Introduction

The Energy Exascale Earth System Model (E3SM) Project is an ongoing, state-of-the-science Earth system modeling, simulation, and prediction project that is intended to address the Department of Energy (DOE) mission needs while efficiently using DOE Leadership Computing Facilities.

The model will have weather-scale resolution and use advanced supercomputers to reliably simulate aspects of earth system variability and project decadal changes that will critically impact the U.S. energy sector in the near future.

Project Goal:
Assert and maintain an international scientific leadership position in the development of Earth system models that address the grand challenge of actionable projections of Earth system variability and change, with an emphasis on the most critical scientific questions facing the nation and DOE.

Application Overview

- DOE Climate Model
- Collaboration among 7 National Labs, NCAR, 4 Academic Institutions and a private sector company
- Fortran, MPI, OpenMP, OpenACC
- Uses Unstructured Grids
- Independent component models and shared infrastructure
- Simulations on O(100,000) cores

The high-resolution E3SM earth system model simulates the strongest storms with surface winds exceeding 150 mph — hurricanes that leave cold wakes that are 2 to 4 degrees Celsius cooler than their surroundings. This simulation represents how sea surface temperature changes evolve as a hurricane (seen here approaching the U.S. East Coast) moves across the Atlantic and how the resultant cold wake affects subsequent intensification of the next hurricane.

Three new model components are included in the E3SM v1 configuration: Model for Prediction Across Scales (MPAS) Ocean, MPAS Sea Ice, and MPAS Land Ice. Pictured above is global E3SM simulation showing eddy activity. Credit: M.Petersen, P.Wolfram and T.Ringler.

Software

E3SM v1.0.0 : Public Release – April 23, 2018
Website: https://e3sm.org
DOI: 10.11578/E3SM/dc.20180418.36

In a Nutshell, E3SM... has had 18,506 commits made by 193 contributors representing 1,462,618 lines of code... is mostly written in Fortran (free-format) with a very well-commented source code... maintained by a very large development team... took an estimated 410 years of effort (COCOMO model)

Acknowledgments
This research was supported as part of the Energy Exascale Earth System Model (E3SM) project, funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research. This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.