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1. Introduction

• The increasing availability of high-resolution geospatiotemporal data sets from
sources such as observatory networks, remote sensing platforms, and computational
Earth system models has opened new possibilities for knowledge discovery and min-
ing of ecological data sets fused from disparate sources.

• Traditional algorithms and computing platforms are impractical for the analysis and
synthesis of data sets of this size; however, new algorithmic approaches that can
effectively utilize the complex memory hierarchies and the extremely high levels of
available parallelism in state-of-the-art high-performance computing platforms can
enable such analysis.

• We describe pKluster, an open-source tool we have developed for accelerated k-
means clustering of geospatiotemporal data. pKluster supports distributed-memory
parallelism and can effectively utilize state-of-the art multi- and manycore proces-
sors, such as the second-generation Intel Xeon Phi (“Knights Landing”) processor,
as well as GPGPUs.

• We examine some practical applications of pKluster to the climate, remotely-sensed
vegetation phenology, and LiDAR data sets and speculate on some of the other
applications that such scalable analysis methods may enable.

2. Scalable k-means Clustering with pKluster

2.1 The pKluster distributed memory parallel k-means code

• Originally developed in 1996–1997 for use on the Stone Soupercomputer, a very
early Beowulf-style cluster constructed entirely out of surplus parts (see “The Do-
It-Yourself Supercomputer”, Scientific American, 265 (2), pp. 72-79, 2001.)

• Because of extreme heterogeneity of the cluster, a master-slave parallel programming
paradigm was used, as this provided excellent dynamic load-balancing.

• On modern, homogeneous machines, the master-slave paradigm may be less efficient
than a fully-distributed, masterless approach.
– We have explored the masterless approach in a prototype rewrite of the code.
– We work with the master-slave version here, because some techniques described

below introduce load imbalance even on homogeneous machines.
• When pKluster was initially written, on-node parallelism was virtually nonexistent

on commodity PCs; the focus was purely on distributed-memory parallelism.
• Features:

– Planned open-source release under the Apache License 2.0.
– Runs on any machine (or cluster) with C89 (or higher) C compiler and an MPI

implementation.
– Option to improve cluster quality by moving or “warping” clusters that become

empty to locations in data space where points that are farthest from their current
cluster centroids reside.

– Implements “accelerated” k-means algorithm.
– Optimizations for manycore CPU and GPGPU systems.
– Coming soon: Support for clustering observation vectors with many zero entries

(e.g., species occurrence data).

2.2 “Accelerated” k-means Algorithm

• For very large datasets and/or cases when the number of clusters k is large, straight-
forward implementation of k-means proves too expensive, even when using many
compute nodes.

• We “accelerate” the k-means process using two techniques described by Phillips
(doi:10.1109/IGARSS.2002.1026202):
– Use the triangle inequality to eliminate unnecessary point-to-centroid distance

computations based on the previous cluster assignments and the new inter-centroid
distances.

– Reduce evaluation overhead by sorting inter-centroid distances so that new can-
didate centroids cj are evaluated in order of their distance from the former centroid
ci. Once the critical distance 2d(p, ci) is surpassed, no additional evaluations are
needed, as the nearest centroid is known from a previous evaluation.

d(i, j) ≤ d(p, i) + d(p, j)
d(i, j) − d(p, i) ≤ d(p, j)
if d(i, j) ≥ 2d(p, i) :

d(p, j) ≥ d(p, i)
without calculating the distance d(p, j)

Figure 2: The triangle inequality is used to eliminate unnecessary distance calculations.
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Figure 3: Clustering the GSMNP LiDAR dataset from section 4.2 for k = 2000 with the accelerated
k-means algorithm on the BDW system. Time for each iteration decreases as the accelerated algorithm
is able to avoid many distance comparisons.

• We also improve cluster quality by moving or “warping” clusters that become empty
to locations in data space where points that are farthest from their current cluster
centroids reside.

3. Optimizations for Novel Computing Architectures

Computer test platforms used
Name Description
BDW Intel Xeon E5-2697 v4 (“Broadwell”) node

(2.3 GHz core freq; 2 sockets; 18 cores per socket; TURBO off)
KNL Intel Xeon Phi 7250 (“Knights Landing”) node

(68 cores, 272 threads; 1400 MHz core freq; TURBO off)
Titan One AMD Opteron 6274 (“Interlagos”) 16-core CPU and

one NVIDIA Kepler GPU per node; 18,688 total nodes

• Parallelism within compute nodes has been greatly increasing:
– GPGPUs from AMD and NVIDIA can execute thousands of simultaneous threads.
– The second-generation Intel Xeon Phi processor has up to 72 cores (4 hyper-

threads per core); each core has two 512-bit vector processing units.
• We have made several adaptations to pKluster to support these architectures.

3.1 Improving Computational Intensity Using Level 2/3 BLAS
• We recently realized that it is possible to achieve greater computational intensity

of the observation–centroid distance calculations by expressing the calculation in
matrix form:
– For observation vector xi and centroid vector zj , the squared distance between

them is Dij = ∥∥xi − zj
∥∥2.

– Via binomial expansion, Dij = ∥∥xi∥∥2 + ∥∥zj∥∥2 − 2xi · zj
– The matrix of squared distances can thus be expressed as D = x1ᵀ + 1zᵀ − 2X ᵀZ ,

where X and Z are matrices of observations and centroids, respectively, stored in
columns, x and z are vectors of the sum of squares of the columns of X and Z , and
1 is a vector of all 1s.

• The above expression can be calculated using level 2 and 3 Basic Linear Algebra
Subprograms (BLAS) operations, which admit very computationally efficient imple-
mentations.

• We have used the highly optimized BLAS implementations from Intel’s MKL and
NVIDIA cuBLAS to speed up distance calculations on Xeon Phi and GPGPUs, re-
spectively.

• Distance calculations using the above formulation are dramatically faster than the
straightforward loop over vector distance calculations when many distance compar-
isons must be made.
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Figure 4: Clustering the GSMNP LiDAR dataset from section 4.2 for different values of k on BDW and
KNL using accelerated k-means and the matrix formulation that uses level-2/3 BLAS calls. Although
requiring many more distance calculations, the efficiency of the calculations on KNL is so high that it
outperforms the acceleration scheme in all of our tests. On BDW, the matrix formulation only speeds up
initial iterations (when many distance comparisons are required); after that, the accelerated approach
results in much faster iterations.
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Figure 5: Performance comparison of the baseline and optimized (using cuBLAS on the GPU) code
versions for finding 8,000 clusters using the Global Climate Regimes (dimension 123,471,198 × 17) data
set on one node of Titan.

4. Climate and Ecology Applications

4.1 MODIS-based Phenoregionalization and Change Detection

Figure 6: A map of “phenoregion” assignments for the year 2012, based on k-means analysis with
k = 50 of the entire MODIS-derived ForWarn NDVI product for years 2000–2012. The body of obser-
vation vectors being clustered consists of the year-long MODIS NDVI time series for every map pixel,
for each year. The map indicates cluster membership (in random colors) for the phenology observed in
2012 at each map pixel.

Phenology Centroid Prototypes (phendump.2000-2012, k = 50)

Cluster 11 Cluster 49 Cluster 15 Cluster 48 Cluster 31 Cluster 16 Cluster 47 Cluster 20 Cluster 35 Cluster 33

Cluster 22 Cluster 24 Cluster 27 Cluster 4 Cluster 42 Cluster 29 Cluster 3 Cluster 38 Cluster 7 Cluster 30

Cluster 1 Cluster 50 Cluster 46 Cluster 9 Cluster 26 Cluster 39 Cluster 14 Cluster 12 Cluster 25 Cluster 8

Cluster 45 Cluster 6 Cluster 18 Cluster 36 Cluster 28 Cluster 37 Cluster 32 Cluster 44 Cluster 34 Cluster 17

Cluster 21 Cluster 2 Cluster 10 Cluster 40 Cluster 5 Cluster 23 Cluster 13 Cluster 43 Cluster 19 Cluster 41

1 of 1

Figure 7: The fifty centroids (corresponding to “phenoregion” prototypes) used for the membership
assignments in the map in Figure 6. The colors the centroid plot correspond to the map colors.

( a ) 2004 − 2003 ( b ) 2005 − 2003

( c ) 2006 − 2003 ( d ) 2007 − 2003
Figure 8: Maps showing the relative state space transition distances (how different phenoregion as-
signments are for given years) between years in Colorado and southern Wyoming. Pine beetle mortality
correlates strongly with high transition distances. Black-outlined polygons are disturbed areas indicated
on aerial sketch maps.

4.2 Classification of Vegetation Canopy Structure using LiDAR

• Airborne Light Detection and Ranging (LiDAR) enables large scale remote sensing
of topography, built infrastructure, and vegetation structure.

• Multiple laser “returns” produce “point clouds” used to map the ground surface, build-
ings, roads, and utility infrastructure, and to reconstruct the structure of vegetation
canopies.

• Large data volumes (current data set has dimension 3,186,679 × 74) pose significant
computational challenges to employing LiDAR to monitor and manage forests and
animal habitats.

a) 3-D LiDAR point cloud extent at 30 × 30 m
(black square) shown in a typical GSMNP cove
forest.

b) Raw LiDAR point cloud (3,985 points),
showing imprints of underlying topography.

c) LiDAR point cloud after topographic
detrending and filtering (3,936 points).

d) Vertical distribution of LiDAR point density in
a cove forest dominated by tall trees and a dense
understory.

Figure 9: Shown here are the steps involved in converting a LiDAR point cloud into a vertical vegetation
canopy distribution for subsequent cluster analysis.

Figure 10: This map shows the 30 most-different classes of vegetation canopy structure, as identified by
k-means clustering for the Great Smoky Mountains National Park.

Figure 11: The 30 centroids represent vegetation canopy structure prototypes.

4.3 Analysis of Global Climate Regimes

• We can compute climate-based “ecoregions” using k-means analysis of bioclimatic
plus ancillary variables.

• Comparing the maps produced for present day and for simulated future conditions
facilitates quantitative study of the effects of projected climate change on ecoregion
distribution.

Table 1: Variables used for delineation of global climate regimes. Data drawn from Hijmans et al. 2005
[doi:10.1002/joc.1276], Saxon et al. 2005 [doi:10.1111/j.1461-0248.2004.00694.x], Baker et al. 2010
[10.1007/s10584-009-9622-2]

Variable Description Units
Bioclimatic Variables
Precipitation during the hottest quarter mm
Precipitation during the coldest quarter mm
Precipitation during the driest quarter mm
Precipitation during the wettest quarter mm
Ratio of precipitation to potential evapotranspiration –
Temperature during the coldest quarter ◦C
Temperature during the hottest quarter ◦C
Day/night diurnal temperature difference ◦C
Sum of monthly Tavg where Tavg ≥ 5◦C ◦C
Integer number of consecutive months where Tavg ≥ 5◦C –
Edaphic Variables
Available water holding capacity of soil mm
Bulk density of soil g/cm3

Carbon content of soil g/cm2

Nitrogen content of soil g/cm2

Topographic Variables
Compound topographic index (relative wetness) –
Solar interception (kW/m2)
Elevation m
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Figure 12: 1000 Global climate regimes generated by the k-means clustering algorithm for contem-
porary time period. Clusters are colored according to a similarity color scheme using the top three
components from principal components analysis. The red color channel largely reflects topography and
soil properties; the green channel, precipitation variables and evapotranspiration; and the blue channel,
temperature variables and growing season length.
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Figure 13: 1000 Global climate regimes generated by the k-means clustering algorithm for predicted
future 2100 by HadCM3 climate model under A1FI emissions scenario. Clusters are colored via similarity
colors as in Figure 12.

5. Future Directions

5.1 Further Improvements to pKluster
• Re-implement a fully distributed, masterless approach in the current version of the

code to handle cases in which master-slave overhead is high (e.g., many cases on
KNL).

• Add support for emerging high-capacity, non-volatile memory technologies.
• Investigate hybrid approach combining accelerated k-means method and matrix for-

mulation within the same iteration.

5.2 Possible Science Goals
• Potential questions of interest:

– How are global plant distributions affect by climate change?
– What are the implications for global carbon budgets and feedbacks to climate?
– What changes do we expect to key events like onset of growing season?
– What changes do we expect to suitable growing ranges for crops?
– Are there policy implications for agriculture and ensuring the food supply?

• Could combine analysis to all of the MODIS vegetative phenology record with global
fine-scale meteorological reanalysis and possibly other ancillary data layers.
– Enables attribution of vegetation changes to climate or other events.
– Study directly observed vegetation responses to extreme events.

• Could analyze high-resolution and/or multi-model ensemble Earth system model
simulations:
– Project changes to distribution of eco-phenoregions (identified by the historical

analysis) for different climate change scenarios.
– Combine with crop physiology models to project changes in yields.
– Combine with urban growth models or population models to assess resource plan-

ning, policy scenarios, and crop futures.
• Potential collaborators: Beta users of pKluster are welcome! What is your scientific

question?


