzed using a custom-developed scal-
able and parallel implementation of the k-means 
clustering algorithm on high-performance com-
puting systems (Hoffman et  al. 2008, Kumar 
et  al. 2011).

Fig. 2. Examples of clustering analysis for delineating decomposition functional types from 11 global climatic, 
edaphic, ecosystem carbon flux, and topographic characteristics. Randomly colored maps show the (a) five and 
(b) 50 most-different land regions according to simultaneous consideration of all 11 variables. The map in (c) is 
the same as the 50-region map, but is colored using the three dominant and orthogonal factors derived from PCA 
as shown in Table 1. Spatial resolution is 4 km2.

(a)
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At a coarse level of division, large and cohesive 
regions (Fig. 2a) emerge from the data and algo-
rithm: five broadly defined DFTs that include 
tropical and subtropical forested regions (green); 
deserts and mid-latitude savanna, grassland, and 
forest regions (yellow); high latitude and former-
ly glaciated regions (red); high latitude wetland 
or peatland areas (blue); and glaciers and inland 
lakes (cyan). A finer level of division, for example 
the 50 clusters shown in random colors in Fig. 2b, 
better resolves the differences among potential 
DFTs. Here, large deserts share a single DFT, 
with some heterogeneity apparent in the Sahara 
Desert and the Middle East. Forested high lati-
tudes in Alaska and Siberia share a DFT, which is 
distinct from those delineated for areas covered 
by boreal forests at upper mid-latitudes. With 50 
clusters, the DFT defined for the region of sub-
tropical forests in the southeastern United States 
is different from those co-located with tropical 
forests in South America and Africa, and most of 
the land area of the Indo-Pacific Islands shares a 
DFT with only the very densest tropical forests in 
the western Amazon Basin, where Peru, Colom-
bia, and Brazil meet.

To further investigate the relationships be-
tween the factors chosen for our initial cluster 
analysis, we performed a Principal Components 
Analysis (PCA) on the 11 variables for the 50 
cluster centroids. The first three principal compo-
nents (PCs) explained 78.2% of the total variance 
(Table  1). PC1 was dominated by precipitation, 
HR, GPP, and temperature; PC2 was dominated 

by soil nutrients and bulk density; and PC3 was 
dominated by soil properties and topography. 
For insight into the similarity of adjacent regions 
or DFTs, Fig. 2c shows to what degree each PC 
dominates the various regions of Fig. 2b. In this 
analysis, soil physical properties (in red) provide 
a background setting for most of the globe, cli-
mate and plant productivity (blue) are strong 
drivers of variance in the tropics, and substrate 
and soil nutrients (green) are large in high lati-
tude taiga and peatlands.

It is notable that DFTs do not simply overlap 
already-existing PFTs. Using the Mapcurves 
method (Hargrove et  al. 2006), we compared 
the prototype map of 50 DFTs (Fig. 2b) with the 
17-category global International Geosphere–
Biosphere Programme (IGBP) Land Cover Clas-
sification (Belward 1996), which is commonly 
used to inform the spatial distribution of PFTs 
for land surface models. Mapcurves provides a 
goodness-of-fit (GOF) score that indicates the 
degree of spatial correspondence between poly-
gons in two different maps. A map of those GOF 
scores, shown in Fig.  3, reveals that our pro-
spective DFTs have large spatial overlap (>20%) 
with IGBP land cover classes in glacial regions, 
and relatively high overlap in some tropical 
forests and deserts. However, the darkening 
gradient in other regions shows declining spa-
tial correspondence, supporting the idea that 
DFTs would offer a useful and complementary 
framework for segmenting decomposition and 
mineralization processes distinct from PFTs.

(b)

Fig. 2. Continued.



June 2016 v Volume 7(6) v Article e013807 v www.esajournals.org

INNOVATIVE VIEWPOINTS� BOND-LAMBERTY ET AL.﻿

In summary, clusters identified by a sim-
ilar analysis could form the basis for future 
DFTs, offering both a framework for upscaling 
measurements and a downscaling approach for 
integration of models and measurements (Hoff-
man et al. 2013). We emphasize that the results 
shown here draw only on modeled C fluxes; a 
more robust analysis would clearly depend 
heavily on observational data (Bond-Lamberty 
and Thomson 2010a, Wang et al. 2010).

Next Steps

We thus argue that a robust DFT analysis, and 
tentative DFT definitions, would be useful for 
both experimentalists and modelers. Such defi-
nitions would not be the final word, any more 

than Chapin et  al. (1996) was the final word in 
PFTs, but would provide testable hypotheses for 
a wide range of field, laboratory, and modeling 
experiments, and identify weaknesses (whether 
spatial, temporal, disciplinary, or something else) 
in existing data networks (e.g., Baldocchi 2014), 
and our understanding of ecosystem- to global-
scale C cycles.

For these reasons, we recommend extending the 
sample bottom-up analysis shown here (Fig.  2), 
aiming to produce a more robust definition of 
DFTs. Such analysis would make heavy use of ob-
servational databases of HR (Bond-Lamberty and 
Thomson 2010b, Wang et al. 2010, Hashimoto et al. 
2015) other greenhouse gas fluxes (Kim et al. 2010, 
Turetsky et al. 2014), and soil factors such as tex-
ture, horizonation, or mineralogy (see, e.g., http://

(c)

Fig. 2. Continued.

Table 1. A principal components analysis was used to convert the 11 climate, edaphic, carbon flux, and topo-
graphic variables from the 50 cluster centroids into linearly uncorrelated variables or principal components 
(PCs). As shown here, the first three PCs, explaining 78.2% of the total variance, were retained and assigned 
labels and colors—blue, green, and red, respectively—based upon the contributing variables that loaded more 
than 25% onto each PC.

Climate and plant productivity Substrate and nutrients Soil physical properties
Variable Percentage Variable Percentage Variable Percentage

PC1 35.4 PC2 26.0 PC3 16.8
Precipitation, mean 48.7 Soil carbon content 66.8 Water holding capacity 60.4
Precipitation, SD 46.7 Soil N content 62.6 Soil bulk density 59.3
Heterotrophic respiration 43.1 Soil bulk density 31.1 Compound topographic index −43.2
Gross primary production 42.9
Temperature, SD −30.6
Temperature, mean 26.4

http://iscn.fluxdata.org/
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iscn.fluxdata.org/). A number of ancillary data 
sources are discussed above; we note in particu-
lar the spatially explicit TRY (Kattge et  al. 2011) 
and Biomass and Allometry Database (BAAD, 
Falster et al. 2015) databases that might be useful-
ly mined for predictors. A notable weakness with 
this approach is that observationally based HR es-
timates are biased toward “fast-cycling” C pools 
(Epron et al. 2009, Carvalhais et al. 2014). Given 
the relative paucity of soil isotopic data, compar-
isons and experiments will need to be carefully 
designed to assess this level of bias and how DFTs 
might mitigate this problem. Techniques such as 
k-means clustering can be sensitive to initial con-
ditions, and careful testing and validation using 
techniques such as ensemble clustering (Jain 2010) 
will be necessary for robust DFT definitions.

Concurrently, a top-down initiative could hy-
pothesize how key driving variables influence 
DFT prediction properties, and estimate how 
many DFT clusters will likely exist based on our a 
priori knowledge. The spatial distribution of like-
ly driving variables could be used to create spatial 
predictions of DFTs, and these hypotheses could 
be tested locally. The results of these tests would 
be uploaded into a common database or repos-
itory (e.g., http://www.isric.org), available for 
testing and discussion of any hypothesized DFT 
classification (Fig. 4). We recognize that standard-
izing a data set structure would be challenging 

because HR-related information is heterogeneous 
in terms of the methods, corrections, and spatio-
temporal domains. DFT data sets will contrast 
with current simpler data set structures for PFTs 
and ECTs; the former tend to segment biota by 
leaf physiology and carbon allocation (Bonan and 
Levis 2002), and the latter by phenology and car-
bon gain dynamics (Alcaraz-Segura et al. 2013).

How would DFTs be tested and validated? The 
machine-learning and clustering methods dis-
cussed above provide statistics on their perfor-
mance, including against both the training data 
(used to build the model) and “out-of-bag” testing 
data (which are unknown to the model). Many oth-
er tests are possible: do the “borders” of clusters 
(DFTs) match up with known biotic and abiotic 
boundaries? How well do DFTs match PFTs, in-
dependent HR estimates (e.g., Hashimoto et  al. 
2015), total soil carbon (Hengl et al. 2014), and car-
bon turnover maps (Carvalhais et al. 2014)? Do the 
implied functional relationships make theoretical 
sense, and are they consistent with observations? 
Do they match field studies aimed specifically 
testing these hypotheses? Do DFTs significantly 
improve the performance of ecosystem to global-
scale models at predicting the mean and spatial 
and temporal variations in HR?

If DFTs prove conceptually solid, operation-
ally tractable, and effective in improving large-
scale HR predictions, modelers will want to 

Fig.  3. Goodness-of-fit scores from the Mapcurves method (see text), indicating the degree of spatial 
correspondence between the 50-region prototype DFT map (Fig. 2b) and IGBP land cover classes. Regions with 
very high overlap (>20%) are shown in red; below 20%, light colored regions have high overlap and dark regions 
have low correspondence.

http://iscn.fluxdata.org/
http://www.isric.org


June 2016 v Volume 7(6) v Article e013809 v www.esajournals.org

INNOVATIVE VIEWPOINTS� BOND-LAMBERTY ET AL.﻿

consider if, and how, they would be implement-
ed in ESMs. Given the large uncertainties asso-
ciated with global models’ HR outputs (Shao 
et al. 2013), we hope that this will be an attrac-
tive possibility for the ESM community. Many 
such models already support multiple levels of 
nested, overlapping units: in the Community 
Land Model, for example, multiple PFTs cur-
rently share a single soil column, with this entire 
structure nested within sub-grid-cell land units 
and then grid cells (Oleson et al. 2013). But how 
DFTs might be incorporated into this structure, 

with site data specifying one or more relevant 
DFTs; how they might fit with trait-based mod-
eling (Fisher et al. 2015) and other modeling ap-
proaches; and how they might be tested against 
simple microbial models (Wieder et al. 2013) are 
open questions.

Conclusions

In summary, we argue that the scientific 
community needs to synthesize, harmonize and 
incorporate relevant information to inform 

Fig. 4. Illustrative example of how a data-driven algorithmic approach to defining decomposition functional 
types (DFTs) could be combined with expert opinion and insight. The map is a subset of that generated by a 
machine-learning algorithm (cf. Fig. 2), while the boxed annotations represent (example) expert opinion about 
the algorithmic results. Properties include the average turnover rate; the HR/NPP ratio, indicating the percentage 
of NPP expected to be respired via HR vs. other processes; the sources of HR, listed in order of importance 
(L leafy litter; R dead roots; W wood; OS organic soil; and MS mineral soil); the estimated fraction of HR released 
as CO2 as opposed to methane; the primary heterotrophs in order of importance; the primary environmental 
limitation(s); temperature sensitivity expressed as increase per 10 °C at the mean annual temperature; strength 
of the moisture hysteresis; and depth that HR occurs with minus values below the soil surface and positive 
values above it.
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next-generation global models in order to reduce 
the uncertainty in regional to global quantifi-
cation and forecasting of HR. We have suggested 
a first approach that could encapsulate infor-
mation relevant to HR as DFTs, as well as 
next steps and priorities, including collection 
and synthesis of existing data; more in-depth 
analyses combining open data with rigorous 
testing of analytical results; using point mea-
surements and realistic forcing variables to 
constrain process-based models; and planning 
by the global modeling community for decou-
pling decomposition from fixed site data.
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