Land Model Testbed: Accelerating Development, Benchmarking and Analysis of Land Surface Models

Sarat Sreepathi, Min Xu, Nathan Collier, Jitendra Kumar, Jiafu Mao, and Forrest M. Hoffman

Oak Ridge National Laboratory

October 19, 2020

Gateways 2020 Conference

October 19–23, 2020

Land Model Testbed (LMT)

• Jupyter Notebooks for workflow prototype deployed on ORNL Cloud Computing Resources

 Model output post-processing tools developed

Developing dashboard specific to climate phenomena-focused analysis

- Facilitating climate
 Coupled Model
 Intercomparison
 Project (CMIP) style
 analysis
- Evolutionary study (CMIP6 vs. CMIP5 models) to assess if complexity improved predictability

		~	No	20	So.	a.K.	,	580	SN.	5	WE	12:24	0		0	- A.	52	2.2	1m	0,	85,180
		ST	45 M	Mi	GEN	cmA	, CN	our s	45	SN	3	ESN	M2	CW	CM	oc'	45	SN	SM	In Char	In Char.
	PCC PCC	ැ	· &/	Ha	In	R	-VII	- Mr	. 40,	`& ^C	ි	. K.	"IN	R	'VIII	- Mr	. 40	St.	Ne	Ne	, ,
Ecosystem and Carbon Cycle																					
Biomass																					
Burned Area																					
Carbon Dioxide																					
Gross Primary Productivity																					
Leaf Area Index													_								
Global Net Ecosystem Carbon Balance																					
Net Ecosystem Exchange																					
Ecosystem Respiration																					
Soil Carbon																					
Hydrology Cycle																					
Evapotranspiration																					
Evaporative Fraction																					
Latent Heat																					
Runoff																					
Sensible Heat																					
Terrestrial Water Storage Anomaly																					
Permafrost																					
Radiation and Energy Cycle																				1	\backslash
Albedo																					
Surface Upward SW Radiation																					
Surface Net SW Radiation																					
Surface Upward LW Radiation																					
Surface Net LW Radiation																					
Surface Net Radiation																					
Forcings														8							
Surface Air Temperature																					
Diurnal Max Temperature																					
Diurnal Min Temperature																					
Diurnal Temperature Range																					
Precipitation																					
Surface Relative Humidity																					
Surface Downward SW Radiation																					
Surface Downward LW Radiation																					
Relationships																					
BurnedArea/GFED4S																					
GrossPrimaryProductivity/GBAF																					
LeafAreaIndex/AVHRR																					
LeafAreaIndex/MODIS																					
Evapotranspiration/GLEAM																					
Evapotranspiration/MODIS																					

0

R R R.

International Land Model Benchmarking (ILAMB) Package

- ILAMB evaluates land model results by comparing with global-, regional-, and site-scale data
- For every variable, multiple observational datasets may be used to evaluate model results

ILAMB 2.5 (0705c73e07947221604bfdda0004e1999dbcb4ac)

Our ensemble generation optimizations resulted in a 72× speed improvement.

Use Case: Perturbed Parameter Ensemble (PPE)

- Critical capability for model uncertainty quantification and parameter optimization
- Developed a framework with ability to launch thousands of model instances (ELM) with parameter variations
- Concurrent model execution on supercomputers like Summit
- Performance optimization to substantially improve ensemble generation workflow
- Required workflow time reduced from 12 hours to 10 minutes on a single node of Summit

JupyterLab: Interactive analysis environment

- Deployment on high memory computational nodes facilitates analysis of large datasets
- Allows reproducible and shareable analysis
- Investigating machine learning methods for analysis of model outputs and observations
- ILAMB enables computing standardized metrics and geospatial visualizations.

ef regime_plotter(t): starttime = pd.to_datetime('1850-01-01') months_since = int((t - starttime)/np.timedelta64(1,'M')) print("%d months since"%(months_since)) print(t) plot_cluster_at_t(months_since+1)

slider = widgets.SelectionSlider(
 options=dates,
 value=pd.to_datetime('2000-01-01'),
 description='Time [YYYYMM]',
 disabled=False,
 continuous_update=False,
 orientation='horizontal',
 readout=True
}

interact(regime_plotter, t=slider)

Time [YYY... _____ 2000-01-01 00:

1799 months since 2000-01-01 00:00:00

[14]: <function __main_.regime_plotter(t)>

Unsupervised clustering-based identification of spatial (right) and temporal (left) patterns of dynamic climate regimes under the SSP5-8.5 scenario for the future.

JupyterLab: Dynamic / Descriptive Prototyping

6 -4 -2 -0 -

Prototype new		from ModelResult import ModelResult												
functionality		Model results can work as they did before with one small change that I do not automatically find all the files. This is because sometimes we will want a model to be a 'shell' and only really serve as a parent for child models.												
	[2]:	<pre>clm4 = ModelResult("/home/ncf/CLM/CLM4.0",name="CLM4").findFiles() clm5 = ModelResult("/home/ncf/CLM/CLM5.0",name="CLM5").findFiles()</pre>												
Code refactoring/redesign		A model could also be a group / collection of models. You could use this to define a collection, like a MIP or to define an ensemble. There is a manual addition of models to the group, seen here:												
Ensemble analysis	[3]:	<pre>grp = ModelResult("/home/ncf/CLM/",name="CLM - manual") grp.addModel(clm4) grp.addModel([clm4,clm5]) # can add lists too, won't duplicate print(grp)</pre>												
capability added to ILAMB														
	[26]:	<pre>import matplotlib.pyplot as plt fig,ax = plt.subplots(figsize=(18,3)) mean_gpp.convert("g m-2 d-1") mean_gpp.plot(ax) plt.show()</pre>												

Ensemble Diagnostics Prototype

LMT Dashboard: https://lmt.ornl.gov/unified-dashboard/

Ξ Menu					
Colorblind colors	Show/hide side menu		Open local ison files		
	containing multiple	Br			
Hide Columns 🔻	functions	*			
Model	Типсионз		ALE SM2 SM2 SM2 ALE SSM2 SSM2 SSM2 SSM2 SSM2 SSM2 SSM2 SSM		
Metric					
	Hyperdimension	RUBISCO	M M M M M M M M M M M M M M M M M M M	Moveable columns	
Global					
Overall Score 🔹	selection				
		Ecosystem and Carbon Cycle	-0.94 -1.26 -2.15 -0.20 0.50 -0.23 -0.99 0.10 0.55 0.47 -1.11 0.09 0.50 -0.14 0.86 0.38 1.48 2.11		
Row		L	0.20 <mark>-0.45 -1.52 -0.40 -1.26 -0.26 -1.07 -1.77</mark> 0.92 1.39 0.74 <mark>-0.20 -0.54</mark> 0.16 0.93 <mark>-0.96</mark> -0.01 1.04 1.23 1.82	Different colors for	
Column	Scale/Normalize cell	└─ Tropical	0.35 -0.37 -2.31 0.22 -0.36 -0.95 0.18 -2.75 0.54 0.79 0.28 0.05 -0.41 1.06 0.41 0.25 0.16 0.45 1.05 1.36	model groups	
Not Normalized 💌	values along the row or	└─ GlobalCarbon	0.64 -0.59 -2.20 -0.17 -1.24 -0.26 0.18 -2.54 0.34 1.22 0.0 -0.02 0.04 1.01 0.51 0.23 0.06 0.28 1.00 1.50	inouel groups	
ILAMB Color Mapping *	column direction and	└ NBCD2000	-0.99 0.83 0.86 -0.41 0.42 0.12 2.24 1.00 0.60 0.87 1.11 0.09 -1.35 9.87 0.80 -2.22 0.19 0.75 0.09 0.35		
		L USForest	-1.05 0.65 0.48 -0.02 0.77 0.04 -2.29 0.80 0.51 0.71 1.40 0.28 -0.68 -1.03 1.23 -2.23 0.18 0.74 -0.42 -0.03		
EXAMPLES	color mannings	L Thurner	0.93 -1.30 0.04 -0.99 -2.76 0.71 -0.24 -0.05 0.78 0.53 -0.08 -0.88 0.45 -0.65 0.13 -0.09 -0.58 1.03 -36 1.65		
Select Examples		└ Leaf Area Index	-0.20 -0.64 -1.30 -2.53 -0.01 0.30 0.01 -1.85 -0.16 0.27 0.08 0.34 -0.70 1.19 0.82 0.46 0.37 0.69 1.04 1.81	Clickable cell linking	
LOGO		└	0.27 1.26 -1.46 0.07 0.75 0.47 -0.03 -1.14 0.07 0.24 1.35 -0.99 -2.04 -1.55 0.90 -0.75 -0.17 0.24 1.01 1.48	to metric page	
Select Logos	Multiple switches to	└	0.59 -1.23 0.01 -1.81 -1.40 0.29 -0.53 -0.24 -1.04 0.77 0.04 0.59 -0.38 1.17 -1.02 -0.37 0.73 0.09 1.51 2.22	to metric page	
SWITCH	toggle features	└	-0.39 -1.60 -0.34 -0.65 1.08 -0.17 0.95 0.11 -1.12 -0.93 -1.19 0.64 1.66 -0.76 0.66 -0.15 1.03 -1.51 1.26 1.41		
Tooltips		└	0.89 -0.52 -0.93 -0.20 -1.33 0.98 -0.14 -0.99 -1.51 0.81 0.63 0.50 -0.76 0.88 -0.20 -1.21 0.40 -0.92 1.37 2.23		
Cell Value		└	-1.22 -0.24 -3.34 -0.56 1.33 0.05 0.36 0.76 0.40 0.27 0.38 0.54 0.96 -0.66 0.23 0.62 0.13 -0.00		
Bottom Title		🕒 🗉 Global Net Ecosystem Carbon Balance	-1.42 -0.73 -2.06 0.21 -0.22 -0.28 -0.39 0.28 -0.14 1.27 -1.47 0.22 -0.60 1.37 1.47 0.29 0.89 1.32	Show/Hide cell	
Screen Height	Collapse and expand	🗏 Hydrology Cycle	-2.67 -0.63 0.42 -0.16 -0.39 -0.44 -0.50 0.23 0.63 0.13 -0.76 1.55 -1.12 0.55 -0.65 -0.77 1.04 0.89 0.98 1.68	values	
Row Expand/Collapse		└	-0.82 -0.99 -0.27 -1.02 0.64 -1.14 -0.62 -0.60 0.28 0.39 -1.08 1.09 0.65 0.43 -1.40 -1.01 0.82 1.05 1.41 2.20	Values	
	Children rows	└ Evaporative Fraction	-0.34 0.74 0.74 -0.14 -0.85 0.21 -1.98 0.22 -0.34 0.10 0.11 1.25 -0.88 1.29 -1.65 -1.81 1.11 -0.06 0.98 1.29		
		L ⊞ Runoff	-3.66 -0.35 0.47 0.05 -0.67 -0.57 0.12 0.44 1.33 -0.07 -0.23 0.96 -0.17 -0.19 0.02 -0.05 0.47 0.99 -0.03 1.13		
	Cave the dackboard to a	└ ⊞ Latent Heat	-0.02 <mark>-0.39 -0.38 -0.93</mark> 0.24 <mark>-0.98 -0.73 -0.71 -0.21</mark> 0.66 <mark>-1.20</mark> 1.60 0.12 0.42 <mark>-1.52 -1.24</mark> 1.40 0.40 1.49 1.99		
	Save the dashboard to a	└ ⊞ Sensible Heat	-0.85 -0.20 0.80 -0.28 -1.12 -1.23 -1.67 0.45 0.65 -1.04 0.37 1.02 -0.39 1.19 -0.54 -1.63 0.63 0.92 1.48 1.45		
Save to Html	plain html file	└	-2.79 -0.45 0.47 0.51 -0.38 0.34 0.35 0.43 0.58 0.15 -0.08 0.95 -2.91 0.43 0.37 0.15 0.39 0.51 0.49 0.50		
		1			

- **Tooltips:** show scores when mouse hovers the cells.
- **Column Hiding:** hide some models (columns) to focus into models of interest.
- **Column sorting:** sort the scores along the columns/models to see the best metric for the model.

Convert other diagnostic results for use in LMT dashboard

PMP: The Program for Climate Model Diagnostics and Intercomparison (PCMDI) Metrics Package (PMP)

- Clicking cell will go to maps of geographic distributions generated by PMP
- Our LMT dashboard can be used to study science questions like ENSO-BGC feedbacks

Interactive web-enabled tool (<u>https://lmt.ornl.gov/ers4cmor/</u>) for users to analyze and benchmark any land model results using LMT

Interactive Variable Mapping System For C4MIP

	Refre	sh Table E3SM variable list	<pre> C4MIP </pre>	E3SM ~ Lmon ~							
		Hide columns × - Search:									
id 🔺	priority 🔺	long name	varname 🔺	units 🔺	relationship						
▼ Lmon (33 item)											
0	1,2	Precipitation onto Canopy	prveg	kg m-2 s-1	QINTR						
1	1,2	Total Carbon Mass Flux from Litter to Soil	fLitterSoil	kg m-2 s-1	LITR1C_TO_SOI						
2	1,2	Total Carbon Mass Flux from Vegetation to Litter	fVegLitter	kg m-2 s-1	LITFALL						
3	1,2	Percentage of Land Which Is Anthropogenic Pasture	pastureFrac	%							
4	1,2	Total Runoff	mrro	kg m-2 s-1	QRUNOFF+QS1						
5	1,2	Net Primary Production Allocated to Roots as Carbon Mass Flux [kgC m-2 s-1]	nppRoot	kg m-2 s-1	FROOTC_ALLO(
6	1,2	Carbon Mass in Roots	cRoot	kg m-2	LIVECROOTC+I						
7	1,2	Total Soil Moisture Content	mrso	kg m-2	SOILLIQ[0:14]						
8	1,2	Carbon Mass in Leaves	cLeaf	kg m-2	LEAFC						
9	1,2	Bare Soil Percentage Area Coverage	baresoilFrac	%	PCT_LANDUNII						

- Relationships and equations are saved and versioned in a repository
- Post-processing to standardize (CMORize) the model outputs.
- User defined relationships and mapping to CMIP6 variables

Machine Learning for Deriving Empirical Relationships

Figure: The relative importance of environmental factors in predicting (left) the observed and (right) the modeled net ecosystem exchange from a land surface model, using a random forest machine learning technique

- We employed a random forest machine learning method to quantitatively predict net carbon ecosystem exchange from observations and from land surface model output
- Various parameter perturbations were used for 84 simulations of the land surface model
- The monthly net ecosystem exchange was predicted accurately by environmental forcing variables in the observational and the model cases
- However, the importance of the environmental factors was very different between the observations and the model results
- This study indicates a need to further study driving relationships in the model

Summary and Future Work

- We developed a suite of tools and capabilities that could become part of an institute or center focused on modeling, model evaluation, and Earth system predictability
- We are extending Perturbed Parameter Ensemble (PPE) effort to test both the Community Land Model (CLM) and the Energy Exascale Earth System Model (E3SM) Land Model (ELM)
- Opportunities for future development include
 - Adding more models to the land model farm
 - Further development of ILAMB benchmarks and diagnostics for PPE
 - Collaborative extension of the Unified Dashboard across a suite of diagnostics packages through the Coordination Model Evaluation Capabilities (CMEC) activity supported by the U.S. Department of Energy
 - Library and tool development for collaborative analysis through JupyterHub
 - Additional analysis employing machine learning approaches to derive empirical relationships as another suite of methods for evaluating model performance