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1 MULTIVARIATE CLUSTERING

A multivariate statistical clustering technique—
based on the iterative k -means algorithm of Har-
tigan (Hartigan, 1975)—has been used to ex-
tract patterns of climatological significance from
200 years of general circulation model (GCM) out-
put. Originally developed and implemented on
a Beowulf-style parallel computer constructed by
Hoffman and Hargrove from surplus commodity
desktop PCs (Hargrove et al., 2001), the high
performance parallel clustering algorithm (Hoffman
and Hargrove, 1999) was previously applied to the
derivation of ecoregions from map stacks of 9 and
25 geophysical conditions or variables for the con-
terminous U.S. at a resolution of 1 sq km (Hargrove
and Hoffman, 1999). Figure 1 describes this ap-
plication of the k -means approach to Multivariate
Geographic Clustering (MGC).

The left side of Figure 1 represents geographic
space, while the right side illustrates the same map
cells or observations in a multi-dimensional data
space. The N characteristics of each map cell on
the left are used as the N coordinates for that obser-
vation in data space on the right. In Figure 1, N is
3: temperature, organic matter, and rainfall. Having
no information about the geographic coordinates of
each observation, the iterative clustering algorithm
finds k groups of observations based on their prox-
imity, by simple Euclidean distance, in data space.
Reassembling the map cells in geographic space
and coloring them according to their cluster assign-
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Figure 1: The Multivariate Geographic Clustering (MGC)
procedure.

ment yields a new map showing regions of approx-
imately equal multi-variance with respect to the N
characteristics used in the clustering process.

2 SPATIO-TEMPORAL
CLUSTERING

Now applied both across space and through time,
the clustering technique yields temporally-varying
climate regimes from predictions of GCMs. A
business-as-usual (BAU) scenario from transient
runs of the Parallel Climate Model (PCM) (Washing-
ton et al., 2000) was clustered using three fields of
significance to the global water cycle (surface tem-
perature, precipitation, and soil moisture) from 1871
through 2098. An analysis of the five-year running
average of cluster frequency (or regime land area)
shows an increase in spatial area occupied by the
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Global Cluster Evolution, 5 Year Running Average, Random Colors - 32 Clusters
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Figure 2: Trajectories of global environmental change
can easily be identified as locations change among
states. For example, the climate regime represented
by Cluster 14 (Desert) increases through time while the
regime represented by Cluster 10 (Siberian/Canadian
Winter) decreases over the same period. Lines are plot-
ted in the same random colors as their definitions shown
in Figure 3.

cluster or climate regime which typifies summer-
time desert regions (i.e., an increase in desertifica-
tion) and a decrease in the spatial area occupied by
the climate regime typifying winter-time high latitude
permafrost regions (Figure 2). Additionally, signifi-
cant changes are seen to occur in both Antarctica
and Greenland due primarily to increasing temper-
atures over the 200 year time period. While desert-
like conditions increase globally, the “desert winter”
regime actually decreases in coverage indicating in-
creasingly warmer winters.

Representative climate regimes were determined
by taking three 10-year averages of the fields
100 years apart for northern hemisphere winter
(December, January, and February) and summer
(June, July, and August). The result is global maps
of typical seasonal climate regimes for 100 years in
the past, for the present, and for 100 years into the
future. Figure 4 shows the past map and the future
map for northern hemisphere winter. Reduction of
complex multivariate data sets into a common set
of clusters or regimes facilitates direct head-to-head
comparison and the detection and quantification of
long term climate change.

Figure 3: Each of the 32 climate regimes is quantitatively
defined by the properties of its cluster centroid. This fea-
ture of clustering allows one to easily retrieve and under-
stand the complex multivariate behavior of dynamic pro-
cesses. Names can be ascribed to the more recogniz-
able regimes. The random colors in the first column are
the same as those used in Figures 2 and 4. The other
colors are “similarity colors” obtained when each of the
three variables is assigned to one of the RGB color guns.

Figure 4: Comparison of different periods is facilitated
by coloring maps according to their state space assign-
ments. For example, both the gold colored region (Cluster
3) representing the coolest Antarctic summer and the ma-
genta colored region (Cluster 10) representing the cold-
est Siberian/N. Canadian winter shrink from the begin-
ning of the 200 year period to the end.
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Figure 5: Climate regimes statistically defined in terms
of three variables from 200 years of monthly global output
of the Parallel Climate Model (PCM). These 32 regimes
or states exhaustively indicate the subset of the climate
state space occupied by PCM predictions, and can serve
as basis states for intercomparision with measurements
or other model predictions.

3 PHASE SPACE
REPRESENTATION

Using three-dimensional data or phase space rep-
resentations of these climate regimes (i.e., the clus-
ter centroids) allows one to observe the portion of
this phase space occupied by the land surface at
all points in space and time (Figure 5). Any single
spot on the globe will exist in one of these climate
regimes at any single point in time. By increment-
ing time, that same spot will trace out a trajectory or
orbit between and among these climate regimes (or
atmospheric states) in phase (or state) space (Fig-
ure 6). When a geographic region enters a state it
never previously visited, a climatic change is said
to have occurred. Tracing out the entire trajectory
of a single spot on the globe yields a “manifold” in
phase space representing the shape of its predicted
climate occupancy. This sort of analysis enables a
researcher to more easily grasp the multivariate be-
havior of the climate system and resulting impacts
on the global water cycle.

4 APPLICATION TO ARM DATA

Cluster analysis is a powerful tool which can provide
a common basis for comparison across space and
through time for multiple climate simulations. Be-
cause it runs efficiently on a parallel supercomputer,

Figure 6: A trajectory among climate regimes is traced
out through time as a single geographic location, in this
case in the Middle East, experiences the conditions of
these climate states.

the tool can be used to reveal long-term patterns
in very large multivariate data sets. Given an ar-
ray of equally-sampled variables, the technique sta-
tistically establishes a common and exhaustive set
of approximately equal multi-variance regimes or
states in an N-dimensional phase (or state) space.
These states are defined in terms of their original
measurement units for every variable considered in
the analysis.

Clustering may be used not only to analyze and
intercompare climate simulations, but also to ana-
lyze observations and intercompare them with each
other and with model results. The area change
graph in Figure 2 could show trends in cloud and
climate states from ARM’s long time series mea-
surements. When measurements are clustered
in combination with model results, two trajectories
among regimes—like the single trajectory shown in
Figure 6—could be drawn simultaneously. These
trajectories could be seen to diverge when mod-
els and measurements diverge and converge when
models and measurements agree. By analyzing
long time series observations with model or reanal-
ysis results, the state space occupancy of a single
ARM site could be plotted as a manifold in the “full”
cloud/climate phase space yielding insights into the
representativeness of individual sites or the entire
ARM observation network.

Additional information, including color fig-
ures and 3-D animations, is available at
http://climate.ornl.gov/.
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