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) RO6: Nutrient Biogeochemistry

Objective Goals:

Improve understanding and model
representation of the factors that control
nutrient availability and nutrient controls
over forest productivity, plant allocation
and turnover, and post disturbance
recovery rates.

Focus on P and N-P interactions

Mechanistic understanding
Model-measurement interaction

Develop tools for pantropical scaling
Coordination with other international efforts

Puerto Rico Pilot Study:

Model-guided measurements to link soil
chemistry, rhizosphere microbial activity,
and root traits with P availability and uptake

APPROACH

Our integrative approach will start with insights
from models and model uncertainty and be guided
by the need to inform and improve nutrient
interactions in models
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Our approach separatesthe strongly linked processes of
nutrient availability, nutrient uptake, and nutrient use, and
emphasizes the critical role of roots in nutrient interactions
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Tansley insight

Incorporating phosphorus cycling into global
modeling efforts: a worthwhile, tractable

endeavor
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Concept development
Parameter estimation
Model initialization

Model-data integration

(Re)formulation of concept
Model evaluation
Hypothesis testing
and scaling
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Global P MapPSsS — Adata based approach
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> Hedley sequential fractionation method- a useful tool to
examine different forms of P in soils (Labile Pi, secondary
mineral Pi, apatite P, occluded P, organic P)

> 178 soil measurements from literature

> Categorized by USDA soil order, useful for

w understanding of phosphorus transformations as a
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P maps for global model initialization
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‘.-?‘%“?i Calculation of P supply

Model spin-up:

1. start with accelerated decomposition without P limitation to initialize P pools
in vegetation and SOM pools using PFT stoichiometry

2. initialize soil inorganic P pools using site observations or parameters based
on soil type

3. run normal spin-up with P limitation turned on to allow C, N, and P cycles to
equilibrate

Critical model inputs for P supply

Total soil P
Rate constants for conversions between inorganic P pools (from literature)

Smax — the maximum amount of labile P in soil and Ks — empirical constant
representing tendency of soil solution P for adsorption (calibrated values,
starting from literature)

Specific biochemical mineralization rate (calibrated)
Scaling factor for biochemical mineralization

Global model runs -- Grid cell 0.5 degree (~50 x 50 km)



%ﬁ“ Calculation of P demand and limitation

P demand = plant + microbial demand

* Plant P demand is the amount of P needed for the allocation of new growth to
various tissues based on specified C:P ratios and allometric parameters

* P demand from soil = total plant demand — P flux from retranslocated P pool

* P demand for microbial immobilization is sum of all potential P immobilization
fluxes during SOM decomposition

* If soil solution P pool < total P demand, plant and microbial limiting factors are
equal to P, /demand.

sol

» Either N or P will limit GPP, but this can vary with each time step

Inputs needed:
* Stoichiometric constants for dominant PFT
* Allometric constants for dominant PFT



Critical model uncertainties

Stoichiometric constants for dominant PFT
Total soil P

Rate constants for conversions between inorganic P pools (from
literature)

Smax — the maximum amount of labile P in soil and Ks — empirical
constant representing tendency of soil solution P for adsorption
(calibrated values, starting from literature)

Specific biochemical mineralization rate (calibrated)

Scaling factor for biochemical mineralization



Y, L -
____ Occluded P

P ke
upta Root

Exudates

y
Litter / CWD \
/
i Microbial immobilization/, 5 t| Secondary
', Sorption
T "wm‘_’ Solution P sorphon [ ]
i I Biochemical !

Soil Organic Matter ‘\
| Labile P
| Parent
" material P

: ! P lgaching

Phosphatase
(fine root,
mycorrhizae,
microbes)




AN

L J Matching measurements to model uncertainties

Measurements in Puerto Rico to inform the model
Total soil P (organic + inorganic + microbial)
Langmuir equation parameters for sorption-desorption
Biochemical mineralization parameters
Phosphatase activity
Root and mycorrhizae distribution and activity

Measurements to inform model development
P uptake

Redox and pH conditions that affect sorption-desorption
P effects on N fixation

Measurements to support development of ED framework
Root traits associated with P availability and P uptake

Root depth distribution
Aboveground traits (e.qg., foliar P, spectral signatures) that
correlate with belowground activity



) Three sites identified with contrasting P availability

Day 2
* Visited two areas with contrasting parent material — El Verde and Icacos

» Identified areas with contrasting P availability where we can initiate research

Figure 1. Location of the
sub-watersheds within

the Luquillo Forest. Light
gray indicates VC and dark

®  Subwmenshed
A Colorado E

EER Tabonuco gray indicates QD,

B Quarz dicrte crosshatched pattern

indicates Colorado forest
and striped pattern
indicates Tabonuco forest.

Table 1. Phosphorus Fractions (ppm) from 0=50-
cm Depths Across a Matrix of Topographic and Lith-
ologic Conditions

Parent Material and Topography Quartz diorite Volcaniclastic
Determine Soil Phosphorus Status Tortal P = 0.62
ncthe l%“l;lmg" Il\'{{."“m"ms Ridge 140 & 23a 290 + 15¢
of Puerto Rico
Slope 170 £ 31ab 280 + 20bc

Susanna M. Mage' and Stophen Pordur* Valley 170 £ 25ab 410 £ 43d |,
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ALM subgrid hierarchy (example with ED active):
One column per landunit, multiple patches per column
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ALM sub-grid hierarchy (example without ED):
Multiple columns per landunit, one patch per column
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ACME-LM: Modular Design and Tasks  skiess
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ACME V1 Coupled Experiments

* Biogeochemistry experiment
— Evaluate the influence of phosphorus cycle on BGC feedbacks
— Evaluate alternative representations of plant-microbe competition
for nutrients
* Water cycle experiment

— Evaluate the influence of orographic downscaling on land-
atmosphere interactions

— Evaluate improved parameterizations for clouds, aerosols, and
cloud-aerosol interactions
* Cryosphere experiment
— Investigate Antarctic ice sheet melt, destabilization, and sea-level
rise
— Eddy-resolving ocean captures details of circumpolar circulation



ALM developments for V1
(applicable experiment: WC, BGC, or ALL)

« Common architecture (ALL) *

» Orographic downscaling (WC)

» Variably saturated flow - VSF (WC)

* Coupled C-N-P cycles (BGC) *

* PFLOTRAN BGC interface (BGC) *

+ Alternative plant-microbe competition - ECA (BGC)

* Initial crop model improvements (ALL)

* MOSART river routing - uncoupled (ALL)

* UQ framework (ALL)

» Evaluation / benchmarking framework (ALL) *
Functional unit testing framework (ALL) *

C/CME oty o (* indicates ORNL task lead) ENERdY



ALM developments for V2

VIC-based runoff

MOSART river routing — coupled
Managed hydrology

Riverine biogeochemistry

Improved soil thermal hydrology — PFLOTRAN *
Improved root hydrology

Explicit microbes, methane model *
Nitrification, denitrification, N-fixation
Ecosystem demography — ED
Additional UQ

Additional evaluation / benchmarking *
Human dimensions (pending)

Ac M E Accelerated Climate Modeling
for Energy
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