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Introduction. The Next-Generation Ecosystem Experiments (NGEE–Arctic) project
seeks to improve the fidelity climate projections for high-latitude regions by quantifying the
physical, chemical, and biological behavior of terrestrial ecosystems in Alaska. Arctic vegetation
is particularly sensitive to warming conditions and likely to exhibit shifts in species composition,
phenology and productivity under a changing climate.

Objectives. The objective of the this study was to characterize the landscape properties
and develop high resolution maps of Plant Functional Type (PFT ) distributions to provide
representation of new Arctic vegetation types in the Community Land Model (CLM ).

Study Area. A field campaign was conducted in Barrow, AK, during peak growing
season in 2012 to collect vegetation harvests from 48 1 m× 1 m plots (Figure 1), which were then
analyzed to estimate distributions of wet tundra graminoid, dry tundra sedge, bryophytes, forb,
lichen, and shrub PFTs for use in modeling and analysis of other measurements.

Approach. Statistical relationships were developed between spectral (WorldView–2 mul-
tispectral data) and topographic (LiDAR) characteristics [Predictors] and PFT distributions
[Predictand] at the vegetation plots. These derived relationships were employed to statisti-
cally upscale the observed PFT distributions for the larger landscape. By including multiple
snapshots through the growing season, phenological behavior was included as a key property to
distinguish among the PFTs.

Figure 1: NGEE-Arctic sites at Barrow Environmental Observatory (BEO) span low, transitional, and high
centered polygon-dominated tundra.

Multivariate Spatiotemporal Statistics

K–means Clustering. A k–means algorithm was used to identify regions of
similar characteristics based on times series (6 snapshots during the 2010 growing season, Figure
2) of WorldView–2 (WV2 ) multispectral imagery (Red, Green, Blue, Near Infrared bands),
WV2 -derived NDVI and LiDAR at 2 m resolution. Operating in a 31-dimensional data space,
the method yields a classification of cells into k classes based on their spectral and topographic
properties.

Vegetation Representativeness. A representativeness metric described
by Hargrove et al. (2003) and Hoffman et al. (2013) provides a unit-less, relative measure of the
dissimilarity between any two pixels of interest (Figure 4). The 31–dimensional observational
data, analyzed using this metric, provided a framework to quantify representativeness of field
measurements collected during the 2012 field campaign. For ground-truthing of the PFT distri-
bution products, 3 poorly and 3 well represented cells were selected at the A, B, C, and D sites
(total of 24 points), and a second field campaign was conducted on July 29, 2014 (Figure 7).

Figure 2: WorldView-2-derived NDVI -based phenology during the 2010 growing season (June–August)
permitted the cluster analysis to further distinguish vegetation groupings by the timing of green-up.

Figure 3: (Top Left) Aerial image (∼10 cm) for Site A. Individual k = 6 classifications during the 2010 growing
season (June–August). (Bottom Right) Unified cluster analysis with phenology, using all 2010 snapshots.

Figure 4: Representativeness with phenology (left) and without (right) based on vegetation sampling locations.
Darker colors indicate poorly represented areas and lighter colors indicate well represented areas).

Plant Functional Type Distribution Estimates

Upscaling Algorithm. We applied an Inverse Distance Weighting (IDW ) in-
terpolation algorithm that accepts sparse, irregularly scattered data over a multidimensional
domain to upscale vegetation measurements. In IDW, the interpolating function is expressed as
a weighted average of the data values, where the weights are inverse functions of the distances
from the data sites in a multi-dimensional data space. IDW was performed on each k–value (Fig-
ure 5), and was compared against the single image and phenology-included estimations Figure
8. Figure 6 shows the estimated distribution of PFTs for Site A.
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Figure 5: (Left) Random sampling for k–values. (Right) Random sampling for k = 6.
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Figure 6: PFT proportional distribution estimates produced from the IDW algorithm.

Figure 7: Ground-truthing locations for Site A. (Left) Aerial image, (Middle) phenology representativeness,
(Right) representativeness differences between the phenology included data and the single snapshot.
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Figure 8: Validation with ground–truth points for all PFTs, including phenology (Left) and single image (Right).

Improving Representativeness. An additional field campaign was per-
formed on August 29, 2014, which included the same poor and well represented sites from July
29, 2014. The IDW algorithm was updated using the data collected on July 29, 2014 (Figure
9, Right) and compared against the original algorithm (Figure 9, Left).
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Figure 9: Validation with ground–truth points for the original (Left) and the improved upscaling (Right).

Conclusions.

I High resolution PFT distribution estimates were
developed and are being used to parameterize
CLM for Arctic ecosystems.

I The representativeness analysis provides
identification of sampling gaps and informs site
selection.

I Growing season phenology significantly improved
the accuracy of PFT distribution estimates.
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