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Rationale

> To use remote sensing and meteorology to estimate wildfire areal

extents for the 2004 wildfire season in Alaska

> To test the utility of Google Earth Engine (GEE) to determine the
most important attributes from MODIS and Daymet
> Future:

> Monitor: Locate fires under 1,000 acres (below cutoff for
Monitoring Trends in Burn Severity (MTBS) dataset)

> Predict: Determine preceding meteorological conditions that result
in fire susceptibility
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udy Region: Interior Alaska

> Study region is Interior Alaska (Bieniek et al., 2012)

> Wildfires are natural and may be increasing in intensity due to
climate change (e.g., length of the growing season has increased
45% over the last century (Chapin Il et al., 2014)).
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2004 Wildfire Season in Alaska

» One of the warmest and driest summers on record.
» Most lightning strikes recorded during summer.

» Wildland fires burned the largest area in recorded Alaska
history.

Mean Annual Temperature Departure for Alaska (1949 - 2016)
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Departure from average temperature across Alaska for
every year since 1949. (Image Source: Alaska Climate
Research Center)
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Number of lightnings strikes (6,538) in Alaska from June

5-19, 2004. The grand total was over 147,642 strikes
(Chapin et al., 2008).



Geospatial Datasets

We used Google Earth Engine (GEE) for processing images and building
models. Two types of datasets were employed:

> MODIS: MODO09A1 (Surface Reflectance 8-Day L3 Global 500m) and
MOD11A2 (Land Surface Temperature and Emissivity 8-Day L3 Global
1km) (Vermote, 2015; Wan et al., 2015).

> Daymet: gridded estimates of daily weather parameters (Thornton et al.,
2017).

Daymet V3 average annual minimum temperature for
1980 and 2015 for a subset of the Daymet domain in
Alaska and western Canada.

MODO09A1 RGB composite from June 17, 2004.



Geospatial Datasets

Description Resolution Variable
GMTED2010 225 m elevation (m)

225 m slope (%)
MODO09A1 500 m at 8 days NDVI

500 m at 8 days EVI

500 m at 8 days SAVI

500 m at 8 days Bands 1-7 (459-2155 nm)
MOD11A2 1 km at 8 days Daytime LST (Kelvin)
Daymet 1 km at daily Daylight period (seconds)

1 km at daily Precipitation (mm)

1 km at daily Snow water equivalent (kg/m?)

1 km at daily Maximum temperature (°C)

1 km at daily Minimum temperature (°C)

1 km at daily Shortwave Radiation (W/m?)

1 km at daily Vapor Pressure (Pa)

Daymet and MODIS products were processed from early-April through late-October in 2004.



Data Workflow
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> Perform image
processing methods
for classification.

> Build models with
MODIS (288),
MODIS/Daymet
(456), and Daymet
(168) variables and
the MTBS dataset.

> Right Figure:
Google Earth
Engine interactive
development
environment
(Gorelick et al.,
2017).
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Image Processing

» Increased resolution to 500 m for all
datasets, GEE performs nearest
neighbor resampling.

2004 Alaska: BOUNDARY

> Linear interpolation for missing
values.

> Savitzky-Golay filter was applied to
smooth out noise (Chen et al.,
2004).

» Daymet variables were merged into
8-day averages.
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wildfire, which occurred on June 13, 2004.



Random Forest

» Random Forest: estimator that fits a number of decision tree
classifiers on various sub-samples of the dataset and use averaging

to improve the predictive accuracy and control over-fitting.

> We split up dataset based on 100 x 100 pixel tiles, with 163 tiles
used for training and 73 tiles used for testing.

100 x 100 Pixel Tiles

Train = 163 Tiles
Test =73 Tiles




Results: MODIS

Validation Metrics
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Precision, recall, and Fl-score for non-wildfire
class (n=493710) was 0.99, 1.00, and 1.00,
respectively.

Precision, recall, and Fl-score for wildfire class

(n=16878) was 0.93, 0.78, and 0.85, respectively.
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EVI, NDVI, and MODIS Red band contributed
the most using the Gini feature importance
metric.

Elevation, slope, SAVI, and SWIR1 contributed
the least.




Results: Daymet
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> Precision, recall, and Fl-score for non-wildfire
class (n=493710) was 0.99, 1.00, and 0.99,
respectively.

P Precision, recall, and Fl-score for wildfire class

(n=16878) was 0.62, 0.53, and 0.57, respectively.
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importance.

P> Show water equivalent, minimum temperature,
and precipitation were the highest scoring
features.




Results:

Validation Metrics

1.000

Classification report 0.975 EEm Importance
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Daymet variables (minimum temperature,
maximum temperature, shortwave radiation)
contributed most for Daymet/MODIS
P> Precision, recall, and Fl-score for wildfire class classification.

(n=16878) was 0.93, 0.78, and 0.85, respectlvely.J »  MODIS Green, Red, and SAVI variables

contributed the most.
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P Precision, recall, and Fl-score for non-wildfire 'S
class (n=493710) was 0.99, 1.00, and 1.00,
respectively.




Results: Test (Bonanza Creek Wildfire
=™ ,

2004 Alaska: BONANZA CREEK

Daymet

Acreage of Burn Severity.

Fire severity for the Bonanza Creek wildfire
based on Landsat 7. (Source: USGS and US
Forest Service)
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Conclusions

>

MODIS bands and vegetation indices can be used to predict
spatial extents of wildfire with good accuracy, and including
Daymet does not improve the predictions.
MODIS (NIR, SWIR), indices (EVI, NDVI, SAVI), and
Daymet variables (minimum temperature, maximum
temperature, snow water equivalent, shortwave radiation) are
the most important factors determining wildfire extent.
Random Forest provides a good approach for determining
feature importance.
Google Earth Engine provides a powerful platform for
processing and analyzing datasets without moving data.
Future Work:
» Would even (fire/no fire) sampling for training provide more
balanced prediction accuracy?
» Can the method be used to predict fire extent across multiple
years?
» Can we use antecedent meteorological conditions (for 3
months or 1 year anomalies) to predict fire susceptibility?
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