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Sources and Sinks of Carbon Dioxide

Figure 1: Sources and sinks of carbon dioxide, Source : CSIRO 2011, Figure 2.5
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Carbon Cycle and GPP

Figure 2: Carbon cycle, Source:ucar.edu 2017

I Due to increasing CO2 levels, understanding of the CO2 sinks is
necessary.

I Gross Primary Production (GPP) is a major driver for land sink.
I Extreme events in GPP can significantly affect the CO2 uptake.
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Data Source

Community Earth System Model Biogeochemistry Working Group,
CESM1-BGC

I 1850–2005: Historical

I 2006–2100: Representative Concentration Pathway 8.5

I 2101–2300: Extended Concentration Pathway 8.5

I Resolution: 0.9375◦ x 1.25◦ (lat x lon)

I Monthly Mean Data

I Constant Land Use: Pre-industrial forcing
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Definition of Extreme Events

1. Original signal of GPP at every pixel.

2. Calculate annual (seasonality) and decadal+higher signals (trend).

3. Anomalies = Original − Trend − Seasonality

4. Select the time period(s) [25 years].

5. Thresholds for that time period(s) based on a defined percentile [1.0].

6. Global GPP extreme events.
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What Qualifies as an Extreme Events?
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Figure 3: Thresholds when percentile is 1.0 and time period is 25 years
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Spatial Distribution of Frequency of Negative Extremes
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Figure 4: Frequency of negative extreme events for 2175–2199, percentile: 1.0
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Timeseries of Frequency of Extreme Events

0

250

500

750

1000

Po
sit

iv
e 

Ex
tre

m
es Slope = 8.07 events/decade

0

250

500

750

1000

Ne
ga

tiv
e 

Ex
tre

m
es Slope = 6.58 events/decade

1850 1900 1950 2000 2050 2100 2150 2200 2250 2299
Time

0

2

4

6

Ra
tio

 o
f

Ne
ga

tiv
e 

to
 

Po
sit

iv
e 

Ex
tre

m
es Slope = -5 x10 3 /decade

Figure 5: Counts of extremes relative to the threshold of 1850–1999
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Global Timeseries of Extreme Events
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Figure 6: Global timeseries of extreme events when percentile is 1.0 and time period is 25 years
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Changes in Spatial Distribution of Negative Extremes
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Changes in Spatial Distribution of GPP
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What led to GPP Extreme Events?

The correlation coefficients of GPP anomalies and extremes were
computed:

I at every pixel

I for all 18 25-year time-periods from 1850-2299

I for prior lags from 0 to 12 months

with original, detrend and anomalies of following climate drivers:

Table 1: Drivers

Prcp Atmospheric rain + snow
Soilmoist Soil moisture to 1-m depth
Tav Monthly Mean daily temperature
Tmax Monthly Maximum daily temperature
P-ET Precipitation minus Evapotranspiration
Fire-pft Total pft-level carbon loss due to fire
Fire Total column level carbon loss due to fire
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What led to GPP Extreme Events?

The correlation coefficients of GPP anomalies and extremes were
computed:

I at every pixel

I for all 18 25-year time-periods from 1850-2299

I for prior lags from 0 to 12 months

with original, detrend and anomalies of following climate drivers:

Table 2: Selected Drivers

Prcp Atmospheric rain + snow Anomalies
Soilmoist Soil moisture to 1-m depth Anomalies
Tav Monthly Mean daily temperature
Tmax Monthly Maximum daily temperature Anomalies
P-ET Precipitation minus Evapotranspiration Anomalies
Fire-pft Total pft-level carbon loss due to fire
Fire Total column level carbon loss due to fire Original
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Multi Linear Regression - Spatial Distribution

Case 01 : adjusted r-squared = 0.5813
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Figure 7: Spatial distribution of adjusted r-squared for gpp extreme events with percentile 1.0
and for time period 1975–99
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Multi Linear Regression - adj. R-squared

Numbers = prior month lags ; X = excluded

Cases Prcp Soilmoist Tmax P-ET Fire Rsq adj
Case 1 0 0 0 0 0 0.5813
Case 2 1 1 1 1 1 0.4094
Case 3 2 2 2 2 2 0.3369
Case 4 0 0 0 0 1 0.5531
Case 5 0 0 0 1 0 0.4033
Case 6 0 0 1 0 0 0.5651
Case 7 0 1 0 0 0 0.5768
Case 8 1 0 0 0 0 0.4361
Case 9 0 0 0 0 X 0.5361
Case 10 0 0 0 X 0 0.4022
Case 11 0 0 X 0 0 0.5503
Case 12 0 X 0 0 0 0.5545
Case 13 X 0 0 0 0 0.4209
Case 14 0 X X X X 0.3394
Case 15 X X X 0 X 0.3195
Case 16 0 X X 0 X 0.4672
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Spatial Distribution of Dominant Driver
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Dominant Climate Driver
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Figure 8: Percentage of times a driver was dominant; 25 year time periods and 1.0
percentile negative gpp extreme events
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Conclusions

The CESM1-BGC (ecp 8.5) suggests that:

I The intensity of both negative and positive carbon cycle extreme
events is increasing with time

I Compared to historic threshold, the frequency of positive extreme
events is increasing at higher rate than that of negative extremes

I The slope of absolute total carbon mass from negative extreme events
is at least 20% more than from the positive extreme events

I The adjusted R-squared value is highest for zero time lag and all five
drivers considered

I The P − ET anomalies are the most dominant climate driver, followed
by Prcp anomalies
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Future steps

I Define spatio-temporal carbon cycle extreme events

I Perform similar analyses with dynamic land use change
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