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Introduction

» Increasing availability of high-resolution geospatiotemporal data sets from varied sources:
» Observatory networks
» Remote sensing platforms
»> Computational Earth system models
» New possibilities for knowledge discovery and mining of geoscience data sets fused from disparate
sources.

> Traditional tools impractical for analysis/synthesis of data sets this large: Need new approaches to
utilize complex memory hierarchies and high levels of available parallelism in state-of-the-art
high-performance computing platforms.

» We have adapted pKluster—an open-source tool for accelerated k-means clustering we use for
many geospatiotemporal applications—to effectively utilize state-of-the art multi- and manycore
processors, such as the second-generation Intel Xeon Phi (“Knights Landing") processor, as well
as GPGPUs.
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Talk Outline

1. Some history: The “Stone Soupercomputer” and quantitative ecoregion delineation

1.1 Early cluster computing and origins of the pKluster code
1.2 Some example climate and ecological applications

2. Optimizations to the pKluster parallel k-means code

2.1 "Accelerated” k-means using the triangle inequality
2.2 Optimizations for AVX2 and AVX-512 multi- and many-core CPUs

P Threading to improve use of hardware threads
» Improving computational intensity using a matrix algebra reformulation
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Scalable k-means Clustering with pKluster
Our distributed-memory clustering code has a long history...

sl S0

Figure: Originally developed in 1996-1997 for use on the Stone Soupercomputer, a very early Beowulf-style
cluster constructed entirely out of surplus parts (see “The Do-It-Yourself Supercomputer”, Scientific American,
265 (2), pp. 72-79, 2001.) 9.0



Original motivation: Replacing hand-drawn ecoregionalizations

Level 111 Ecoregions of the Continental United States
(Revised April 2013)

National Health and Environmental Effects Research Laboralory.
.......
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Quantitative Ecoregionalization through Multivariate Spatio(-Temporal) Clustering
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Quantitative Ecoregionalization through Time: Sampling Network Design

S S
ot PP ot e PP
(a) 10 ecoregions, present (2000-2009) (b) 10 ecoregions, future (2090-2099)

Figure: Geospatiotemporal clustering of a combination of observational data and downscaled general circulation
model results projects dramatic shifts in location of Alaska ecoregions using downscaled 4 km GCM results.
Arctic tundra projected to be at 0.78% of current extent by 2099. DOI: 10.1007/s10980-013-9902-0.

2014 US-IALE Outstanding Paper in Landscape Ecology.
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GSMNP LiDAR-derived canopy structure classification
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Scalable k-means Clustering with pKluster

» When pKluster was initially written, on-node parallelism was virtually nonexistent on commodity
PCs; the focus was purely on distributed-memory parallelism.

» Because of extreme heterogeneity of the cluster, a master-slave parallel programming paradigm
was used (provides dynamic load-balancing).

» On modern systems, a fully-distributed, masterless approach is more efficient.

» We have developed a scalable masterless approach in a rewrite of the code.

> We work with the master-slave version here, because some techniques used here introduce load
imbalance even on homogeneous machines.

Features:
» Runs on any machine (or cluster) with C89 (or higher) C compiler and an MPI implementation.
> Option to improve cluster quality by moving or “warping” clusters that become empty to locations
in data space where points that are farthest from their current cluster centroids reside.
» Support for clustering observation vectors with many zero entries (e.g., species occurrence data).

» Fast! Suitable for clustering multi-terabyte data sets.

» Implements “accelerated” k-means algorithm.
»> Optimizations for manycore CPU and GPGPU systems.
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. _________________________________________
Manycore Computing Architectures

» In recent years, the number of compute cores and hardware threads has been dramatically
increasing.

» Seen in GPGPUS, “manycore” processors such as the Intel Xeon Phi, and even on standard server
processors (e.g., Intel Xeon Skylake).
» There is also increasing reliance on data parallelism /fine-grained parallelism.

» Current Intel Xeon processors have 256-bit vector registers and support AVX2 instructions.
» Second-generation Intel Xeon Phi processors and Intel Skylake Server processors have 512-bit
vectors/AVX512 instructions.

2x16 X4
1x4 DMl wvcoram  mcoram

At left, “Knights Landing” (KNL) Xeon Phi processor:

- - P> Up to 36 tiles interconnected via 2D mesh

g 36 Tiles % P Tile: 2 cores 4+ 2 VPU/core + 1 MB L2 cache

- connected by . P Core: Silvermont-based, 4 threads per core, out-of-order execution

A HHEAET A » Dual issue; can saturate both VPUs from a single thread

N Interconnect N

: e P 512 bit (16 floats wide) SIMD lanes, AVX512 vector instructions

- . » High bandwidth memory (MCDRAM) on package: 490+ GB/s
Lo e | bandwidth on STREAM triad?

MCDRAM  MCDRAM MCDRAM  MCDRAM
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Benchmarking Platforms and Problem

Performance benchmarking platforms:

l

Intel Xeon E5-2697 v4 |

Intel Xeon Gold 6148

Intel Xeon Phi 7250

l

Code Name Broadwell (BDW) Skylake (SKX) Knights Landing (KNL)
Sockets 2 2 1

Cores 36 40 68

Threads 72 80 272

CPU clock 2.3 GHz 2.4 GHz 1.4 GHz
High-bandwidth memory - - 16 GB

DRAM 128 GB © 2400 MHz 192 GB © 2666 MHz 98 GB © 2400 MHz
Instruction set architecture AVX2 AVX-512F,DQ,CD,BW,VL AVX-512F,PF,ER,CD
Theoretical peak flops (FP32 / FP64) | 2649 / 1324 6144 / 3072 6092 / 3046

» SKX and KNL double the SIMD width of BDW (256 to 512 bits)

» SKX and KNL have similiar peak flops; KNL more dependent on SIMD and

Benchmark problem: GSMNP LiDAR clustering

» 1.5 million observations
» 74 dimensions
» k = 2000 clusters

thread parallelism
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Parallel k-means clustering algorithm

k-means clustering

Goal: Partition data into k clusters, such that centroid
¢ minimizes the total distance D; = > d(¢j, a) to
points a in cluster P;.

Iterative calculation: Given initial partition, find
centroid of each cluster and repartition according to
closest centroid (essentially Lloyd's algorithm, or voronoi
relaxation).

Parallel implementation in pKluster
» Centralized master-worker paradigm

> Start from some initial centroids (chosen offline)
> Master:

» Broadcasts centroids and aliquot assignment to
workers

» Collects new cluster assignments from workers

» Recomputes centroids

» Workers, for an assigned aliquot:

» Compute observation-to-centroid distances
> Assign each observation to closest centroid
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Figure: Illustration of k-means iteration for
k = 3. https://commons.wikimedia.org/
wiki/File:K-means_convergence.gif
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Accelerated k-means clustering

» Classical k-means actually performs far more distance calculations than required!

» Use the triangle inequality to eliminate unnecessary point-to-centroid distance computations based
on the previous cluster assignments and the new inter-centroid distances.

» Reduce evaluation overhead by sorting inter-centroid distances so that new candidate centroids c¢;
are evaluated in order of their distance from the former centroid ¢;. Once the critical distance
2d(p, ¢;) is surpassed, no additional evaluations are needed, as the nearest centroid is known from
a previous evaluation.

d(i,j) < d(p, i)+ d(p,J)

d(I7J) - d(P: I) S d(p1j

if d(i,j) > 2d(p, ) :
d(p,j) = d(p, i)
without calculating the distance d(p,j)

~—
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Baseline (accelerated k-means) Performance

Wall Clock Time (sec)
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Performance of k-means with k=2000

Total Time

BDW(MPI=36)  SKX(MPI=40)  KNL(MPI=68)

» 1.3X speedup on SKX vs.
BDW

» Significant slowdown
(2.2X) on KNL vs. BDW
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Effective Use of Hyperthreads

» Using a pure MPI approach (one MPI rank per core), performance of the accelerated k-means
clustering approach is surprisingly poor on the “Knights Landing” (KNL) processor.

» Using two MPI ranks per core slightly decreases time in the actual clustering calculation, but
slightly increases total time due to greater overhead in master-worker coordination.

» This suggests that using more available hardware threads can improve performance on KNL, if we
can avoid increasing master-worker overhead.
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. ________________________________________
Performance Optimizations: OpenMP Parallelism on KNL

» Hybrid MPI-OpenMP
version of distance

KNL(68C/272T): MPI Vs MPI+OpenMP calculation function
850 Total Time effectively utilizes FMA
Compute Time mmm— units and reduces the

300 bottleneck on rank 0.
_ o8 » Use dynamic loop
(a:; scheduling to smooth
g 200 load imbalance due to
£ triangle inequality (many
-é observations in an aliquot
2 150 . .
o might skip
§ 100 point-to-centroid distance

calculation).

» Pin each MPI to a KNL
“tile” and spawn 8
threads (4 threads per

68 MPI (Baseline) 272 MPI (Baseline) 34 MPI + 8 OMP core),

50

» 2.8X improvement.
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.
Performance Optimizations: OpenMP Parallelism on BDW and SKX

BDW (36C/72T): Impact of HyperThreading SKX (40C/80T): Impact of HyperThreading

100 80
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) o
< @
2 <
o @
£ £
5 =
x x
] S
2 2
o o
] K]
= =
36 MPI 72 MPI 9 MPI + 18 MPI + 36 MPI + 40 MPI 80 MPI 10MPI+ 20 MPI+ 40 MPI +
(Baseline) (Baseline) 8 OMP 4 OMP 2 OMP (Baseline) (Baseline) 8 OMP 4 OMP 2 OMP
(a) Intel Xeon E5-2697 v4 (“Broadwell”) (b) Intel Xeon Gold 6148 ( “Skylake”)

Figure: Comparison of times to cluster the GSMNP LiDAR data set with k = 2000 on the Broadwell (BDW)
and Skylake (SKX) Xeon processors for different numbers of MPI ranks and OpenMP threads.
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Improving computational intensity

» Can achieve greater computational intensity of the observation—centroid distance calculations by
expressing the calculation in matrix form:

» For observation vector x; and centroid vector z, the squared distance between them is

2
D; = s~ 3"

> Via binomial expansion, Dj; = lIxi112 + ||ZJH2 —2x; - zj.

» The matrix of squared distances can thus be expressed as D = X1T7 + 1zT — 2XT7Z, where X and Z
are matrices of observations and centroids, respectively, stored in columns, X and Z are vectors of the
sum of squares of the columns of X and Z, and 1 is a vector of all 1s.

> Above expression can be calculated in terms of a level-3 BLAS operation (xGEMM), followed by
two rank-one updates (xGER, a level-2 operation).

» We use highly optimized BLAS implementations from Intel's MKL and NVIDIA cuBLAS to speed
up distance calculations on Xeon Phi and GPGPUs, respectively.

» Distance calculations using above formulation can be dramatically faster than the straightforward
loop over vector distance calculations when many distance comparisons must be made.

» Using the matrix formulation for distance comparisons in early k-means iterations is
straightforward; a more complicated approach we hope to explore is using the matrix formulation
in combination with the acceleration techniques described above, in which only a subset of
observation—centroid distances are calculated.
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——
BDW vs. KNL, Accelerated (MPI 4+ OpenMP version) vs. Matrix Formulation

Comparison of BDW vs. KNL, accelerated vs. matrix formulation clustering timings > Though B LAS/mat”X formulation
120 T T T T i
KNL hoceleraled performfs many more d.|sta nce
KNL matrix formulation —<— ; calculations, XxGEMM s so

100 L BDW accelerated ¢ 4 .. .
BDW matrix formulation efficient on KNL that it

Z ol ] outperforms acceleration scheme
é il for all k; also shows slowest
Soeol = / growth in cost as k increases.

% ' » On BDW, matrix formulation only
o benefits initial iterations (when

many distance comparisons are
required); after that, acceleration

N . . .
0 200 400 600 800 1000 1200 1400 1600 1800 2000 technique results in dramatically
Number of clusters k faster iterations.
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Performance Improvements Summary

Total Wall Clock Time (sec)

220

200

Comparison of k-means Implementations

BLAS mmmm
P2P-Baseline (MP!) mmmmm
P2P-Optimized (MPI+OMP) Emmmm |~ ]

BDW SKX KNL

» BLAS formulation yields best

performance on KNL, despite
many more distance calculations
than point-to-point (P2P)
approach using “acceleration”;
slightly slower then P2P distance
calculation on SKX.

Best performance on SKX with
acceleration, though difference
between matrix and accelerated
algorithm is smaller—consistent
with the improved xGEMM
performance on SKX compared to
BDW

Overall performance
Improvements:

> KNL: 3.5X
> BDW: 1.3X
> SKX: 1.4X

20 /22



Future Directions: pKluster Software Development

» Investigate hybrid approach combining accelerated k-means method and matrix formulation within
the same iteration.

» Re-implement a fully distributed, masterless approach in the current version of the code to handle
cases in which master-slave overhead is high (e.g., many cases on KNL).

» Add support for emerging high-capacity, non-volatile memory technologies.

» Supported open-source release under Apache License 2.0.
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Future Directions: Possible Science Goals

We have pKluster, plus a few other scalable tools suitable for analyzing large (multi-TB)
geo-spatio-temporal data sets. What other interesting things could we do with them?

» Potential questions of interest:
» How are global plant distributions affect by climate change?
» What are the implications for global carbon budgets and feedbacks to climate?
> What changes do we expect to key events like onset of growing season?
» What changes do we expect to suitable growing ranges for crops?
> Are there policy implications for agriculture and ensuring the food supply?

» Could combine analysis to all of the MODIS vegetative phenology record with global fine-scale
meteorological reanalysis and possibly other ancillary data layers.
» Enables attribution of vegetation changes to climate or other events.
> Study directly observed vegetation responses to extreme events.
» Could analyze high-resolution and/or multi-model ensemble Earth system model simulations:

» Project changes to distribution of eco-phenoregions (identified by the historical analysis) for different
climate change scenarios.

» Combine with crop physiology models to project changes in yields.

» Combine with urban growth models or population models to assess resource planning, policy
scenarios, and crop futures.

» Another item of interest: model-data and model-model comparison
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