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Rationale 
 

This letter details the collective views of a number of independent researchers on the technical 
assessment and evaluation of environmental models and software. The purpose is to stimulate 
debate and initiate action that leads to an improved quality of model development and evalua-
tion, so increasing the capacity for models to have positive outcomes from their use. As such, we 
emphasise the relationship between the model evaluation process and credibility with stake-
holders (including funding agencies) with a view to ensure continued support for modelling ef-
forts. 

Many journals, including EM&S, publish the 
results of environmental modelling studies 
and must judge the work and the submitted 
papers based solely on the material that the 
authors have chosen to present and on how 
they present it. There is considerable varia-
tion in how this is done with the conse-
quent risk of considerable variation in the 
quality and usefulness of the resulting pub-
lication. Part of the problem is that the re-
view process is reactive, responding to the 
submitted manuscript. In this letter, we at-
tempt to be proactive and give guidelines 
for researchers, authors and reviewers as to 
what constitutes best practice in presenting 
environmental modelling results. This is a 
unique contribution to the organisation and 
practice of model-based research and the 
communication of its results that will bene-
fit the entire environmental modelling 
community. For a start, our view is that the 
community of environmental modellers 

should have a common vision of minimum 
standards that an environmental model 
must meet. A common vision of what a 
good model should be is expressed in vari-
ous guidelines on Good Modelling Practice. 
The guidelines prompt modellers to codify 
their practice and to be more rigorous in 
their model testing. Our statement within 
this letter deals with another aspect of the 
issue - it prompts professional journals to 
codify the peer-review process. Introducing 
a more formalized approach to peer-review 
may discourage reviewers from accepting 
invitations to review given the additional 
time and labour requirements. The burden 
of proving model credibility is thus shifted 
to the authors. Here we discuss how to re-
duce this burden by selecting realistic eval-
uation criteria and conclude by advocating 
the use of standardized evaluation tools as 
this is a key issue that needs to be tackled. 
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Background 
 

The use of models for any practical purpose 
entails the risk of misuse. If a model’s limi-
tations are not completely understood, the 
model outputs may be easily misinterpreted 
(Jakeman et al., 2009). To reduce this risk, 
every model should be assessed and eva-
luated by domain experts - that is, by mod-
ellers experienced in model development 
and application. 

Such assessment and evaluation is normally 
undertaken when an article describing a 
model (or software) passes through a peer-
review system of a professional journal (Fig 
1) such as EM&S, for example. Most expe-
rienced modellers are involved in the peer-
review process and periodically evaluate 
models made by their colleagues. There-
fore, the community of environmental 
modellers needs to have a common vision 
of minimum standards that an environmen-
tal model must meet. 

A common vision of what a good model is 
has been expressed in guidelines on Good 
Modelling Practice (STOWA/RIZA, 1999; 
Murray-Darling Basin Commission, 2000; 
Jakeman et al., 2006; Gaber et al., 2008; 
Robson et al., 2008; Welsh, 2008). The 
guidelines prompt modellers to codify their 
practice and to be more rigorous in their 
model testing. The purpose of this letter is 
to deal with another aspect of the issue: 
that of prompting professional journals to 
codify the peer-review process. The objec-
tive is to highlight the obstacles to model 
evaluation and to provide possible solu-
tions. This is not however a review on the 
state of model evaluation, the latter being 

given in a recent paper by Bellocchi et al. 
(2010). Rather we seek to promote im-
provement within the quality of model 
evaluation as part of the peer-review 
process. In doing so, we have also hig-
hlighted issues that potential reviewers 
need to be aware of. 

Peer review is normally considered as an 
essential component of research dissemina-
tion and remains the principal mechanism 
by which the quality of research is judged 
(Council of Science Editors, 2006; Müller, 
2009). At the same time, there is common 
understanding that peer-review cannot be 
expected to detect fraud and ensure perfec-
tion (Hames, 2007): “even the most-
respected journals have been caught out 
and, despite extensive peer review, have 
ended up publishing fraudulent or seriously 
flawed material” (Wager, 2006).  Then, 
what is the main purpose of peer-review? 
There is no general agreement on this issue 
now. One may suggest that the peer-review 
system initially introduced for filtering out 
unreasonable claims to new research re-
sults still serves this purpose (Walker, 1998; 
Alexandrov, 2006). 

 In the case of complex models, it is likely 
the process will result in reviews not eva-
luating the components of the model (espe-
cially if referenced to other sources), on the 
defence that journal readers and end users 
who are specialists on those components 
will make their own judgments. In reality, 
reviewers will not have sufficient time or 
resources to conduct detailed evaluation of 
individual components or the whole model 
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let alone the software coding. Hence, the 
emphasis must be on model developers to 
provide accurate evidence, covering suffi-
cient complexity interactions, to demon-
strate adequate testing to achieve a stated 
level of model reliability and utility. We feel 
this requires clearer statements (supported 
by evidence) from the model developers on 
known limitations and areas of uncertainty. 
Such an open approach should, if communi-
cated correctly, i.e. positively through ad-
dressing the consequences of any uncer-
tainty, actually increase credibility with end 
users rather than diminish it. This is impor-
tant as perceptions of uncertainty and how 
it is handled amongst researchers, policy 
makers and politicians have changed re-
cently, especially since the rise of climate 
change modelling and planning for adapta-
tion. Previously end users (particularly poli-

cy makers and politicians) were reluctant to 
deal with the realities of the uncertainty 
associated with modelling. Reduction of 
uncertainties in the models may be pursued 
by, for instance, model-data integration 
techniques (e.g. Wang et al., 2009). Howev-
er, it is clear that the skill in handling uncer-
tainty not only lies within statistical and 
other forms of model testing, but also in 
how it is communicated to end users. 
Hence, our view that the establishment of a 
standardized set of criteria and methods for 
model evaluation is needed to set a mini-
mum standard for 'proof of testing' that 
would serve to support uncertainty com-
munication. The absence of such standar-
dized criteria and methods risk modelling 
becoming unacceptable as a form of re-
search for predictive purposes. 

 

The major obstacles to a more formalized approach to model eval-
uation 
 

Currently there is no requirement to detail 
a full set of model specifications. The first 
task in standardization therefore would be 
to have a scheme whereby published mod-
els could be fully specified (Fig 2). Depend-
ing on the rationale for the research exer-
cise, modelling for theoretical scientific 
purposes and modelling for decision-making 
may follow separate paths (Haag and Kau-
penjohann, 2001) and hence require differ-
ent specifications for assessment and eval-
uation. In general, this would require a de-
finition of the modelling objective, its for-
mulation, implementation and parameteri-
zation, further supplemented by informa-

tion on how they have been evaluated and 
the conclusions of that process. 

A standardized set of criteria with which 
models should be assessed and evaluated 
will at least ensure the minimum of review 
effort is made. The risk, however, is that a 
more formalized approach to peer review 
requiring the achievement of a minimum 
standard may discourage reviewers from 
accepting invitations to review given the 
additional time and labour requirements. 
Further to this, a limitation of past model 
development and application has been that 
funding organizations have been reluctant 
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to accept the additional costs of performing 
appropriate model assessment and evalua-
tion within proposals from researchers. 
Hence, model development has often been 
on tight budgets causing assessment and 
evaluation to take a lower priority. Specifi-
cation of minimum standards for assess-
ment and evaluation and how it is reported 
should hence also form the basis for the 
minimum level of validation effort written 
into funding proposals. Similarly, organiza-
tions awarding grants need to include in 
their calls for proposals more explicit details 
on the requirements for evaluation and 
testing and be prepared to provide the re-
quired funds. 

This implies that funding organizations have 
to take on board a greater level of respon-
sibility in supporting modelling work that 
includes increased assessment and evalua-
tion efforts. Funders could effectively im-
pose minimum standards for model devel-
opment, evaluation and specification, and 
progress could be made in this area if ‘lead’ 
funders introduced such requirements. For 
example, in the United Kingdom context if 
the national research councils were to in-
troduce minimum standards other funders 
would follow in time. 

A further obstacle to overcome lies within 
the community of environmental modellers 
itself, which has to take on board a greater 
level of responsibility in developing stan-
dards. The procedures to perform the eval-
uation task are not widely accepted (Cheng 
et al., 1991) and appear in several forms, 
depending on data availability, system cha-
racteristics and researchers’ opinion (Hsu et 
al., 1999). Environmental models are made 
up of mixtures of rate equations, comprise 

approaches with different levels of empiric-
ism, aim at simulating systems which show 
non-linear behaviour and often require nu-
merical rather than analytical solutions. 
Therefore, the computer program, including 
technical issues and possible errors, is 
tested rather than the mathematical model 
representing the system (Leffelaar et al., 
2003). Hence, given the applied nature of 
models in representing a system, their use-
fulness can be evaluated only in specific 
case studies. Gardner and Urban (2003) 
suggested assessing model usefulness 
based on its appropriateness and perfor-
mance. Model appropriateness describes 
the extent to which the model meets the 
objectives of the study. The appropriate-
ness usually deals with the model structure, 
although the necessity to identify model 
parameters brings observation data into the 
scene (e.g. Confalonieri et al., 2009b). The 
availability or unavailability of observational 
data largely predetermines the structure of 
a model. Model performance is evaluated 
based on reported testing results in such 
terms as “goodness of fit” between simu-
lated values of model variables and obser-
vation data and required computational 
time. Our observation is that quantification 
of uncertainty is less often reported. 

Evaluation of model uncertainty is an im-
portant part of model assessment, yet ap-
plication specific since it depends on model 
parameterization. On different sets of pa-
rameter values, the same mathematical 
equations may exhibit substantially differ-
ent dynamic features. Thus, in dynamic 
models, changes in model parameters can 
trigger a switch from stable solution to an 
unstable one, causing a significant increase 
in model uncertainty (e.g. van Nes and 
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Scheffer, 2003). Stability analysis of a solu-
tion must be a part of model investigation, 
but the analysis may become complicated 
for complex models, and has therefore not 
often been undertaken. 

However, we recognise that a complete 
evaluation of model uncertainty is hardly 
possible. Usually, the analysis is confined to 
quantifiable sources, such as initial values of 
state variables and parameters. Indeed as 
pointed out by Harremoës (2003) not all 
uncertainty sources can be ‘quantified’, and 
that the fraction of uncertainty source 
terms being ‘ignored’ might be high in envi-
ronmental investigations. The investigation 
of the model structural uncertainty is un-
common. Even if an estimate of uncertainty 
is obtained, its interpretation is not 
straightforward.  Further, high uncertainty 
can be also a result of lack of knowledge 
about some processes that are not com-
pletely understood (among others, Willems, 
2008; Freni et al., 2009a; Mannina and Vi-
viani, 2010). The term ‘high uncertainty’ is 
ambiguous and was defined rather intui-
tively. Reichert and Borsuk (2005) consi-
dered the uncertainty as ‘high’ when the 
width of predicted distribution of model 
solutions is larger than the difference be-
tween expected outcomes of different si-
mulated alternatives. Strictly speaking, an 
absolute value of the uncertainty is not im-
portant as long as simulations allow for a 
clear distinction between considered scena-
rios and for comparison of projected out-
comes against some known objectives. In 
other words, the interpretation of model 
uncertainty is also application dependent. 
Codifying the testing process by the model 

authors will establish an uncertainty range 
of at least one application case. 

It is often stated that a clear understanding 
of the model’s purpose is central to its 
evaluation. In other words, it should be ‘fit 
for purpose’. In fact the use of this phrase 
can be helpful, as it places the purpose ‘up 
front’ and emphasizes that generally per-
fection is not sought, merely the fitness for 
the given purpose. It is important to distin-
guish between cases where the purpose is 
prediction to underpin a decision-making 
process, and those cases where the model 
serves as a test bed for scientific hypothes-
es (even though the same underlying model 
may be used in both situations). In the deci-
sion support case, the accuracy of the pre-
dictions for the given purpose is important, 
as are other factors such as the input data 
requirements, the safe operating domain of 
the model and stakeholders’ acceptance of 
the model. In the scientific method case, 
the evaluation generally needs to be more 
sophisticated. It is not enough to confirm 
the hypotheses contained in the model 
based on the agreement between predic-
tions and observations. A further test is re-
quired to rule out the possibility that alter-
native model formulations (i.e. different 
hypotheses) could also have described the 
observations available. This relates to the 
‘equifinality’ thesis of Beven and Freer (Be-
ven and Freer, 2001; Beven, 2006) and the 
issue of choices in model formulation (e.g. 
Cox et al., 2006; Crout et al., 2009), that 
generally lead to identifiability issues 
(among others, Brun et al., 2001; Freni et 
al., 2009b-2010). 
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The solutions: realistic criteria for model evaluation 
 

Since the range of modelling situations is 
wide, we recognise that generally applica-
ble standards can be formulated only in a 
generic form. They form a framework for 
model evaluation leaving the details of a 
particular implementation, such as quantifi-
cation of criteria, up to the reviewers. Start-
ing with the technical assessment of a mod-
el, we suggest reviewers first answer the 
questions below and evaluate the develop-
ers’ claim on the usefulness of an environ-
mental model: 

• Do developers delineate the do-
main of model application? 

• Do they highlight advanced model 
features against the prior art? 

• Do they provide an example of 
model application illustrating model 
performance? 

Then, they may proceed to assessment of 
the “proofs” of model usability, which are 
expected to show that: 

• The domain of model application is 
delineated correctly; 

• The model has certain advantages 
over a prior art; 

• The example of model application 
shows credibility of the model as a 
tool for environmental assessment. 

In the next sections, we expand our views 
on the above points. 

How to delineate the domain of 
model application 
An environmental model is normally devel-
oped using a four-tier approach: conceptual 
scheme, model formulation, computer 
code, and specific parameterization. Conse-
quently, delineating the domain of its appli-
cability one should clearly make a distinc-
tion between applicability of each tier. A 
conceptual scheme may be applied over a 
large range of environmental states, whe-
reas its specific parameterization may be 
intended for use under very restrictive con-
ditions. In addition, the model code may be 
suitable for use only within a certain range 
of model parameters and inputs. 

The four-tier description of model domain 
should answer the following questions:  

• Which environmental states may 
fall within the conceptual scope of 
the model? 

• Which environmental states may be 
assessed (or explored) using the 
current version of a model in ques-
tion or its computer code? 

• Which environmental states may be 
assessed (or explored) using a spe-
cific parameterization of the mod-
el? 

The conceptual scheme of a model is de-
rived from the model developer’s percep-
tual model of the real system at hand. The 
perceptual model is known to be an approx-
imation (to a greater or lesser extent). 
Moreover, it is common to have a range of 
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scientific opinions regarding the best repre-
sentation of the perceptual model. Never-
theless, it is always possible to make the 
distinction between environmental condi-
tions that may fall within the conceptual 
scope of the model and those that may not. 
For example, if the conceptual scheme of a 
model does not address some environmen-
tal factors, the model may not assess the 
environmental impact of this factor. 

In general, the correct description of the 
model domain must guarantee that the 
model will not produce results that go 
beyond empirically (or theoretically) estab-
lished bounds. A related part of the tech-
nical assessment is to find the “regions” of 
the declared model domain, where the 
model produces obviously erroneous re-
sults, or confirm that no such “regions” 
were found. The latter helps to evaluate 
model reliability defined by Mankin et al. 
(1975). 

How to show that a model has an 
advantage over the prior art 
The purpose of developing a new model is 
to make visible progress in the state-of-the-
art (Jørgensen et al., 2006). This can be 
done in different ways. The simplest of 
them is improving either the conceptual 
scheme or computer code of a prior model. 
In this case, the advantage over the prior 
art may be highlighted by providing some 
proof that: 

• The model addresses environmen-
tal situations that do not fall within 
the scope of the prior model(s); 

or that: 

• The model code is more efficient 
than that of the prior model(s) (e.g., 
needs less initial information) in 
addressing some environmental 
situations; 

or that: 

• The specific parameterization of the 
model shows better performance 
than that of the prior model(s) in 
addressing specific environmental 
conditions. 

In the well-developed fields of environmen-
tal modelling, the multi-model approach is 
considered to be more reasonable than the 
best-model approach. Multi-model combi-
nations outperform best models. In other 
words, the progress in the state-of-the-art 
is achieved through improving performance 
of a multi-model ensemble. 

The examples of testing in such cases in-
clude multi-model analysis (MMA) for de-
veloping multiple plausible models by con-
sidering alternative processes, using alter-
native modelling codes, or by defining al-
ternative boundary conditions (Pachepsky 
et al., 2006). Quantitative MMA methods 
assign performance scores to each candi-
date model (e.g. Burnham and Anderson, 
2002; Ye et al., 2008). The scores are uti-
lized to rank and select the best models or 
to assign importance weights (e.g., for use 
in an ensemble forecasting). Qualitative 
MMA methods can also rely on expert elici-
tation, stakeholder involvement, and quali-
ty assurance/quality control procedures to 
assess relative merits of alternative models 
(Funtowicz and Ravetz, 1990; van der Slujis, 
2007). 
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Improving the mathematical formulation of 
a given conceptual scheme is also a way for 
improving the state-of-the art. The selec-
tion of a suitable formulation relates to 
model comparisons that cannot be fully ‘au-
tomated’ or formalized due to a confound-
ing effect. Confounding appears when two 
or more factors cause a combined measur-
able effect and the contribution of each 
individual factor cannot be estimated sepa-
rately. Thus, a particular value of a model 
parameter depends not only on the corres-
ponding state variable and processes in-
cluded in the model, but also on a given 
formula used to describe each process. The 
majority of environmental models require a 
number of parameters that must be identi-
fied for a given case study. In such a case, 
the comparison of different models be-
comes dubious because it is hard to diffe-
rentiate (in the overall model uncertainty) 
the effect created by model structure from 
the effect generated by the assigned values 
of model parameters. 

Moreover, even a small change in a sub-
model introduced to correct its functionali-
ty may produce a different interpretation 
on simulated processes. The reason for 
these unwanted changes lies in the lack of 
independence/wrong dependencies of 
parts of the code, which is not completely 
avoidable. This aspect might go beyond a 
simple evaluation by once again comparing 
against previously acceptable results (Huth 
and Holzworth, 2005) and poses the need 
for formal model evaluation against ob-
served data at each published stage of 
model development (van Oijen, 2002). Each 
version of a model, throughout its devel-
opment life cycle, should be subjected to 

output testing, designed by identifying test 
scenarios, test cases, and/or test data. 

How to show model credibility 
The establishment of credibility is a prere-
quisite for model acceptance and use.  Cre-
dibility is in itself a complex issue extending 
beyond just model testing (e.g authenticity 
of problem ownership, skills and motivation 
of the research team developing a model, 
etc.). Model evaluation is, however, the key 
starting point for establishing credibility. 
Hence, a strengthened peer review proce-
dure will have an essential role in the credi-
bility building process. However, model 
evaluation must not be seen as a one-off 
event or a “once-and-for-all” activity (Jans-
sen and Heuberger, 1995), but as an on-
going process to check for model compati-
bility to current evidence and variations 
(e.g. in spatial, climatic and hydrological 
conditions). Moreover, according to Sinclair 
and Seligman (2000), demonstration that a 
models’ output more or less fits a set of 
data is a necessary but not sufficient indica-
tion of validity. This is because model validi-
ty is rather the capability to analyze, clarify, 
and solve empirical and conceptual prob-
lems. Empirical problems in a domain are, in 
general, about the observable world in 
need of explanation because a model does 
not adequately solve it, rival models solve it 
in different ways, or it is solved/unsolved 
depending on the model. Conceptual prob-
lems arise when the concepts within a 
model appear to be logically inconsistent, 
vague and unclear, or circularly defined, 
and when the definition of some phenome-
non in a model is hard to harmonize with an 
ordinary language or definition (e.g. Parker, 
2001). This raises the issue of widening 
beyond numerical testing by also including 
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stakeholders’ evaluation and expert inter-
pretation through soft systems approaches 
(Bellocchi et al., 2002; Matthews et al., 
2008). For example, non-scientific end users 
may be more persuaded of model validity 
by graphical representations than statistical 
tests or indices, especially where historical 
events or familiar phenomena are shown 
and are recognizable by them. 

Thus, to evaluate a model as a credible one, 
a reviewer should confirm at least that: 

• Its conceptual scheme is theoreti-
cally adequate to the declared do-
main of applicability; 

• Its computer code is verifiable; 

• The accuracy of its specific parame-
terization is consistent with in-
tended usage. 

Adequacy and prediction 
The model adequacy cannot be assessed 
regardless of the domain of its applicability 
(Rykiel, 1996). The context within which 
models are used affects the required func-
tionality and/or accuracy (French and Gel-
dermann, 2005). This is particularly appar-
ent when comparing models developed to 
represent the same process at different 
scales and for which different qualities of 
input, parameterization and validation data 
will be available, for example soil water bal-
ances at plot, farm, catchment and region 
(e.g. Keating at al., 2002; Vischel et al., 
2007). This has led to the development of 
application specific testing of models and 
the idea of model benchmarking, by com-
paring simulation outputs with outputs of 
another simulation that is accepted as a 
“standard” (e.g. Vanclay, 1994). Such ap-

proaches typically use multi-criteria as-
sessment (e.g. Reynolds and Ford, 1999) 
with performance criteria weighted by us-
ers depending on their relative importance. 

Such indications of adequacy are essential 
in relation to the use of models for future 
predictive purposes. Papers on modelling 
often state that they aim to produce an in-
strument for prediction (van Oijen, 2002). A 
fundamental issue is to quantify the degree 
to which a model captures an underlying 
reality and predicts future cases (Marcus 
and Elias, 1998; Li et al., 2003). Predictions 
pose special problems for testing, especially 
if prediction focuses on events in the far 
future. Predictive models can be accepted if 
they explain past events (ex-post valida-
tion). The probability of making reasonable 
projections decreases with the length of 
time looked forward. A continuous ex-
change of validation data among develop-
ers and test teams should either ensure a 
progressive validation of the models by 
time, or highlights the need for updated 
interpretations of the changed system. 

In many cases, predictive models are mixed 
with exploratory models. The distinction 
between them can be drawn on the basis of 
data availability. Predictive models are 
normally used in connection with an ob-
serving system established for environmen-
tal monitoring. Exploratory models, in con-
trast, are normally used where observations 
are limited. Therefore, testing methods 
need to be appropriate for each case, in 
order to demonstrate adequacy for each 
purpose. 

Code verifiability 
Computer code is a translation of mathe-
matical clauses from the mathematical lan-
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guage to a computer language. The one-to-
one correspondence is not always achieved. 
There is some consensus (after Glasow and 
Pace, 1999) that component-based devel-
opment is indeed an effective and afforda-
ble way of creating model applications and 
conducting model evaluation. 

In such a case, it is our view that particular 
emphasis should be placed on designing 
and coding object-oriented simulation 
models to properly transfer simulation con-
trol between entities, resources and system 
controllers and on techniques for obtaining 
a correspondence between simulation code 
and system behaviour. It is crucial to con-
sider the issue of model component validity 
when considering model re-use as it needs 
to be a fundamental part of any re-use 
strategy. 

The distribution of already validated model 
components (mathematical and coded algo-
rithms) can substantially decrease the mod-
el validation effort when re-used. A key step 
in this direction is the coupling between 
model components and evaluation tech-
niques, the latter also being implemented 
into component-based software. Such eval-
uation systems should stand at the core of a 
general framework where the modelling 
system (i.e. a set of modelling components) 
and a data provider supply inputs to an 
evaluation tool (e.g. Bellocchi et al., 2006). 
Such an evaluation tool is also meant as a 
component-based system, both communi-
cating with the modelling component and 
the data provider via a suitable protocol 
and allowing the user to interact in some 
way (e.g. via a graphical user interface) to 
choose and parameterize the evaluation 
tools. 

The output from an evaluation system can 
be offered to a deliberative process (e.g. 
stakeholder review) for interpretation of 
results. Adjustments in the modelling sys-
tem or critical reviewing of data used to 
evaluate the model can be a next stage, if 
the results are assessed as unsatisfactory 
for the application purpose. A new evalua-
tion-interpretation cycle can be run any 
time new versions of the modelling system 
are developed and plugged in to the evalua-
tion component. Again, a well-designed, 
component-based evaluation system can be 
easily extended towards including further 
evaluation approaches to keep up with 
evolving methodologies, e.g. statistical, 
neural networks or fuzzy-based (e.g. Belloc-
chi et al., 2008). Hence, further purpose of 
this letter is to stimulate debate on the pos-
itive and negative aspects of rigid model 
structures or component-based ones, and 
how the review process can best evaluate 
them. 

Reliability 
Model reliability cannot be assessed regard-
less of a presumed range of accuracy. A 
specific parameterization of a model can be 
considered as reliable, if it produces results 
that fall within a well-defined range of accu-
racy. In the case of a predictive model, the 
range of accuracy can be defined statistical-
ly, proceeding from tests against observa-
tions. In the case of an exploratory model, 
the range of accuracy may be defined 
through sensitivity analysis, assuming that 
inaccuracy results from uncertainty in the 
values of model parameters (e.g. Confalo-
nieri et al., 2010). 

Reliability is also a key aspect of credibility, 
where measures are influenced by the abili-
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ty to establish reliability with available past 
observations. It cannot be assumed, how-
ever, that statistical (or any numerical) 
analysis is all that is required for model 
outputs to be accepted particularly when 
models are used with and for stakeholders. 
The numerical analysis provides credibility 
within the techno-scientific research com-
munity yet, while necessary; this may be 
insufficient to achieve credibility with deci-
sion makers and other stakeholders. Possi-
bly a real test of model validity is whether 
stakeholders have sufficient confidence in 
the model to use it as the basis for making 
management decisions (Vanclay and Skovs-
gaard, 1997). 

Reliability can also be interpreted as versa-
tility of the model, that is, how well does 
the model perform in situations for which it 
was not originally designed, or respond to 
extreme conditions beyond that which cali-
bration data represent? Sometimes, it is 
characterized by a ratio of the real word 
observed data described by the model out-
puts (Mankin et al., 1975). The assessment 
of model versatility is based on the qualita-
tive analysis of model structure (i.e. ma-
thematical expressions) and potential re-
sults the model in question can generate. In 
many cases, only qualitative assessment can 
lead to subjective conclusions. The quantifi-
cation of the concept is difficult or hardly 
possible due to limited observation data 
that is insufficient to understand environ-
mental behaviour, model complexity limit-
ing evaluation of possible model outcomes, 
and uncertainty in modelling results. 

How to legitimate model usage 
For well-developed environmental applica-
tions, model evaluation and selection tech-

niques are heavily influential and can be 
used to build scientific and perceived credi-
bility. However, establishing credibility is 
not straightforward for larger-scale envi-
ronmental applications with many sources 
of uncertainty, decision-makers with differ-
ent interests, and plausible future states 
that can be markedly different from ob-
served past states. In these cases, credibility 
can be influenced by subjective measures 
and contingencies in the decision-making 
process (e.g., Aumann, 2008). 

Establishing model credibility with end us-
ers / stakeholders can be problematic since 
they may have preconceived, and some-
times immovable, conceptions (Carberry et 
al., 2002). The task then falls on the model 
developers to show sufficient evidence in a 
form understandable by the end user to 
persuade them to challenge their beliefs 
and to consider alternatives. 

Given the number of potential outcomes 
and stakeholders involved, more inclusive 
modelling approaches such as multiple 
model and ensemble forecasting approach-
es can be useful for establishing credibility. 
In particular, approaches that allow for mul-
tiple model inference where differing mod-
els and perspectives are not excluded (e.g., 
Min and Hense 2006). Instead, different 
models are weighted and synthesized using 
quantitative criteria such as statistical sup-
port. This is important in determining quan-
titative reliability and model evaluation 
(Burnham and Anderson, 2002), but can 
also assist with qualitative aspects of credi-
bility when models are used to inform a 
contentious decision process. The resulting 
consideration of multiple models serves as 
a proxy for including different scientific and 
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subjective views of how environmental sys-
tems function and the resulting ensemble 
forecasts are considered to be more broad-
ly representative of the perspectives of the 
decision-making participants. 

Our view is that the key to successfully legi-
timating model usage is making model out-
puts be seen by stakeholders as relevant to 
their decision making process. Legitimacy of 
model usage can be seriously compromised 
when research outputs refer to geographic, 
temporal, or organizational scales that do 
not match those of decision-making. Hence, 
though adequate assessment and evalua-
tion of a model in one location may be 
shown, acceptance by stakeholders may be 
limited when applied where testing has not 
been conducted. 

Where models are used for decision sup-
port or evidence based reasoning, credibili-
ty is a complex mix of social, technological 
and mathematical aspects that require de-
velopers to include social networking (be-
tween developers, researchers and end us-
ers / stakeholders) to determine model ra-
tionale, aim, structure etc., and importantly 
a sense of co-ownership. Again, evidence of 
testing and results from a standardised 
peer-review procedure aids dialogue with 
stakeholders, as the researchers applying 
the models can demonstrate independent 
testing. 

In this respect, a key component to credibil-
ity building is that a model should make 
available all the key management options 
that the decision maker considers impor-
tant and should to an acceptable degree 
respond to management interventions in a 
way that matches with the decision maker’s 
experience of the real system. In terms of 

models of natural processes, management 
can be substituted with alternatives, such 
as external shocks and/or perturbations to 
the drivers of the system. 

Using the ‘see-saw’ analogy, where envi-
ronmental models’ estimates are used in 
contentious issues, credibility becomes the 
focal balance point around which opposing 
parties construct their arguments. Hence, 
credible models can serve to unite opposing 
parties, rather than serve to allow them to 
argue at increasing distance from each oth-
er’s viewpoints and expertises. For such 
cases, subjective decisions on the selection 
and assessment of evidence may be as im-
portant as the accuracy of the measure-
ment or forecasting of a particular pheno-
menon (Matthews et al., 2008). 

Lack of transparency is frequently cited as 
the reason for the failure of model based 
approaches. It is important to challenge 
some of the assumptions and conclusions 
that are drawn on how to respond to the 
issue of transparency. One response is to 
make models simpler and hence the argu-
ment becomes easier to understand. Yet 
while simplicity is in itself desirable (Rau-
pach and Finnigan, 1988) and the operation 
of simpler models may indeed be easier to 
understand, it may well be that the inter-
pretation of their outputs is no simpler and 
indeed their simplicity may mean that they 
lack the capability to provide secondary da-
ta which can ease the process of interpreta-
tion. There is also a trade-off between sim-
plicity and flexibility and this flexibility may 
be a crucial factor in allowing the tools to 
be relevant for counter-factual analyses. 
The current best practice for balancing sim-
plicity and flexibility within the model de-
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velopment process seems to be the reusa-
ble component approach combined with a 
flexible model integration / evaluation envi-
ronment. A set of standards applied within 
the peer review procedure therefore needs 
to address the issues of simple versus com-
plex models and so look beyond the numer-
ical testing and consider the flexibility of the 
model, ability of it to shed new light on an 
environmental issue, and aid the process of 
interpretation. 

A constraint to both scientific credibility and 
transparency of models is the necessarily 
inherent inter-dependency of the modelled 
processes. A ‘fault’ in a model may be diffi-
cult to locate as many other related mod-
elled processes confound it. Similarly, an 
effective modelled description of a specific 
sub-process may not be readily identified 

due to its dependence on less than satisfac-
tory descriptions of other system features. 
Ranges of sensitivity and uncertainty ana-
lyses have been deployed to address this 
issue, although the results are not always 
easy to interpret in terms of the original 
model formulation. Comparison of alterna-
tive model formulations can provide useful 
information in this context (e.g. Confalonie-
ri et al., 2009a) but still suffers from the 
difficulty of disentangling inter-
dependencies in the model. Crout et al. 
(2009) have proposed simple model reduc-
tion methods based on the approach of Cox 
et al (2006) which systematically explored 
the role of individual model variables on the 
models’ predictive performance. This pro-
cedure frequently locates variables whose 
formulation has a detrimental effect on 
model performance. 

 

The way forward: standardized evaluation tools 
 

Based on the above views and highlighting 
of issues, we now explore options for future 
model evaluation. Turning back to the fact 
that model developers are normally lacking 
resources for adequate model evaluation, 
we conclude that introducing a more for-
malized set of evaluation criteria demands a 
standardised set of evaluation tools. 

Identifying the prior art 
It is common to believe that the total 
amount of environmental models is huge 
and that they cover almost all environmen-
tal situations. Nevertheless, the recent re-
view of models used by the European Envi-
ronment Agency in its recent environmental 

assessments and reports identified gaps in 
the availability, accessibility and applicabili-
ty of current modelling tools (EEA, 2008). 
Indeed, journal articles reporting modelling 
efforts normally focus on the scientific in-
terpretation of the findings, not on model 
documentation. There is no guarantee that 
a model, on which a published article sev-
eral years ago, is still readily available or 
even existing in any form that makes it 
possible to reproduce reported results. Can 
we therefore consider models that are not 
readily and completely available as the prior 
art? Scientific etiquette suggests that model 
documentations must be conveniently ac-
cessible, complete and mutually compara-
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ble (Benz and Knorrenschild, 1997; Voinov 
et al., 2009). We therefore suggest a regis-
ter of models that can be considered as the 
prior art is needed for the technical assess-
ment and evaluation of newly developed 
models. 

Developing a comprehensive nu-
merical library 
A disciplined approach, effective manage-
ment, and well-educated personnel are 
some of the key factors affecting the suc-
cess of a software development project. 
Professionals in environmental modelling 
can learn a lot from software engineering, 
commercial product testing (especially in 
aircraft design and other areas were there 
is a very high safety standard required), 
stakeholders’ deliberation and scientific 
developments from other disciplines. In so 
doing, we can expand our horizons to in-
clude the necessary knowledge to conduct 
successful model evaluation. Whilst some 
research has been undertaken focusing on 
establishing a baseline for evaluation prac-
tice, rather less work has been done to de-
velop a basic, scientifically rigorous ap-
proach to be able to meet the technical 
challenges we currently face. We believe 
model evaluation software tools can valua-
bly support this activity, allowing consoli-
dated experience in evaluating models to 
be formed and shared. Whether model 
evaluation is a scheduled action in model-
ling projects, little work is published in the 
open literature (e.g., conference proceed-
ings and journals) describing the evaluation 
experience accumulated by modelling 
teams (including interactions with the 
stakeholders). Failing to disseminate the 
evaluation experience may result in the re-
petition of the same mistakes in future 

modelling projects. Based on past expe-
rience, establishing a better quality assur-
ance program for a new modelling project 
may certainly increase the probability of 
success for that project. Learning from the 
experience of others is an excellent and 
cost-effective educational tool. The return 
on such an investment can easily be rea-
lized by preventing the failures of modelling 
projects and by avoiding wrong simulation-
based decisions. Where complex models 
are to be evaluated, options are available to 
combine detailed numeric and statistical 
tests of components and sub-processes 
with a deliberative approach for overall 
model acceptance. Future model develop-
ment should aim to incorporate automated 
evaluation checks using embedded soft-
ware tools, with the aim of achieving great-
er cost and time efficiency and to achieve a 
higher level of credibility. Information from 
evaluation tools employed by the model 
developers needs to be made available to 
the peer review process. Beyond this, pro-
viding third parties with the capability of 
extending methodologies without re-
compiling the component will ensure great-
er transparency and ease of maintenance, 
also providing functionalities such as the 
test of input data versus their definition 
prior to computing any simple or integrated 
evaluation metric. Making it in agreement 
with the most modern developments in 
software engineering, components for 
model evaluation will better serve as a con-
venient means to support collaborative 
model testing among the network of scien-
tists involved in creating component-
oriented models in the environmental field. 
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Moving from software to webware 
Modern information and communication 
technologies offer the opportunity for a 
revolution in the area of technical assess-
ments of environmental models (Alexan-
drov and Matsunaga, 2008; Hoffman et al., 
2008). Moving from software to webware 
makes models (and data used to test them) 
available through a web-browser. It seems a 

time has come to think seriously about an 
Environmental Modelling Server (EMS) - a 
supercomputer (or a computing grid) for 
deploying environmental models and run-
ning them through web-browsers. The EMS 
may also do the routine work on technical 
assessment of models, providing the neces-
sary resource currently lacking. 

Our position 
Concluding this letter, we emphasize that having standardized evaluation tools is the issue that 
needs to be tackled. Standardised model evaluation can consist of evaluation tools for use dur-
ing and after the model development process, which can feed into a codified procedure during 
peer review of articles based on the model. The articles published in this thematic volume of 
EM&S are suggesting “the evaluation of models should be a central part of the model develop-
ment process, not an afterthought” (Crout et al., 2009). This implies a clear demand for relevant 
software tools and acceptance by journals to adopt a minimum standard for peer review. Evalu-
ation tools, in contrast to models, are generic by their nature, based on shared information and 
on re-using data from previous research exercises. The burden of developing evaluation tools is 
too hard for every single modeller. This and improving the peer review process are tasks that 
need a communal effort based on International Environmental modelling and Software Society’s 
(iEMSs) leadership. 
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