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Introduction

e Sustainable Development across Landscapes requires understanding of

o What constitutes sustainability & resilience in the context of climate
change
Community dynamics, population, and societal needs
Global Earth system dynamics and feedbacks to the carbon cycle
Regional to local environmental science and responses to climate change
Geographic characterization of human systems, ecosystems, and their
interactions across space and time scales in global landscapes

O O O O

e We must be able to apply advanced technologies to

Characterize environmental conditions and monitor change

Model the interactive dynamics of Earth system components
Perform model-data integration for sophisticated analysis of Big Data
Develop new understanding of Earth system processes

O O O O



Introduction

Observations of the Earth system are increasing in spatial resolution and
temporal frequency, and will grow exponentially over the next 5-10 years

With Exascale computing, simulation
output is growing even faster,
outpacing our ability to analyze,
interpret and evaluate model results

Explosive data growth and the
promise of discovery through
data-driven modeling necessitate
new methods for feature extraction,
change/anomaly detection, data
assimilation, simulation, and analysis

Frontier at Oak Ridge National Laboratory is the #2 fastest
supercomputer on the TOP500 List and the first
supercomputer to break the exaflop barrier (Nov 18, 2024).



https://top500.org/

FOCUS NEXT-GENERATION

This article is the second in a two-part series.
The first part, “How to Build a Hypercomputer,” by
Thomas Sterling, appeared in the July 2001 issue.

Scientists have
found a cheaper
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CLUSTER OF PCs at the
0Oak Ridge National
Laboratory in Tennessee
has been dubbed the
Stone SouperComputer.
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Hargrove, W. W., F. M. Hoffman, and T. Sterling (2001), The
Do-It-Yourself Supercomputer, Sci. Am., 265(2):72-79,

https://www.scientificamerican.com/article/the-do-it-yvourself-superc/
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Multivariate Geographic Clustering

e Ecoregions have traditionally been
created by experts

e Qur approach has been to objectively
create ecoregions using continuous
continental-scale data and clustering

e We developed a highly scalable k-means
cluster analysis code that uses distributed
memory parallelism

e Originally developed on a 486/Pentium
cluster, the code now runs on the largest
hybrid CPU/GPU architectures on Earth

Hargrove, W. W., F. M. Hoffman, and T. Sterling (2001), The Do-It-Yourselfi
Supercomputer, Sci. Am., 265(2):72-79,
https://www.scientificamerican.com/article/the-do-it-yourself-superc/
OGS

MAKING MAPS WITH THE STONE SOUPERCOMPUTER

TO DRAW A MAP of the ecoregions in the continental U.S.,the Stone  thecellsinathi i ional d p d group them into four
| isticsof 7.8 gions. The f gion map divides the U.S. into recognizable

ercells. As a simple example, consider  zones (illustration B); a map dividing the country into 1,000 eco-
istic: regions provides far more detail (C). Another approach is to

levels of red, green and blue (D).

76 SCIENTIFIC AMERICAN AUGUST 2001
Copyright 2001 Scientific American, Inc.


https://www.scientificamerican.com/article/the-do-it-yourself-superc/

EOS, TRANSACTIONS, AMERICAN GEOPHYSICAL UNION

Eos, Vol. 84, No. 48, 2 December 2003

VOLUME 84  NUMBER 48
2 DECEMBER 2003
PAGES 529-544

New Analysis Reveals
Representativeness
of the AmeriFlux Network

PAGES 529,535

The AmeriFlux network of eddy flux covari-
ance towers was established to quantify varia-
tion in carbon dioxide and water vapor exchange
between terrestrial ecosystems and the atmos-

BY WiLLiam W, HARGROVE, FORREST M. HOFFMAN,
AND BeVERLY E. Law

phere,and to understand the underlying mech-
anisms responsible for observed fluxes and
carbon pools.The network is primarily funded
by the U.S.Department of Energy, NASA, the
National Oceanic and Atmospheric Adminis-
tration, and the National Science Foundation.
Similar regional networks elsewhere in the

synthesis activities across larger geographic
areas [Baldocchi et al.,2001; Law et al.,2002]
The existing AmeriFlux network will also
form a backbone of “Tier 4” intensive measure-
ment sites as one component of a fourtiered
carbon observation network within the North
American Carbon Program (NACP).The NACP
seeks to provide long-term, mechanistically
detailed,spatially resolved carbon fluxes across
North America [Wofsy and Harriss, 2002]. For
both of these roles, the AmeriFlux network
should be ecologically representative of the
environments contained within the geographic
boundaries of the program. A new ecoregion-
scale analysis of the existing AmeriFlux net-
work reveals that, while central continental

Id—for example, C , AsiaFlux,
OzFlux, and Fluxnet Canada—participate in

are well
flux towers are needed to represent environmental

Fig. 1.The representativeness of an existing spatial array of sample locations or study sites—for example, the AmeriFlux network of carbon dioxide
eddy flux covariance towers—can be mapped relative (o a set of quantitative ecoregions, suggesting locations for additional samples or sites.
Distance in data space to the closest ecoregion containing a site quantifies how well an existing network represents each ecoregion in the map.
Environments in darker ecoregions are poorly represented by this network

Network Representativeness

e The n-dimensional space formed by the
data layers offers a natural framework for
estimating representativeness of
individual sampling sites

e The Euclidean distance between individual
sites in data space is a metric of similarity
or dissimilarity

e Representativeness across multiple
sampling sites can be combined to
produce a map of network
representativeness

Hargrove, W. W., and F. M. Hoffman (2003), New Analysis Reveals
Representativeness of the AmeriFlux Network, Eos Trans. AGU,

84(48):529, 535, doi:10.1029/2003E0480001.
TGS
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Optimizing Sampling Networks

e Our group produced this network
representativeness map for the authors
from global climate, edaphic, and

elevation and topography data

Dark areas, including most of the Indian
subcontinent, were poorly represented
by the constellation of eddy covariance
flux towers participating in FLUXNET in
the year 2007

Sundareshwar, P. V., et al. (2007), Environmental Monitoring Network

for India, Science, 316(5822):204-205, doi:10.1126/science.1137417.
OGS
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Environmental Monitoring

Network for India
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S.B.Verma, D. Agarwal, D. Baldocchi,

S. Singh, K. J. Ramesh, R. Ramesh,
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C.B.S. Dutt, J. Fuentes, Prabhat K. Gupta, W. W. Hargrove, M. Howard, C. S. Jha, S. Lal,
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S.K. Santhana Vanan, M. Sharma, A. Subramaniam, R. Sukumar, R. R. Twilley, P. R. Zimmerman

nderstanding the consequences of glo-
I environmental change and its miti-
ation will require an integrated global

effort of comprehensive long-term data collec-
tion, synthesis, and action (/). The last decade

has seen a dramatic global increase in the num-
ber of networked monitoring sites. For exam-
ple, FLUXNET is a global collection of =300
micrometeorological terrestrial-flux research
sites (see re, right) that monitor fluxes of
CO,. water vapor, and energy (2-4). A similar,
albeit sparser, network of ocean observation
sites is quantifying the fluxes of greenhouse
gases (GHGs) from oceans and their role in the
global carbon cycle (5, 6). These networks are
aperated on an ad hoc basis by the scientific
community. Although FLUXNET and other
observation networks cover diverse vegetation
types within a 70°S to 30°N latitude band (3)
and different oceans (3, 6), there are not com-
prehensive and reliable data from African and
Asian regions. Lack of robust scientific data
from these regions of the world is a serious

fiment to efforts to understand and miti-

An integrated monitoring system is proposed
for India that will monitor terrestrial, coastal,
and oceanic environments.

Current monitoring sites in FLUXNET. Sites are shown in red, and global representativeness is estimated by
Global Multivariate Clustering Analysis (24-26). Darker areas are poorly represented by the existing FLUXNET
towers. Environmental similarity was calculated from a set of variables (precipitation, temperature, solar flux,
total soil carbon and nitrogen, bulk density, elevation, and compound topographic index) at a resolution of 4 km.

provide a scientific understanding (i) of the
coupling of atmospheric, oceanic, and terres-
trial environments in India; (ii) of the nature
and pace of environmental change in India;
and (iii) of subsequent impacts on provision of

gate impacts of climate and environmental
chang 7).

The Indian subcontinent and the surround-
ing seas, with more than 1.3 billion people and

unique natural resources, have a significant
impact on the regional and global environment
but lack a comprehensive environmental ob-
servation network. Within the government
of India, the Department of Science and Tech-
nology (DST) has proposed filling this gap
by establishing INDOFLUX, a coordinated
multidisciplinary environmental monitor-
ing network that integrates terrestrial,
coastal, and occanic environments (sce ()
figure, right).

In a workshop held in July 2006 (8), a
team of scientists from India and the United
States developed the overarching objectives

for the proposed INDOFLUX. These are to ﬂ

The authors were members of an indo-U.S. bilateral
workshop on INDOFLUX. Affiliations are provided in the
supporting online material.

*Author for correspondence. E-mail: pvs@sdsmt.edu
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ccosystem services. Also, in order to evaluate
what will enable India to sustain its natural
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resources, these goals include an assessment of
the vulnerability and consequent risks to its

social and natural systems.

Climate change will alter the regional bio-
sphere-climate feedbacks and land-ocean cou-
pling. Although global models reliably predict
the trend in the impact of climate change

on India’s forest resources, the magnitude
of such change is uncertain (9). Similarly,
whereas all oceans show the influence of
global warming (10), the Indian Ocean
has shown higher-than-average surface
warming, especially during the last

five decades (77, 12). This warm-

ing may have global impacts (13,

14), even though the impact on

the Indian summer monsoons is

not well understood (735, 76). These
uncertainties highlight the need for
regional models driven by regional data

As the hypoxia observed in the Gulf

n of Mexico is related to agricultural prac-
tices in the watershed (/7), Indian Ocean
studies also indicate couplings between
mainland activities and offshore and

A schematic of the INDOFLUX proposal.

Placement of stations reflects different

climactic, vegetation, and land-use areas.

Final locations will be determined as

part of the formal science plan.

www.sciencemag.org
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Fig. 1 Map of the CTFS-ForestGEO network illustrating its representation of bioclimatic, edaphic, and topographic conditions globally.
Site numbers correspond to ID# in Table 2. Shading indicates how well the network of sites represents the suite of environmental fac-
tors included in the analysis; light-colored areas are well-represented by the network, while dark colored areas are poorly represented.
Stippling covers nonforest areas. The analysis is described in Appendix S1.

Table 1 Attributes of a CTFS-ForestGEO census

Attribute

Utility

Very large plot size

Includes every fre di

Resolve community and population dynamics of highly diverse forests with many
rare species with sufficient sample sizes (Losos & Leigh, 2004; Condit ef al., 2006);
quantify spatial patterns at multiple scales (Condit ef al., 2000; Wiegand et al., 2007a,b;
Detto & Muller-Landau, 2013; Lutz et al., 2013); characterize gap dynamics
(Feeley et al., 2007b); calibrate and validate remote sensing and models, particularly
those wn]\ large spatial grain (Mascaro et al., 2011; Réjou-Méchain et al., 2014)

woody stem >1 cm DBH
All individuals identified
to species

Diameter measured on

all stems

Mapping of all stems and

fine-scale topography

Census typically repeated
every 5 years

C the abundance and diversity of understory as well as canopy trees; quantify
the demography of juveniles (Condit, 2000; Muller-Landau et al., 2006a,b).
Characterize patterns of diversity, species-area, and abundance distributions
(Hubbell, 1979, 2001; He & Legendre, 2002; Condit et al., 2005; John et al., 2007;
Shen et al., 2009; He & Hubbell, 2011; Wang et al., 2011; Cheng et al., 2012); test theories
of competition and coexistence (Brown et al., 2013); describe poorly known plant species
(Gereau & Kenfack, 2000; Davies, 2001; Davies et al., 2001; Sonké et al., 2002;
Kenfack et al., 2004, 2006)
Characterize size-abundance distributions (Muller-Landau et al., 2006b; Lai et al., 2013;
Lutzet al., 2013); combine with allometries to estimate whole-ecosystem properties
such as biomass (Chave et al., 2008; Valencia et al., 2009; Lin et al., 2012; Ngoet al., 2013;
Muller-Landau et al., 2014)
Characterize the spatial pattern of populations (Condit, 2000); conduct spatially explicit
analyses of neighborhood influences (Condit et al., 1992; Hubbell et al., 2001;
Uriarte et al., 2004, 2005; Riiger et al., 2011, 2012; Lutz et al., 2014); characterize microhabitat
specificity and controls on demography, biomass, etc. (Harms ef al., 2001; Valencia et al., 2004;
Chuyong et al., 2011; align on the ground and remote sensing measurements (Asner et al., 2011;
Mascaro et al., 2011).
Characterize demographic rates and changes therein (Russo ef al., 2005; Muller-
Landau et al., 2006a,b; Feeley et nl 2007a; Lai et al., 2013; Stephenson et al., 2014);
1 ize changes in ition (Losos & Leigh, 2004; Chave et al., 2008;
Feeley et al., 2011; Swenson et al., 2012; Chlsho]m et al., 2014); characterize changes in
biomass or productivity (Chave et al., 2008; Banin et al., 2014; Muller-Landau et al., 2014)

©2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12712

Optimizing Sampling Networks

e The CTFS-ForestGEO global forest monitoring
network is aimed at characterizing forest
responses to global change

e The figure at left shows the global

representativeness of the CTFS-ForestGEO
sites in 2014

e Non-forested areas are masked with
hatching, and as expected, they are
consistently darker than the forested
regions, which are represented to varying
degrees by the monitoring sites

Anderson-Teixeira, K. J., et al. (2015), CTFS-ForestGEO: A Worldwide Network
Monitoring Forests in an Era of Global Change, Glob. Change Biol.,
21(2):528-549, doi:10.1111/gcb.12712.
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Representativeness for Alaska

Data Layers

Table: 37 characteristics averaged for the present (2000-2009) and the future (2090-2099).

Description Number/Name Units Source
Monthly mean air temperature 12 °C GCM
Monthly mean precipitation 12 mm GCM
mean day of year GCM

Dy i freges standard deviation days
mean day of year GCM

Lay ol o standard deviation days
Leneth of . mean days GCM

CngEh of growing season standard deviation days
Maximum active layer thickness 1 m GIPL

Warming effect of snow

Mean annual ground temperature at bottom
of active layer

Mean annual ground surface temperature
Thermal offset

Limnicity

Elevation

1

— = e

°C
€
“E
°C
%

m

GIPL
GIPL

GIPL

GIPL

NHD
SRTM

Hoffman, F. M., J. Kumar, R. T. Mills, and W. W. Hargrove (2013),
Representativeness-Based Sampling Network Design for the State of Alaska,
Landscape Ecol., 28(8):1567-1586, doi:10.1007/s10980-013-9902-0.
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Abstract Resource and logistical constraints limit
the frequency and extent of environmental observa-
tions, particularly in the Arctic, necessitating the
development of a systematic sampling strategy to
maximize coverage and objectively represent envi-
ronmental variability at desired scales. A quantitative
methodology for stratifying sampling domains,
informing site selection, and determining the repre-
sentativeness of measurement sites and networks is
described here. Multivariate spatiotemporal clustering
was applied to down-scaled general circulation model
results and data for the State of Alaska at 4 km?
resolution to define multiple sets of ecoregions across
two decadal time periods. Maps of ecoregions for the
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present (2000-2009) and future (2090-2099) were
produced, showing how combinations of 37 charac-
teristics are distributed and how they may shift in the
future. Representative sampling locations are identi-
fied on present and future ecoregion maps. A repre-
sentativeness  metric was  developed, and
representativeness maps for eight candidate sampling
locations were produced. This metric was used to
characterize the environmental similarity of each site.
This analysis provides model-inspired insights into
optimal sampling strategies, offers a framework for
up-scaling measurements, and provides a down-scal-
ing approach for integration of models and measure-
ments. These techniques can be applied at different
spatial and temporal scales to meet the needs of
individual measurement campaigns.

Keywords Ecoregions - Representativeness -
Network design - Cluster analysis - Alaska -
Permafrost

Introduction

The Arctic contains vast amounts of frozen water in
the form of sea ice, snow, glaciers, and permafrost.
Extended areas of permafrost in the Arctic contain soil
organic carbon that is equivalent to twice the size of
the atmospheric carbon pool, and this large stabilized

) Springer
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10 Alaska Ecoregions, Present and Future

(Hoffman et al., 2013)

1000 km

1000 km

2000-2009 2090-2099

e Since the random colors are the same in both maps, a change in color represents an
environmental change between the present and the future.

e At this level of division, the conditions in the large boreal forest become compressed onto the
Brooks Range and the conditions on the Seward Peninsula “migrate” to the North Slope.




20 Alaska Ecoregions, Present and Future

(Hoffman et al., 2013)

1000 km
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1000 km

2000-2009 2090-2099

e Since the random colors are the same in both maps, a change in color represents an
environmental change between the present and the future.

e At this level of division, the two primary regions of the Seward Peninsula and that of the
northern boreal forest replace the two regions on the North Slope almost entirely.




Sampling Site Representativeness

e This representativeness analysis uses the standardized n-dimensional data
space formed from all input data layers

e In this data space, the Euclidean distance between a sampling location (like
Barrow) and every other point is calculated

e These data space distances are then used to generate grayscale maps showing
the similarity, or lack thereof, of every location to the sampling location

e Inthe subsequent maps, white areas are well represented by the sampling
location or network, while dark and black areas as poorly represented by the
sampling location or network

e This analysis assumes that the climate surrogates maintain their predictive
power and that no significant biological adaptation occurs in the future



(Hoffman et al., 2013)

Network Representativeness: Barrow vs. Barrow + Council

Light-colored regions are well represented and dark-colored regions are poorly represented by
the sampling location listed in red.




State Space Dissimilarities: 8 Sites, Present (2000-2009)

Table: Site state space dissimilarities for the present (2000-2009).

Toolik Prudhoe

Sites Council Atgasuk Ivotuk Lake Kougarok Bay  Fairbanks
Barrow 9.13 4.53 5.00 5.87 7.98 3.57 12.16
Council 8.69 6.37 7.00 2.28 8.15 5.05
Atqasuk 5.18 5.23 7.79 1.74 10.66
lvotuk 1.81 5.83 4.48 7.90
Toolik Lake 6.47 4.65 8.70
Kougarok 7.25 5.57
Prudhoe Bay 10.38




State Space Dissimilarities: 8 Sites, Present and Future

Table: Site state space dissimilarities between the present (2000-2009) and the future (2090-2099).

Future (2090-2099)
Toolik Prudhoe
Sites Barrow Council Atqasuk Ivotuk Lake Kougarok Bay  Fairbanks

Barrow 3.31 9.67 4.63 6.05 5.75 9.02 3.69 11.67
Council 8.38 1.65 8.10 591 6.87 3.10 7.45 5.38
Atgasuk 6.01 9.33 2.42 546 5.26 8.97 2.63 10.13
lvotuk 7.06 7.17 5.63 153 205 128 4.87 7.40
Toolik Lake 7.19 7.67 6.07 248 1.25 7.70 5.23 8.16
Kougarok 7.29 3.05 6.92 557 6.31 251 6.54 5.0
Prudhoe Bay 5.29 8.80 3.07 475 4.69 8.48 1.94 9.81
Fairbanks 12.02 549 10.36 7.83 8.74 6.24 10.10 1.96

Present (2000-2009)




Sampling Network Design
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Triple-Network Global Representativeness

NSF's NEON Sampling Domains

Gridded data from satellite and
airborne remote sensing, models, and
synthesis products can be combined to
design optimal sampling networks and
understand representativeness as it
evolves through time
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(Maddalena et al., in prep.)




50 Phenoregions for year
2012 (Random Colors)

250m MODIS NDVI
Every 8 days (46 images/year)
Clustered from year 2000 to present

Cluster 11 || Cluster 49 || Cluster 15 || Cluster 48 || Cluster 31 || Cluster 16 || Cluster 47 || Cluster 20 || Cluster 35 || Cluster 33
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Cluster 45 || Cluster 6 || Cluster 18 || Cluster 36 || Cluster 28 Cluster 32 || Cluster 44 || Cluster 34 || Cluster 17
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Earthinsights

day of year

50 Phenoregion Prototypes
(Random Colors)

(Hargrove et al., in prep.)




50 Phenoregions Persistence
and
50 Phenoregions Max Mode
(Similarity Colors)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
L I I I I 1 1 I I I I

2 r z Principal Components
g |— " Analysis

PC1 ~ Evergreen

_ PC2 ~ Deciduous

" PC3 ~ Dry Deciduous

T T T
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month of Year

(Hargrove et al., in prep.)




GSMNP: Spatial distribution of the 30 vege’ro e’
Clusters across the national park a, AT

Extracted canopy height and structure from
airborne LiDAR

10 km
I

Earthinsights (Kumar et al., in prep.)



GSMNP: 30 representative vertical structures
cluster centroids) identified

tall forests with low
understory vegetation

|

Height (m)

forests with slightly lower
mean height with dense
understory vegetation

low height grasslands and
heath balds that are small
in area but distinct
landscape type

Earthinsights

Height (m) Height (m) Height (m)

Height (m)

[1]3.55% [2] 3.96% [3]2.42% [4]5.01% [5]5.81%
60 _ 60 _ 60 _ 60 __ 60
50 E 50 E 50 E 50 E 50
40 Z 4 = 4 = 40 Z 4
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0 10 20 30 0 10 20 30 40 0 10 20 30 40 0 10 20 30 10 20 30 40
% of Prof % of Profile % of Profile % of Profile % of Profile
[615.29% [712.35% (8] 2.82% [9] 2.00% [10] 4.83%
__ 60 __ 60 __ 60 __ 60
E 50 Es0 E 50 E 50
£ 40 = a0 = 40 Z 4
=30 S 30 S 30 =30
220 22 £ 20 £ 20
10 10 10 10
0 3 0 0
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 10 20 30 10 20 30 40
% of Profile % of Profile % of Profile % of Profile % of Profile
[11] 2.60% [12] 4.00% [13] 1.22% (14] 0.47% [15] 2.92%
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40 = 4 1 240 Z 4
30 S30 530 &30
20 22 220 £ 2
10 10 0 10
0 0 0 [
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[16] 5.42% 18] 1.64% [19]3.83% [20]1.73%
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50 E S0 E 50 E
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0 0 0 0
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% of Profile % of Profile % of Profile % of Profile
[21] 1.82% [22] 1.90% [23] 2.49% [24] 3.79% [25] 3.25%
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50 E 50 E 50 E 50 E 50
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* (Kumar et al., in prep.)




Global Fire Regimes

Regions that exhibit similar fire seasonality globally
From MODIS “Hotspots” at 1 km resolution from 2002-2018

Earthinsights (Norman et al., submitted)




Vegetation Distribution at Barrow Environmental Observatory

Phenology Representativeness

v

July 26, 2010 Representativeness

/!

Representativeness map for vegetation
sampling points in sites A, B, C, and D with
phenology (left) and without (right) from
WorldView2 multispectral imagery for the
year 2010 and LiDAR data

Example plant functional type (PFT)
distributions scaled up from vegetation
sampling locations

Site A Site B Site C

In situ data from field measurement activities inform the
development of wide-scale maps of vegetation distribution
through inference using remote sensing data as surrogate
variables, and relationships with environmental controls

can be extracted

Langford, Z. L., et al. (2016), Mapping Arctic Plant Functional Type
Distributions in the Barrow Environmental Observatory Using

Site D

Site A Site B

Site C

WorldView-2 and LiDAR Datasets, Remote Sens., 8(9):733,

doi:10.3390/rs8090733.

Site D

0sses

Wet Tundra Graminoid



https://doi.org/10.3390/rs8090733

Arctic Vegetation Mapping from Multi-Sensor Fusion

Used Hyperion Multispectral and IfSAR-derived Digital Elevation Model, applied cluster analysis, and
trained a convolutional neural network (CNN) with Alaska Existing Vegetation Ecoregions (AKEVT)

—— Kougarok Watershed

Vegetation Type

Bl Rock

B Water

I Alder-Willow Shrub

I Mixed Shrub-Sedge Tussock Tundra
[ | Dryas/Lichen Dwarf Shrub Tundra
[ Sedge-Willow-Dryas Tundra

Langford, Z. L., et al. (2019), Arctic Vegetation Mapping Using Unsupervised Training Datasets and Convolutional Neural
Networks, Remote Sens., 11(1):69, doi:10.3390/rs11010069.
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Satellite Data Analytics Enables Within-Season Crop Identification

Earliest date for crop type classification

s CON e Fallow m SOrghum
s SOybeans e Other Hay Rice
Loy — Winter Wheat Alfalfa WV Earliest Classification Date

?

w
o
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S
o
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User's Accuracy (%)
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rapes g CDL Cluster-then-label map
Almonds F g = [
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tachios
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Figure: a) Comparison of cluster-then-label crop map with 20

)
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I
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I
1
1
|
I
11
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|
]
|
|
|
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|
1
I
|

USDA Crop Data Layer (CDL) shows similar patterns at —— Wl v " ',3'6 —
continental scale. b) Good spatial agreement is found at P 0 e® W et o (o0 pecdOgec®

three selected regions, but cluster-then-label crop maps Konduri, V. S., J. Kumar, W. W. Hargrove, F. M. Hoffman, and A. R.
lack sharpness at field boundaries due to coarser Ganguly (2020), Mapping Crops Within the Growing Season
resolution of MODIS data. Across the United States, Remote Sens. Environ., 251, 112048,

doi:10.1016/j.rse.2020.112048.
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Watershed-Scale Plant Communities Determined from DNN and AVIRIS NG

3T PR e

Kougarok o t, g “
Council

Teller

Legend
@ Alder-Willow Shrub © Sedge-Willow-Dryas Tundra
© Birch-Ericaceous-Lichen Shrub Tundra @ Tussock-Lichen Tundra

@ Dryas-Lichen Dwarf Shrub Tundra © Wet Meadow Tundra

© Ericaceous Dwarf Shrub Tundra © Wet Sedge Bog-Meadow

@ Mesic Graminoid-Herb Meadow O Willow Shrub

@ Mixed Shrub-Sedge Tussock Tundra X J thlow-Bu';h Shrub

At the Watershed scale, vegetation community distribution follows topograph/c and water controls.
At a fine scale, nutrients limit the distribution of vegetation types.

Earthinsights (Konduri et al., in pre

)



Climate Change Mitigation through Climate Intervention

The increasing severity of extreme events
and wildfire is threatening utilities, built
infrastructure, and economic & national
security

Loss of life and property is motivating
consideration of climate intervention or
geoengineering

In addition to carbon dioxide removal (CDR)
through direct air capture (DAC) and other
means, interest is growing in reducing or

stabilizing Earth's surface temperature 2 | Boenaray it ool

31 ;::‘CE:’rZ?:d(LJBCi(?::r:d burial 8 | Space mirrors
Solar radiation management (SRM) is an = e
approach to partially reduce warming, and A AR

7 | Direct air CO, capture and storage (DACCS)

stratospheric aerosol intervention (SAl) by

T _ A wide variety of natural solutions and geoengineering techniques are
injecting sulfur into the lower stratosphere proposed for mitigating the effects of climate change. Adopted from

is considered the most feasible scheme Lawrence et al. (2018).




Potential Ecological Impacts of Climate Intervention

Species %E\‘

Distributions?

Wildfire?

)
Biodiversity '{Jﬁ

5 ?
Phenology? Hotspots? N\ =~ Species Interactions

N, & Food Webs?

Ecosystem  Hydrology? > =

Subsidies ~ o

Biogeochemistry? ARSI 00329009 WU =
9 ¥ Migrations? Ecosystem

Drought g ~0 Services?

0980800gg, Soil Moisture 77 e )/ ] )

Soil Microbes ‘ 4 5/ <= eg.,Fisheries) o>

Although some effects of SRM with SAI on climate are known from certain

SAl scenarios, the effects of SAl on ecological systems are largely unknown.

Adopted from Zarnetske et al. (2021).

e While climate research has focused on
predicted climate effects of SRM, few
studies have investigated impacts that
SRM would have on ecological systems

e Impacts and risks posed by SRM would
vary by implementation scenario,
anthropogenic climate effects,
geographic region, and by ecosystem,
community, population, and organism

e Atransdisciplinary approach is

essential, and new modeling
paradigms are required, to represent
complex interactions across Earth
system components, scales, and
ecological systems



The National Acadenties of
SCIENCES « ENGINEERING + MEDICINE

Climate Intervention Research
g 3

A 2021 report from the National Academies of ‘
Sciences, Engineering, and Medicine (NASEM)
concludes a strategic investment in research is
needed to advance policymakers’ understanding
of climate response options.

The US should develop a transdisciplinary ,.REﬂECtlng
research program, in collaboration with other Su n||g ht _
nations, to advance understanding of solar % “RE:ommendations for SOl
geoengineering’s technical feasibility and e
effectiveness, possible impacts on society and the

environment, and social dimensions such as
public perceptions, political and economic
dynamics, and ethical and equity considerations.




@'Y Geoengineering Increases the Global Land Carbon Sink

RUBISCO
Objective: To examine stratospheric aerosol intervention (SAl) impacts

on plant productivity and terrestrial biogeochemistry.

GEOENG-CTRL PgC

Approach: Analyze and compare simulation results from the
Stratospheric Aerosol Geoengineering Large Ensemble (GLENS) project - =
from 2010 to 2097 under RCP8.5 with and without SAI.  — o T —

Results/Impacts: In this scenario, SAl causes terrestrial ecosystems to —wo T
store an additional 79 Pg C globally as a result of lower ecosystem o -
respiration and diminished disturbance effects by the end of the 21%t ;E

century, yielding as much as a 4% reduction in atmospheric CO, mole  °

fraction that progressively reduces the SAl effort required to stabilize w0y °2

surface temperature. w0 a0 vk e w0z
Yang, C.-E., F. M. Hoffman, D. M. Ricciuto, S. Tilmes, L. Xia, D. G. MacMartin, B. Kravitz, J. H. Figure: The larger sink under SAl
Richter, M. Mills, and J. S. Fu (2020), Assessing Terrestrial Biogeochemical Feedbacks in a L’)‘;;%%S;dw'ﬁir;ﬂ Svitﬁéaffdﬁycﬁhigc
Strategically Geoengineered Climate, Environ. Res. Lett., doi:10.1088/1748-9326/abacf7. projected atmospheric CO, level,

OAK A L 'V .
V[4)

Argonne° RS ’N ﬁ)sAlamos ﬁ NCAR
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http://iopscience.iop.org/10.1088/1748-9326/abacf7

Exploring Feedbacks of SAI

A no climate change mitigation + SAIl deployment

e To fill research gaps in understanding Earth system feedbacks of

SAl on ecosystems, we are conducting a series of increasingly ol il fé
complex geoengineering simulations with DOE’s Energy Exascale g - : =
Earth System Model (E3SM) g seonsiemimpacts |2
5 12
e Simulations will mimic effects of CDR, SAI, and CDR plus SAI 2 E
I9 |Temperature l ‘z_
e Start with SSP5-3.4-0OS mid-range overshoot CO, trajectory from ty
CMIP6, which prescribes a drawdown of CO, -
e Global surface temperatures will rise by >2.5°C around 2040, above B climate change mitigation + SAI peak shaving
the 2°C threshold that may induce irreversible impacts
‘ .\oo" .
e Next, introduce SAIl to simultaneously cool the surface until 9 _é\&“’s N
drawdown is sufficient to assure < 2°C warming, called g ¥ cutemissions &
temperature “peak shaving” g %, g
=% G
5 = P, o
e To quantify feedbacks from reducing, not increasing, atmospheric = " [ "’\fg
CO,, but may not capture all the as yet unobserved processes E
> O
Time TN



Leveraging Advances in Machine Learning for Earth Sciences

Existing machine learning techniques can improve understanding of biospheric
processes and representation in Earth system models

Machine learning tasks Earth science tasks Machine learning tasks Earth science tasks

c Video prediction Short-term forecasting
a Object classification and localization Pattern classification

Dog: 0.994

|Cat: 0.982,’:

Predict future visual
representation

b Super-resolution and fusion Statistical downscaling and blending » &)

e ¢ Xq)
e |
f;;u?( :azm;ﬁazs G{ﬁﬁﬂd el i i il W o , \VT/‘ d Language translation Dynamic time series modelling
A biEhah i wes T/ Er liebte zu essen . Real vs predicted humidity values

i REE oo \T//” Sotmax i H H W H N D
bz, - \| »,jk Decoder # A 'r/,\
7 : * + + 4 8 AN LN N
ANV

Er liebte zu essen Nul S

; ) ( . Encoder
\{\5 Embed ; ; ; ;

He loved to eat » Time

U

-

Figure 2 in Reichstein et al. (2019)



Machine Learning for Understanding Biospheric Processes

Widening adoption of deep neural networks and growth of climate data are fueling interest
in AlI/ML for use in weather and climate and Earth system models
ML potential is high for improving predictability when (1) sufficient data are available for

process representations and (2) process representations are computationally expensive
Example methods for improving ELM capabilities \‘°""”4/»

ON Ty,
by exploring ML and information theory é;,““ K
approaches: (SSHEDS }

o Soil organic carbon & radiocarbon <>~
o Wildfire

o Methane emissions

o Ecohydrology

All of these applications involve
unresolved, subgrid-scale e
processes that strongly influence
results at the largest scales

EAF TR4 /’

STOyy, 4’

EARTH SYSTEMS
PREDICTABILITY

®00ELS

"\\6’«‘“ -




Hybrid Modeling of Wildfire Activities

e Improve model simulations of wildfire
processes, including ignition, fire duration, and — ] [ o } [ — ]
spread rate with Deep Neural Network models

Ignition factors

E s + I
e Improve simulated wildfire emissions and e ;
their impacts on atmospheric properties, :
. . 1
including aerosols, greenhouse gases, |
Fuel conditions !

phosphorus transport, and pollutants (ree coverage,biomass, : S
1
I
I
I
I

Anthropogenic
suppression
(Gor}

fitter moisture, fitter
temperature}
e Improve the projection of near-future and F——
. . . ... [precipitation, temperature,
long-term dynamics of wildfire activities wind, humidy]

e Accelerate E3SM coupled land-atmosphere
modeling activities for wildfire research

Deep Neural Network surrogate model

e Explore online ML training/validation strategy Zhu et al. (2022)
for E3SM coupled model simulations




Hybrid ML/Process-based Modeling for Terrestrial Modeling

' Competition ! !

Dynamic
7 Biogeography
Dispersal

Age Structure

In the hierarchy of land
model processes, we start
with the photosynthesis
parameterization because

Atmosphere

Insects and Disease

Extremes (drought,
_cold ete)

Heterotrophs

e Multiple hypotheses N |

e Many leaf-level oY/ -Mmy
measurements w e

e Most computationally R Notdnt Bynamics

I nte n S IVe pa rt Of th e |a n d ( Snow and Ice ) Gum.—ophic R/espimﬁoa C Tran\;piraﬁm ) { Trace Gas Emissions )

Streams and Rivers)
il N

(o) | (e
(Figure from P. E. Thornton) (et )




Hybrid ML/Process-based Modeling for Terrestrial Modeling

Individual processes can be T Doy B P

[_Agng ||~ 4
represented by a i I \
Uitz ¢ > - //l:iiz-;gt Physiology \\\

multi-hypothesis approach, o |
Photosynthesis| o [[Allometry |

|| [[_Assimilation [_Cstorage | Disturbance
O p p O rtu n Ity O r a Transport Vertical Transp., ranspiration Iml ire
[ &v0G | [stoichiometry| [ Tumover ]

data-derived hypothesis that TN

<> Soil Physics Assembl,
i How Hydrology = . ¢
and ML provides an ; Gl [ (e e ey
Ve
7
<>

Interception
& Evaporation

Optical
Properties

{0

Drought

g
\ Xylem [ Respiration | [ Allometry |
’ ~| Transport

can be further explored or e e | I N
used to calibrate other L v:\\

hypotheses, when sufficient | /e o \ Toweriaren] (o] | > []

[ Cstorage | [ Growth |

3

+ ¢

Ball-Berry roey i -
| mmobilization Water Uptake o0t Agriculture
- | Respiration | [ Allometry |
Plant Hydraulics

| Microbial Ecol. IN n \ Fertilizer
trient Uptak \
A New Hypothesis st e | C Storage | Growth |
Harvest

H Somatalond. \ _Mineralisation S =\ ¢T ]
data are available. \

| Redox

Machine Learning Xylem Ti :
issue Nutrient|
\ Subtiodd ||/ [omerer ]
\ (e.g., fixed / Vertical ¢ ¢¢
conductance) Transport - = = =4
&Leaching | Seed Production| [ Recruitment| | Mortality | \ v
N A e
As - Y

(FIS her and Kove n, 2020) (a) Process Schematic of a Possible Full-Complexity Configuration of a Land Surface Model




Al-Constrained Ecohydrology for LANL, Porn Sate sl
Improving Earth System Predictions Contact: Forrest M. Hoffmar

Project to prototype machine learning-based parameterizations
for stomatal conductance and photosynthesis
o Photosynthesis is a computationally expensive part of land
models and leaf-level flux and phenology data are available
o Use combinations of leaf-level and plant hydrodynamics data
to build ML models of C3, C4, and CAM vegetation
o Investigate ML approaches for scaling to canopies and
watersheds
o Prototype hybrid ML-/process-based components within the
E3SM Land Model (ELM)

o Future efforts:

» Conduct regional and global simulations to benchmark different combinations
of process-based and ML modules
» Explore approaches for building hybrid modeling interfaces within ELM

@ ENERGY ZUAI4ESP




The Future is Bright for AI/ML in Earth System Science

A Convergence of New Technology, Explosive Data Growth, and Free Tools
o High performance computing (exascale in big centers and commercial cloud)
o Large data storage resources (commercial and on-premise cloud)
o High speed networks (e.g., ESnet) and data movement technologies (Globus)
o Satellites (shoebox CubeSats) and airborne (drones) platforms
o Cheap (free!) and easy-to-use ML tools (PyTorch, Keras, Scikit-Learn)

Future Applications Could Revolutionize Our Understanding and Ability to Predict
o Poorly understood processes and mechanisms can be mimicked with adequate
amounts of data and advanced ML techniques
o Explainable Al and systematic approaches to modeling could lead to new scientific
discoveries and improved understanding of the Earth system
o Predictions of complex, nonlinear, large-scale phenomena and natural hazards

could be predicted with increasing accuracy -
® SYAI4ESP




International Land Model Benchmarking
(ILAMB)



nterannual Variability of Atmospheric Carbon Dioxide
T T T T T 1T T T 1T 1T

b

What is a Benchmark?
RUBISCO

e A benchmark is a quantitative test of model
function achieved through comparison of model
results with observational data N e
e Acceptable performance on a benchmark is a S e
necessary but not sufficient condition for a fully /o9 oftenfallto capture the ampiitude of

the seasonal cycle of atmospheric CO,

o N
|

0
|

4
=8

Detrended CO, mixing ratio (ppm)

Sand Island, Midway, USA
|
1: 2

functioning model A I
e Functional relationship benchmarks offer tests %i 5
of model responses to forcings and yield insights éwoo— i
into ecosystem processes ; ool :
e Effective benchmarks must draw upon a broad : g
set of independent observations to evaluate -5 55;%;]3;2?0“ (;if(’yﬂf("“ g
model performance at multiple scales Models may reproduce correct responses over

only a limited range of forcing variables

OAK A L V&
i

Argonne° RRIHOROATEN, :N ﬁ)sAlamos h NCAR

NATIONAL LABORATORY  wamow

NATIONAL LABORATORY




Why Benchmark Models?
RU BISCO

e To quantify and reduce uncertainties in carbon cycle feedbacks to improve
projections of future climate change (Eyring et al., 2019; Collier et al., 2018)

e To quantitatively diagnose impacts of model development on hydrological
and carbon cycle process representations and their interactions

e To guide synthesis efforts, such as the Intergovernmental Panel on Climate
Change (IPCC), by determining which models are broadly consistent with
available observations (Eyring et al., 2019)

e Toincrease scrutiny of key datasets used for model evaluation

e To identify gaps in existing observations needed to inform model
development

e To accelerate delivery of new measurement datasets for rapid and
widespread use in model assessment

BROOKHFVEN

0 Wy .
Argonne° ﬁ)sAlamos ﬁNCAR ¥RSDKGE

NATIONAL LABORATORY [CEITSESEWEI .  NATIONAL LABORATORY  NATIONALCENTER FOR ATMOSPHERIC RESEARCH




What is ILAMB?

RUBISCO
A community coordination activity created to:

Argon ne° BROOKHRVEN :\|\

Develop internationally accepted benchmarks
for land model performance by drawing upon
collaborative expertise

Promote the use of these benchmarks for Energy and Water Cycles
model intercomparison . s
Strengthen linkages between experimental,
remote sensing, and Earth system modeling

communities in the design of new model tests
and new measurement programs

Support the design and development of open \
source benchmarking tools Carbon and Biogeochemical Cycles

Emissions

aaaaa
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Date | Office of
DOE/SC-XXXX | doi:10.7249/XXXXXXXX b NERGY Science

2016

International Land Model
Benchmarking (ILAMB)
Workshop Report

2016 Internatlonal LandModeIBenchmarklng (ILAMB) Workshop
May 16-18, 2016, Washington, DC
Third ILAMB Workshop was held May 16-18, 2016
e Workshop Goals
o Design of new metrics for model benchmarking
o Model Intercomparison Project (MIP) evaluation needs
o Model development, testbeds, and workflow processes
o Observational datasets and needed measurements
e Workshop Attendance
o 60+ participants from Australia, Japan, China, Germany,
Sweden, Netherlands, UK, and US (10 modeling centers)
o ~25remote attendees at any time (Hoffman et al., 2017)
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Development of ILAMB Packages

RUBISCO
e ILAMBV1 released at 2015 AGU Fall Meeting Town s g 5 5 8 §
Hall, doi:10.18139/ILAMB.v001.00/1251597 552888 §n2344
e ILAMBV2 released at 2016 ILAMB Workshop,  oumeanl W
doi:10.18139/ILAMB.v002.00/1251621 T et e o o

Global Net Ecosystem Carbon Balance

Net Ecosystem Exchange

e Open Source software written in Python; runs in Beomysiegi Fesrliation
Evapotranspiration

parallel on laptops, clusters, and supercomputers Laterit Heat

"=

Terrestrial Water Storage Anomaly

. ) . Albedo
e Routinely used for land model evaluation during i T
development of ESMs, including the E3SM Land SUSES LOWeniEn Rese o

Model (Zhu et al., 2019) and the CESM Community A
Surface Air Temperature

Land Model (Lawrence et al., 2019) Precipitation

Surface Downward SW Radiation
Surface Downward LW Radiation

. : |
e Models are scored based on statistical comparisons
0 02505075 1 -2 -1 +0 +1 +2

and functional response metrics YaraDeseor  MenAbe S
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https://dx.doi.org/10.18139/ILAMB.v001.00/1251597
https://dx.doi.org/10.18139/ILAMB.v002.00/1251621

ILAMB Produces Diagnostics and Scores Models
RUBISCO

e [LAMB generates a top-level portrait plot of models scores

e For everyvariable and dataset, ILAMB can automatically produce
o Tables containing individual metrics and metric scores (when relevant to the data), including
Benchmark and model period mean
Bias and bias score (S,, )
Root-mean-square error (RMSE) and RMSE score (Srmse)
Phase shift and seasonal cycle score (Sphase)
Interannual coefficient of variation and IAV score (S, )
Spatial distribution score (S )
m Overallscore(S ) =————fp G =
o Graphical diagnostics
m Spatial contour maps
m Time series line plots
m Spatial Taylor diagrams (Taylor, 2001)

e Similar tables and graphical diagnostics for functional relat|onsh|ps

OAK %
RIDGE

Sbias + 2SI‘IIIS€ + Sphase + Siav + Sdist
1+42+1+1+41
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RUBISCO

.
Argonne° RROROEN ﬁjsAlamos h NCAR

ILAMBv2.6 Package Current Variables

Biogeochemistry: Biomass (Contiguous US, Pan Tropical Forest), Burned area (GFED3),
CO, (NOAA GMD, Mauna Loa), Gross primary production (Fluxnet, GBAF), Leaf area index
(AVHRR, MODIS), Global net ecosystem carbon balance (GCP, Khatiwala/Hoffman), Net
ecosystem exchange (Fluxnet, GBAF), Ecosystem Respiration (Fluxnet, GBAF), Soil C
(HWSD, NCSCDv22, Koven)

Hydrology: Evapotranspiration (GLEAM, MODIS), Evaporative fraction (GBAF), Latent heat
(Fluxnet, GBAF, DOLCE), Runoff (Dai, LORA), Sensible heat (Fluxnet, GBAF), Terrestrial
water storage anomaly (GRACE), Permafrost (NSIDC)

Energy: Albedo (CERES, GEWEX.SRB), Surface upward and net SW/LW radiation (CERES,
GEWEX.SRB, WRMC.BSRN), Surface net radiation (CERES, Fluxnet, GEWEX.SRB,
WRMC.BSRN)

Forcing: Surface air temperature (CRU, Fluxnet), Diurnal max/min/range temperature
(CRU), Precipitation (CMAP, Fluxnet, GPCC, GPCP2), Surface relative humidity (ERA),
Surface down SW/LW radiation (CERES, Fluxnet, GEWEX.SRB, WRMC.BSRN)
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2 FEFOENIT o FY
VS 0 e S FFILETETE S LTS EEE
R U B I s Co o Ecosystem and Carbon Cycle -
Biomass

Burned Area
Carbon Dioxide

e The CMIP6 suite of land models (right) Gros Prmary Produciy

Leaf Area Index

Global Net Ecosystem Carbon Balance | ]

has improved over the CMIP5 suite of

Ecosystem Respiration

Soil Carbon

land models (left)
Evapotranspiration
Evaporative Fraction
Latent Heat

e The multi-model mean outperforms

Sensible Heat

Terrestrial Water Storage Anomaly

any single model for each suite of

Radiation and Energy Cycle

d | Albedo

m O e S Surface Upward SW Radiation
Surface Net SW Radiation
Surface Upward LW Radiation

e The multi-model mean CMIP6 land e

Forcings
1 " b t d |' Y | | Surface Air Temperature
model is the “best model” overa e e
Diurnal Min Temperature
. . 7 Diurnal Temperature Range
Why did CMIP6 land model
. y I a n m O e S I m p rove ° Surface Relative Humidity
Surface Downward SW Radiation
Surface Downward LW Radiation
Relationships
Relative Scale BurnedArea/GFEDAS

-... GrossPrimaryProductivity/GBAF

Worse Value  Better Value Leatarealnded AVHRR
LeafArealndex/MODIS
. o . Evapotranspiration/GLEAM
(H Offm an et a I oy N p re p) Missing Data or Error Evapotranspiration/MODIS l_l




bce-csmi-1 BCC-CSM2-MR CanESM2 CanESM5

gm2d1 gm2dt gm2d1 gm-2d1

CESM1-BGC CESM2 GFDL-ESM2G GFDL-ESM4

-4 -3 -2 -1 0 1 2 3 4 -a -3 -2 -1 0 1 2 3 4
gm2d-t gm2d-t gm2dl gm2d

IPSL-CM5A-LR IPSL-CM6A-LR MeanCMIP5 MeanCMIP6




. Gross Primary Productivity

e Multimodel GPP is compared with global

seasonal GBAF estimates

bee-csmil-1 [-] 123. 112. 114. 8.79 0.0945 0238 151 1.01 0.484 0.435 0.830 0.955 0.628

BCC-CSM2-MR  [:] 114. 107. 113. 5.88 0.671 -0.0233 152 1.11 0.479 0.447 0.817 0.941 0.626

etz e We can see _ ,
CanESM5 [-] 141. 128. 114. 10.1 0.730 1.87 1.60 0.449 0.418 0.710 0.948 0.589 Spat|a| Taylor Dlagram

CESM1-BGC  [] 129. 123. 113. 555 0.660 0.379 1.66 1.20  0.426 0.468 0.765 0.889 0.603 | m p rove m e nts §0_o01
2.0 v 0.2

CESM2 [-] 110. 104. 113. 557 0.642 -0.0542 1.62 1.32 0.458 0.466 0.774 0.933 0.619

CanESM2 [-] 129. 117. 114. 9.54 0.0601 2.31 2.00 0.388 0.437=

.

GFDL-ESM2G  [] 167. 152. 114. 124 126 278 138 0377 0735 0.897= g t 18

GFDL-ESM4  [] 105. 99.0 114. 6.8 -0.177 159 149  0.495 0.403 0.702 0.939 0.588 a CrOSS e N e ra IO n S -

IPSL-CM5A-LR  [] 165. 150. 113. 117 0515 118 268 120 0.781 0.896 f d I ( g i

IPSL-CMBA-LR  [:] 115. 109. 113. 527 0708  0.111 139 114 0.790 0.961 O m O e S e. o 14

MeanCMIP5  [] 121. 115. 114. 6.65 0574 1.41 0.981 0.799 0.965 [0 C ES M 1 VS. C ES M 2, i

MeanCMIP6  [-] 116. 110. 114. 6.26 0129 1.17 0931 0.826 0.956

MIROC-ESM  [-] 129. 118. 102. 9.04 114 0396 190 1.27 0463 0435 0.767 0.920 I PS L_C M 5 A VS. 6 A) 1.0

MIROC-ESM2L [:] 116. 104. 113. 9.90 0.119  -0.0111 1.95 199  0.409 0.920 0,543 o

MPI-ESM-LR  []] 169. 159. 104. 8.91 9.81 136 236 129 0402 0371 0.715 0.930 0558

MPI-ESM12-LR [:] 141. 133. 104. 6.89 9.81 0725 206 113  0.409 0.393 0.769 0.925 0.578 (] Th e m ea n C M I P6 0.6

NOrESML-ME  [] 129. 120. 114. 7.82 0386 1.86 125 |0.387 0.456 0.761 0583 a

NOrESM2-LM  [:] 107. 97.5 114. 7.59 -0.0828 1.63 1.31  0.443 0.472 0.791 0.938 0.623 a n d C M | P5 m Od e | S %
0.2

UK-HadGEM2-ES [-] 137. 130. 113. 6.93 0.848 0.602 2.01 1.10 0.389 0.388 0.820 0.568

UKESM1-0-LL  [] 126. 119. 113. 7.06 0.825 0.387 1.77 1.16 0.436 0.419 0.791 0.924 0.598 pe rfo rm beSt 0.0 T L /
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& Reasons for Land Model Improvements
RUBISCO

ESM improvements in climate forcings (temperature, precipitation, radiation) likely

Mean CMIP5

-10 10

Incoming Radiation Bias [W/m2]

Mean CMIP6

(Hoffman et al., in prep)
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Reasons for Land Model Improvements
RUBISCO

Mean CMIP5

Differences in bias
scores for
temperature, ¥ CepbwemesSae] | EecplbmbheSerell] oo Bedation esgemet)
precipitation, and

incoming radiation
were primarily
positive, further
indicating more
realistic climate
representation

Mean CMIP6

Improvement

-04 -03 -0.2 -0.1 00 01 02 03 04 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 -0.20 -0.15 -0.10 —0.05 0.00 0.05 0.10 0.15 0.20
Temperature Bias Score [1] Precipitation Bias Score [1] Incoming Radiation Bias Score [1]

(Hoffman et al., in prep)
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RU BISCO

While forcings got better, the largest

Improvements were in

variable-to-variable relationships,
suggesting that increased land model
complexity was also partially responsible

for higher CMIP6 model scores

Overall Score Improvement

Reasons for Land Model Improvements

W Forcings ® CanESM5 ® MIROC-ES2L
A Relationships ® CESM2 ® MPI-ESM1.2-HR
® Other ® UKESM1-0-LL ® NorESM2-LM
® BCC-CSM2-MR ® IPSL-CM6A-LR
A 393 dataset/model pairs improve
0.6 - A total improvement is 21.0
mean improvement per pair is 0.054
A
- A
0.4 1 ° ot
®
0.2 -
0.0 -
—0.2 A
135 dataset/model pairs degrade
total degradation is 4.7 & ®
mean degradation per pair is 0.035
0.0 0.2 0.4 0.6 0.8 1.0

CMIP5 Overall Score




CMIP5 ESMs CMIP6 ESMs

ILAMB & IOMB CMIP5 vs 6 Evaluation

(a) Land Benchmarking Results
Land Ecosystem & Carbon Cycle |o.

PSL-CM5A-LR
MIROC-ESM
BCC-CSM2-MR
CanESM5
IPSL-CM6A-LR
MIROC-ES2L
MPI-ESM1.2-LR

.| NorESM2-LM
UKESM1-0-LL

GFDL-ESM2G
CESM2

bcc-csml-1
CESM1-BGC
MPI-ESM-LR
NorESM1-ME
HadGEM2-ES
Mean CMIP5
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Biomass 020045 0.40) 0.26[-1.07] 92 0.74 [-0.20[-:0.54(0.16 |0.9: 01/1.0411.23
Burned Area -0.87, 0.10[0.83]

Leaf Area Index |o.200.64 0.01{0.30/0.01 [AREBL0.16 | 0.27 [0.08 [0.34 | 0.70[1.20[0.82 0.46 |0.37 0.69 | 1.0

Soil Carbon |027 0.07[0750.47}0.03}1.24[0.07 [0.23 [B88 0.99] 0.900.75/-0.17/0.24 | 1.01

® (a) I LAM B an d (b) | O M B h ave be en u Sed to Gross Primary Productivity [05e[123[0.01 EER 77| 0.04]0.59 ] 0.38[1.27[1.02 =0

Net Ecosystem Exchange [o.42f#8#.0.21].0.65(1.10/-0.24/0.80{0.02 [1.03}1.02}-1.190.59 168} .0.42[0.63 | 0.211.08

Ecosystem Respiration [0.90}056/0.86.0.24 099/-0.01/:0.94) 0.81 [0.59(0.51 0.79/0.90|-0.21}-1.24/ 0.43 |0.94]
eVa | u a te h OW I a n d a n d O Ce a n m O d e I Carbon Dioxide 0.36) 0.74] L0.00[0.37 ’Tn.m 0.420.26 [0.39{0.59|1.10}-0.87(0.21 |0.69 0.09 |-0.07

Global Net Carbon Balance 0.88/-1.13(0.17 [-0.310.38/-0.50(0.24 023 0.17 0.

performance has changed from CMIP5 to CMIP6 Land Hydrology Cycle [@o«hwlouls sloslos ou[orfos[ovilaadoao

Evapotranspiration |0.82/-0.99/-0.27}1.02|0.64 |-1.14}-0.62|-0.60|0.28 | 0.39 |1.08(1.09 0.65 [0.43

Evaporative Fraction |o.34|0.74(0.74 [0.14/0.85/0.21 0.22[0340.10{0.11 {1.25 |-0.88|

. M O d e | fi d e I ity i S a S S e Sse d th ro u g h CO m p a ri S O n Terrestrial Water Storage Anom‘a‘li/ 0.45[0.47|0.50|-0.38 0.34 |0.35 [ 0.43 [0.58 | 0.15 |-0.08| n}ss\ 0.43/0.37 [0.15 n.;g 0.51] 0.49|0.50

Permafrost fo.ss 0.01(0.13(0.830.69/0.56 [0.69 [-0.56 |-0.11| 0.83(0.74]-0.18(0.49 [0.42 |'6;ib 0.430.06|0.23

of historical simulations with a wide variety of (b) Ocean Benchmarking Resuits

Ocean Ecosystems 0.20[-0.20(88¥ 0.04 0.22 0.37/0.83[.0.37}-0.26/0.91] n.s7In.27 030{0.67
b 1 I d Chlorophyll 0.44(1.02 0.49 0.56 0.670.88}0.21{0.10 [1.02] 0.41 0.18]0.13{0.04
C O nte m p O ra ry O S e rva tl O n a ata S etS Oxygen, surface 073013 05341530 29| 0.73{0.34 [0.09]-0.41/0.35 |-0.30[0.40 [0.49 | 0.64
Ocean Nutrients 0.841.0.10(0.91 0.80/-1.25 0.02(1.00| 0.16
7 . Nitrate, surface 021 0.67/1.22 "8 0.1] .82 1.21[.0.90[{0.291.21 |1.02 0. L0.56|-0.470.18
. T h e U N S | n te rgove r n m e nta I P a n e | O n Cl I m a te Phosphate, surface :0.69|-0.04/0.04 -0.45/:0.43] 0.390.14[0.17|-0.41}:0.980.00 0.02 | 0.88.
. Silicate, surface 0.44[0.71(0.24 0.81/-0.20) 0.50{1.24 121[0.19/0.18]-0.29)
Change (IPCC) Sixth Assessment Report (AR6) Ocean carbon et sosforsh ol
TAlk, surface 0.27(1.01/0.12/0.19 0.32 0.22 0.06|0.36(0.85[-0.42|0.29 0.06 0.54
fro m WO rkl ng G ro u p 1 (WG 1 ) C h a pte r 5 CO nta I n S Salinity, 70(.').n:1 0.44|0.35(1.06[-0.54/0.70 | 0.46 -0.46[-0.80| 0.32 | 0.36 | 0.25 |-1.16[-0.47(0.54 |0.33 |-0.30]-0.87}-0.54]
Ocean Relationships 10.36/-0.29 -0.430.68 0.02(0.72{1.20{0.17 0.02 112|039
th e fu I I I LAM B/l O M B eVa I u ati O n a S Figu re 5 22 Oxygen, surface/WOA2018 0.270.23|-0.6388 . 0.26|-0.12[-0.38] 0.290.21(0.19(0.18(0.14 |-0.07 0.03]-0.23]0.53
: Nitrate, surface/WOA2018 10.18/0.06 -0.16/0.78)| 0.09(0.79(1.07{0.26 0.20 Lo.74] 0.521.04
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N .3 The Computational Earth Sciences Group (CESG)

- A improves process understanding of the global Earth system
N by developing and applying models, machine learning, and

e - P computational tools at scale; integrating observational data;

Forrest M. Hoffman and q.uantlfyl.ng .Earth S){stem predictability and uncertainty
Group Leader associated with interactions between water, energy,

biogeochemical cycles, and aerosols.

e Advances predictive understanding and simulation of atmospheric,
terrestrial, cryospheric, and marine coupled systems

e Quantifies interactions and feedbacks within and between the Earth
system and terrestrial, marine, and subsurface biogeochemical cycles

e Develops and applies methods and tools, including Al and machine
learning, for quantitative assessment and benchmarking of coupled,
multiscale Earth system models at global and regional scales

e Provides metrics for stakeholders through projects that connect to
integrated and vulnerability assessment and adaptation projects

Precipitation (mmy/day)

4612 0804 0 04 08 12 16

Bl

(Batibeniz et al., Earth’s Future, 2020)

pentads
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! _=  Monsoon Onset Changes (2080 to 2099)

(Ashfaq et al., Clim. Dyn., 2020)




Sensitivity of ENSO Teleconnection to Extremes: Model Resolution and Air-sea Coupling

ENSO Impact on Storm Tracks
MERRA2
0 e

Objective: Evaluate representation of ENSO teleconnection to precipitation
extremes over North America in DOE E3SM historical simulations.

New Science: Extreme value analysis reveals that high resolution models
generally improve the simulation of precipitation extremes over North
America. However, the improvement in ENSO teleconnection to
precipitation extremes is marginal. Model bias over Western North America
and Southeastern US is associated with a stronger and more widespread
reduction of extratropical cyclone activity during El Nino years than
observed. Air-sea coupling enhances this behavior as evident from
prescribed SST simulations.

Results/Impacts: The deficiencies in the simulation of ENSO teleconnection
to precipitation extremes appears to be due to ENSO associated large scale
atmospheric drivers of precipitation extremes. Improving mid-latitude
atmosphere-ocean coupled response to ENSO events in models could

alleviate these biases. N . y
egression: Nino3.4 on extratropical cyclone activity

Mahajan, Salil, Q. Tang, N. Keen, C. Golaz, L. Van-Roekel (2020), Sensitivity el e
of the simulation of ENSO teleconnections to precipitation extremes over ENSO impacts on extra-trapical cyclone (storm track) activity in MERRA2

North America in an ESM: Model resolution and air-sea coupling, Journal of reanalysis product (1980-2018), and low-resolution (1-degree) E3SM v1
Climate (In preparation). coupled and prescribed SST (uncoupled) historical ensembles (1979-2015).




Revisiting Recent U.S. Heat Waves in a Warmer and More Humid Climate

Humid versus Dry Heat Wave Characteristics over the

Contact: Deeksha Rastogi, E-mail: rastogid@ornl.gov Southeast U.S. during 2010 and 2012 Summers
Objective: Investigate the characteristics of temperature-based (dry) a6 e e Hest Waves Ve AT minusT._ during Heat Waves
and temperature-humidity-based (humid) temporally compounded heat D Southeast p o e
waves in present and a warmer climate across the United States using a 2 /\\;\ K{L\
pair of high resolution spectrally nudged numerical model simulations. 2l iV 0o
Days during summer
— Observations AT__ HWs — Model AT__ HWs _(
NeW SCIence: —- Observations T, HWs  —- Model T__HWs oz 4 6 8
mw 2012 N Southeast
1)  We show that humidity exacerbated the geographical footprint of =L
heat waves more for some years (e.g. higher humidity impacts were IS
. e . s (d) )
identified during 2010 as compared to 2012 over the Southeast). N L . _
2) In awarmer climate, dry heat waves are projected to become drier, Figure: Daily maximum temperature (T, ) and daily maximum apparent
. . . . . temperature (AT, ) heatwaves during 2010 and 2012 summer over the southeast
while humid heat waves remain humid. However, the overall increase United States. Line plots show mean percentage area under heatwaves over the
In dally maXImum temperature IntenSIerS the heat StreSS durlng both Southeast United States for summer (June-July-August) during (a) 2010 (d) 2012.
Spatial maps show average differences between AT and T__ during the

heatwave days in 2010 for (b) model (WRF) and (I) observations (PRISM) and
2012 for (m) model and (n) observations.

future humid and dry heat waves across all regions.

Funding:
Significance: There is a projected increase in apparent (or feels like) Energy Exascale Earth System Model (E3SM), US DOE, Office of Science, Office
temperature and human exposure to extreme heat by the 215t century. of Biological and Environmental Research (BER)
This study utilized a set of high-resolution numerical simulations with Advance Study Program fellowship awarded by Graduate Visitor Program at
large-scale circulation constrained, to emphasize the importance of NateaNGRURl R itmospheric Research (NCAR).
thermodynamic drivers in determining future heat wave characteristics. Support for data storage and analysis is provided by Computational Information

Systems Laboratory at National Center for Atmospheric Research, Boulder, CO.
Citation - Rastogi, D., L_ehn(_er, F., & Ashfaq, .M. Revisiting Recent U.S. Heat Waves in a CLIMATE CHANGE SCIENCE INSTITUTE
Warmer and More Humid Climate. Geophysical Research Letters, 47,

OAK RIDGE NATIONAL LABORATORY

€2019GL086736, https://doi.org/10.1029/2019GL 086736
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Advancing a predictive understanding of large-scale earth
systems through machine learning

Time for training NNs (sec)

*Use limited expensive earth system model simulation W 1800
Objective data to build a fast-to-evaluate surrogate model for
accurate predictions in large-scale earth systems. 0.8 800
*Advanced singular value decomposition method has N 5] eng
been developed to produce a simple neural network &
_ (NN) surrogate model which greatly reduces the 0.4 400
New science | nymber of required training data. = . —
o . o ) ) 0.2 == of Case | with Ntrain=20 1200
«Efficient Bayesian optimization algorithm has been —e— R?of Case Il
developed to generate an accurate NN surrogate. —#— Training time of Case Il 0
Y 100 200
*An accurate and fast-to-evaluate surrogate enables Number of training data (Ntrain)
efficient model-data integration in earth system
Significance | modeling. The resulted simple and optimized NN
«Advanced application of machine learning techniques enables only 20 training data to produce
for Earth and environmental systems sciences. accurate predictions of regional GPPs
otherwise 200 data are needed for the

_ ™ o

%OAK RIDGE

National Laboratory




Monsoon seasons will shift and shrink at the higher levels of radiative forcing

S

Objective: Quantification of future changes in the global monsoons at v Y % ‘ 2
various levels of radiative forcing. ‘ - B G

New Science:
e For the first time, a global view of changes in monsoon characteristics
using an unprecedented ensemble of high-resolution regional
climate model experiments for two different radiative forcing

scenarios. :
e Aspatially robust delay in the start of global monsoons and shrinking S : ' L
of monsoon seasons at higher levels of radiative forcing. Delay in the start of global monsoons at higher

e Deeper boundary layer and reduced atmospheric saturation during  5gjative forcing levels
pre-monsoons suppress convective precipitation, which weakens
atmospheric diabatic heating and delays the transitioning of Part of the climate model simulations, analyses, and
monsoon regions into deep convective states. data storage were supported by the OLCF resources.

e No significant changes in monsoons at lower radiative forcing levels. Ashfaq, Moetasim, T. Cavazos, M. S. Reboita, J. A.

Torres-Alavez, E.-S. Im, C. F. Olusegun, L. Alves,

Significance: Two-thirds of global population relies on monsoons
Kesondra Key, M. O. Adeniyi, M. Tall, M. Bamba

precipitation. Projected changes in the global monsoons will impact energy, 12 Shahid Meh 4 0. 7af Das | Diallo. £

health, agricultural and water resource sectors and has the potential to >ylla, Shahid Me 'moo , Q. zafar, 5. Das, |. Diallo, E.
. . . - . Coppola, and F. Giorgi (2020), Robust late

disrupt global economic supply chains. The possibility that a major change ; e : :

. ) o ) twenty-first century shift in the regional monsoons in

m glgbal monsoons can be avoided at lower levels of radlatlvg forcing RegCM-CORDEX simulations, Clim. Dyn.,

highlights the urgent need for steps towards emissions stabilization. d0i:10.1007/500382-020-05306-2.
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The Earth Has Humans, So Why Don’t Our Climate Models?
RUBISCO

Objective: To inspire an interdisciplinary effort to couple @ e
models of human behavior and social systems with climate 5221V' \
models to overcome deficiencies in representing feedbacks. Behaworal

Approach: A multi-model approach that considers a range G
of theories and representations of human perception and C..mateMode.

behavior, driven by a suite of social factors, is proposed. \ /o
Results/Impacts: We describe the importance of linking concetsions” . e
social factors with climate processes and identify four Figure: Schematic diagram demonstrating a strategy
priorities for advancing the development of coupled for coupling social models with climate models.
social-climate models: 1) evaluate an array of behavioral theories, 2) identify regional climate
impacts on humans, 3) incorporate influence of diverse social systems, and 4) improve
representation of how perceptions and behavior influence greenhouse gas emissions.

Beckage, B., K. Lacasse, J. M. Winter, L. J. Gross, N. Fefferman, Forrest M. Hoffman, S. S. Metcalf, T. Franck, E. Carr, A. Zia, and
A. Kinzig (2020), The Earth Has Humans, So Why Don't Our Climate Models? Clim. Change, doi:10.1007/s10584-020-02897-X.
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A Semi-implicit Barotropic Mode Solver for the E35M Ocean Model Enables

Faster and More Stable Ocean Simulations

Objective: To solve the barotropic mode in the E3SM ocean
model more efficiently and stably as a competitor of an existing
scheme.

Approach: Implement the semi-implicit method for the
barotropic mode using a more scalable iterative method with an
optimized preconditioner.

Results/Impacts: Several numerical experiments demonstrate
that the semi-implicit barotropic mode solver has almost the
same accuracy and better parallel scalability compared with the
existing scheme while allowing faster and more stable
simulations. The semi-implicit solver accelerates the barotropic
mode up to 2.9 faster than the existing scheme on 16,320
processors. In addition, this semi-implicit solver provides a more
flexible choice of a time step size to model users.

Kang, H.-G., K. J. Evans, M. R. Petersen, and P. W. Jones (2020), A scalable barotropic
mode solver for the MPAS-Ocean, J. Adv. Model Earth Sy., in preparation.

Horizontal Cells per Processor
3 102

10
S —== Linear scaling

\\ —— Baroclinic & Others
__103; “~._ —e— Barotropic (ES)
R |—@— Barotropic (SI)
£
=
S
©°
¥
g 102 |

2040 4080 8160 16320

Number of Processors

1020

Figure: Strong scaling results for the
barotropic mode solved by the
explicit-subcycling scheme (ES, the existing
scheme) and the semi-implicit method (SI).
The MPAS-O model was run on the National
Energy Research Scientific Computing
Center’s Cori supercomputer.
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Geoengineering Increases the Global Land Carbon Sink

RUBISC
Objective: To examine stratospheric aerosol intervention (SAl) impacts

on plant productivity and terrestrial biogeochemistry.

GEOENG CTRL PgC

Approach: Analyze and compare simulation results from the
Stratospheric Aerosol Geoengineering Large Ensemble (GLENS) project
from 2010 to 2097 under RCP8.5 with and without SAlI.

Results/Impacts: In this scenario, SAl causes terrestrial ecosystems to — T
store an additional 79 Pg C globally as a result of lower ecosystem o

respiration and diminished disturbance effects by the end of the 215t ;E

century, yielding as much as a 4% reduction in atmospheric CO, mole  °

fraction that progressively reduces the SAl effort required to stabilize

surface temperature. oo ez 2
Yang, C.-E., F. M. Hoffman, D. M. Ricciuto, S. Tilmes, L. Xia, D. G. MacMartin, B. Kravitz, J. H. Figure: The larger sink under SAl
Richter,. M. Mills, and'J. S. Fu (ZQZO), Asses.sing Terrestrial B.iogeochemical Feedbacks in a E;;%%S;Cwﬁﬁﬂ sztlﬁ:ja;%:dzg?hzgc
Strategically Geoengineered Climate, Environ. Res. Lett., doi:10.1088/1748-9326/abacf7. projected atmospheric CO, level.
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University of Tennessee
and the Bredesen Center



University of Tennessee, Knoxville

»

l The Bredesen Center

The Bredesen Center for Interdisciplinary Research
and Graduate Education unites resources and
capabilities from the University of Tennessee and
Oak Ridge National Laboratory to promote advanced
research and to provide innovative solutions to global
challenges in energy, engineering, and computation
under the umbrella of the UT-Oak Ridge Innovation
Institute (UT-ORII).

Seeking to create opportunities for exceptional students to engage in
interdisciplinary research and education, the Bredesen Center offers a doctoral

degree in the following areas:

« Data Science and Engineering (DSE)
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P> > THE UNIVERSITY OF TENNESSEE
QY Oak Ridge Innovation Institute

Leadership PhD Programs: Length and Cost:
- Energy Science & Engineering - Tuition-waiver, Insurance, Stipend
- Data Science & Engineering - Graduate Assistantship
- Genome Science & Technology - Estimated Completion in 4-6 years
Project Areas Include: Interdisciplinary Aspects:
* Quantum Information Science & *Research at ORNL
Autonomous Systems *Customizable Curriculum
* Energy Storage *Knowledge Breadth Courses
* Materials & Manufacturing *Team Science

* Predictive Biology

More Info (ESE/DSE): https://bredesencenter.utk.edu (GST): https://gst.tennessee.edu/

Timothy Guthrie | tguthrie@utk.edu | 865-974-1088


https://bredesencenter.utk.edu
https://gst.tennessee.edu/

Questions?
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