Evaluations of Terrestrial Biogeochemical Feedbacks of Stratospheric Geoengineering Strategies

Cheng-En Yang
The University of Tennessee
Oak Ridge National Laboratory

Collaborators: Forrest Hoffman, Simone Tilmes, Jadwiga Richter, Ben Kravitz, Douglas MacMartin, Michael Mills, Joshua S. Fu, Lili Xia, Katie Dagon

June 7, 2018
Geoengineering

“… artificially enhancing earth's albedo and thereby cooling climate by adding sunlight reflecting aerosol in the stratosphere ... additionally counteract the climate forcing of growing CO₂ emissions.” — P. J. Crutzen (2006)

Strategies to deliberately offset the increasing radiative forcing due to anthropogenic emissions

- Carbon dioxide removal (CDR)
- Solar radiation management (SRM)
Geoengineering

“… artificially enhancing earth's albedo and thereby cooling climate by adding sunlight reflecting aerosol in the stratosphere … additionally counteract the climate forcing of growing CO₂ emissions.” — P. J. Crutzen (2006)

Strategies to deliberately offset the increasing radiative forcing due to anthropogenic emissions

- Carbon dioxide removal (CDR)
- Solar radiation management (SRM) → no CO₂ control
Geoengineering Projects

<table>
<thead>
<tr>
<th>Project</th>
<th>Scenario</th>
<th>Synopsis</th>
</tr>
</thead>
</table>
| Geoengineering Model Intercomparison Project (GeoMIP) | G3 (RCP4.5) | - **SO₂** injection
- Single point on the equator at 0° longitude
- Distributed through the altitude range 16-25 km
- 2020–2069
- Abrupt termination at 2070

(Kravitz et al., 2011)
Geoengineering Projects

<table>
<thead>
<tr>
<th>Project</th>
<th>Scenario</th>
<th>Synopsis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geoengineering Model Intercomparison Project (GeoMIP)</td>
<td>G3 (RCP4.5)</td>
<td></td>
</tr>
</tbody>
</table>

- **SO₂ injection**
 - Single point on the equator at 0° longitude
 - Distributed through the altitude range 16-25 km
 - 2020–2069
 - Abrupt termination at 2070

- Uneven cooling between the poles and equator
 - Overcooling of the tropics and undercooling of the poles
 - Shifts in tropical precipitation
 - Continued Arctic summer sea-ice loss

(Kravitz et al., 2011)
Geoengineering Projects

<table>
<thead>
<tr>
<th>Project</th>
<th>Scenario</th>
<th>Synopsis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratospheric Aerosol Geoengineering Large Ensemble Project (GLENS) (Available Jan. 2018)</td>
<td>GLENS (RCP8.5)</td>
<td>• SO₂ injection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Optimized, 30°N, 15°N, 15°S, 30°S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ 5 km above tropopause</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ 2020–2069</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ No termination</td>
</tr>
</tbody>
</table>

(Kravitz et al., 2017)

(Tilmes et al., 2018, accepted)
Geoengineering Impacts

- Reduced global mean surface temperature warming
- Suppressed precipitation
- Slower hydrological cycle
- Ocean acidification
- Higher photosynthesis rate
- Higher net primary production (NPP)
Science Questions

- Responses of the terrestrial ecosystem to geoengineering
 - Will land remain a carbon sink?
 - Will every region undergo the same biogeochemistry (BGC) feedbacks?
 - Quantification of the carbon sink strength
Analytical Methods

<table>
<thead>
<tr>
<th>Data</th>
<th>Model</th>
<th>RCP</th>
<th>Geoengineering</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeoMIP G3</td>
<td>HadGEM2-ES</td>
<td>4.5</td>
<td>2020–2069</td>
<td>2070–2089 post-geoengineering</td>
</tr>
<tr>
<td>GLENS</td>
<td>CESM1-WACCM</td>
<td>8.5</td>
<td>2020–2099</td>
<td>3 of 20 ensemble members</td>
</tr>
</tbody>
</table>

Regions

- NH polar (NHP)
- NH midlatitude (NHM)
- NH subtropics (NHS)
- Tropics (TRP)
- SH subtropics (SHS)
- SH midlatitude (SHM)
- SH polar (SHP)
50–year Mean Annual Changes over Land

Surface Temperature

Ice melting due to uneven cooling
50–year Mean Annual Changes over Land

GeoMIP
G3 − RCP45

Surface Temperature

Precipitation

- Reduced precipitation
 - Cooler temperature
 - Aerosol indirect effect

- Increasing precipitation
 in South America due to reduced dryness
 (cooler temperature)
50-year Mean Annual Changes over Land

Surface Temperature

Precipitation

Surface Shortwave Radiation

GeoMIP
G3 - RCP45

GLENS
Feedback - RCP85
50–year Mean Annual Changes over Land

Surface Temperature

Precipitation

Surface Shortwave Radiation

Reduced cloudiness at high latitudes
50–year Mean Annual Changes over Land

Gross Primary Production (GPP)

- Higher GPP in the Tropics
 - Increased diffuse light

- Lower GPP in high latitudes
 - Reduced SW
 - Cooler surface temperature
50–year Mean Annual Changes over Land

Gross Primary Production (GPP) Net Biome Production (NBP)

- Significant increase at 60°N
 - Land use change?
 - Reduced heterotrophic respiration?

- Reduced carbon sink in G3
50–year Mean Annual Changes over Land

Gross Primary Production (GPP)

Carbon in Soil

- Carbon in soil
 - Similar spatial pattern as GPP in G3 (higher production)
 - More litter in GLENS as a result of reduced production → reduced carbon in vegetation expected
GLB Terrestrial Ecosystem Responses

Carbon in Soil

Carbon in Vegetation

GPP

NBP

GeoMIP

G3 - RCP45

GLENS

Feedback - RCP85
GLB Terrestrial Ecosystem Responses

Carbon in Soil

\[
\begin{align*}
\Sigma_{60} &= 481.8 & \Sigma_{20} &= 362.4 \\
\Sigma_{150} &= 438.8 & \Sigma_{120} &= 277.4
\end{align*}
\]

Carbon in Vegetation

\[
\begin{align*}
\Sigma_{60} &= 123.9 & \Sigma_{20} &= 123.7 \\
\Sigma_{300} &= 106.9 & \Sigma_{200} &= 113.1
\end{align*}
\]

GPP

\[
\begin{align*}
\Sigma_{60} &= -14.2 & \Sigma_{20} &= 19.6 \\
\Sigma_{150} &= -7.3 & \Sigma_{120} &= 11.5
\end{align*}
\]

NBP

\[
\begin{align*}
\Sigma_{60} &= 21.6 & \Sigma_{20} &= -3.7 \\
\Sigma_{150} &= 11.1 & \Sigma_{120} &= -3.5
\end{align*}
\]

\[\text{PGC} = +24 \text{ ppm CO}_2\]

\[\text{PGC} = -7 \text{ ppm CO}_2\]

\[\text{PGC yr}^{-1} = +47 \text{ ppm CO}_2\]

\[\text{PGC yr}^{-1} = +58 \text{ ppm CO}_2\]
TRP Terrestrial Ecosystem Responses

Carbon in Soil

\[\Sigma_{\text{G3}} = 395 \quad \Sigma_{\text{RCP45}} = 373.6 \]
\[\Sigma_{\text{G30}} = 348.5 \quad \Sigma_{\text{RCP450}} = 349.4 \]

Carbon in Vegetation

\[\Sigma_{\text{G3}} = 178.6 \quad \Sigma_{\text{RCP45}} = 173.5 \]
\[\Sigma_{\text{G30}} = 155 \quad \Sigma_{\text{RCP450}} = 163.5 \]

GPP

\[\Sigma_{\text{G3}} = 55.2 \quad \Sigma_{\text{RCP45}} = 29.3 \]
\[\Sigma_{\text{G30}} = 66.7 \quad \Sigma_{\text{RCP450}} = 33.6 \]

NBP

\[\Sigma_{\text{G3}} = 23.5 \quad \Sigma_{\text{RCP45}} = 11.6 \]
\[\Sigma_{\text{G30}} = 0.2 \quad \Sigma_{\text{RCP450}} = -2.8 \]
TRP Terrestrial Ecosystem Responses

Carbon in Soil
- $\Sigma_{t0} = 395$
- $\Sigma_{t0} = 373.6$
- $\Sigma_{t0} = 348.5$
- $\Sigma_{t0} = 349.4$

Carbon in Vegetation
- $\Sigma_{t0} = 178.6$
- $\Sigma_{t0} = 155$
- $\Sigma_{t0} = 173.5$
- $\Sigma_{t0} = 163.5$

GPP
- $\Sigma_{t0} = 55.2$
- $\Sigma_{t0} = 29.3$
- $\Sigma_{t0} = 66.7$
- $\Sigma_{t0} = 33.6$

NBP
- $\Sigma_{t0} = 23.5$
- $\Sigma_{t0} = 11.6$
- $\Sigma_{t0} = 0.2$
- $\Sigma_{t0} = 2.8$

+25 ppm CO$_2$

-6 ppm CO$_2$

+13 ppm CO$_2$

+6 ppm CO$_2$
NHP Terrestrial Ecosystem Responses

Carbon in Soil

- \(\Sigma_{20} = -128.2 \)
- \(\Sigma_{150} = -121.7 \)
- \(\Sigma_{550} = -166.6 \)
- \(\Sigma_{1050} = -163.6 \)

Carbon in Vegetation

- \(\Sigma_{20} = -39.9 \)
- \(\Sigma_{150} = -33.6 \)
- \(\Sigma_{550} = -28.5 \)
- \(\Sigma_{1050} = -26 \)

GPP

- \(\Sigma_{20} = -52.3 \)
- \(\Sigma_{150} = -37.4 \)
- \(\Sigma_{550} = -18.1 \)
- \(\Sigma_{1050} = -14 \)

NBP

- \(\Sigma_{20} = -10.1 \)
- \(\Sigma_{150} = -5.8 \)
- \(\Sigma_{550} = 2.5 \)
- \(\Sigma_{1050} = 1.7 \)
NHP Terrestrial Ecosystem Responses

Carbon in Soil

\[
\begin{align*}
\Delta \Sigma_{20} &= -128.2 \\
\Delta \Sigma_{50} &= -121.7 \\
\Delta \Sigma_{100} &= -166.6 \\
\Delta \Sigma_{150} &= -163.6
\end{align*}
\]

Carbon in Vegetation

\[
\begin{align*}
\Delta \Sigma_{20} &= -39.9 \\
\Delta \Sigma_{50} &= -33.6 \\
\Delta \Sigma_{100} &= -28.5 \\
\Delta \Sigma_{150} &= -26
\end{align*}
\]

GPP

\[
\begin{align*}
\Delta \Sigma_{20} &= -52.3 \\
\Delta \Sigma_{50} &= -37.4 \\
\Delta \Sigma_{100} &= -18.1 \\
\Delta \Sigma_{150} &= -14
\end{align*}
\]

NBP

\[
\begin{align*}
\Delta \Sigma_{20} &= -10.1 \\
\Delta \Sigma_{50} &= -5.8 \\
\Delta \Sigma_{100} &= 2.5 \\
\Delta \Sigma_{150} &= 1.7
\end{align*}
\]

-12 ppm CO₂

+4 ppm CO₂

+4 ppm CO₂

+6 ppm CO₂
Summary

- Responses of the terrestrial ecosystem to geoengineering

 - Remaining a **carbon sink**
 - G3: +24 ppm CO₂ equivalent
 - GLENS: +47 ppm CO₂ equivalent
 - Fast BGC feedbacks return to RCP 4.5 conditions after sudden termination of geoengineering (G3)
 - Different RCP scenarios and aerosol injection strategies lead to different feedbacks
 - G3: **weakened carbon sink strength** in most regions except NHP
 - GLENS: **enhanced carbon sink strength** in most regions except TRP and SHM
Summary

- Climate forcing – CO₂ concentration
 - Same CO₂ fertilization effect on BGC feedbacks between RCP8.5 and Feedback runs
 - Simulations driven by CO₂ emissions

- Less aerosol injection is required when accounting for BGC feedbacks

- More analysis required for GLENS runs

- Ocean BGC feedbacks are not yet considered

- Future comparison of GeoMIP for CMIP6 models
Geoengineering Large Ensemble (GLENS) Project

Looking for community engagement to evaluate impacts & understand processes

Core Team: Simone Tilmes (NCAR), Yaga Richter (NCAR), Ben Kravitz (PNNL)
 Doug MacMartin (Cornell University), Michael Mills (NCAR)

http://www.cesm.ucar.edu/experiments/cesm1.2/GLE/
Acknowledgements
Thank You

Question?