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Science Focus Area (SFA)



US Dept. of Energy’s RUBISCO Scientific Focus Area (SFA)

RU B 1ISCO
Forrest M. Hoffman (Laboratory Research Manager), William J. Riley (Senior Science Co-Lead), and James T. Randerson (Chief Scientist)
Resea rc h G 0oa I S Measurements & Experiments Community
. . . . « AmeriFlox for Understanding Fundamental Processes
e |dentify and quantify interactions between :Fomet Mecsurement | Remole | Monipulation o | | SIELCE
: Eg:: -?:::ICCS campaigns sensing experiments « TRACE

biogeochemical cycles and the Earth system
NEW MEASUREMENT CAMPAIGNS

e Quantify and reduce uncertainties in Earth system P ]
models (ESMs) associated with interactions @ RUBISCO
Research Objectives
e Perform hypothesis-driven analysis of biogeochemical &  secimarane
. . FACKAGE NEW MODEL IMPROVEMENTS
hydrological processes and feedbacks in ESMs i ( . o - w
e Synthesize in situ and remote sensing data and design R fT ”’"’Te ’
metrics for assessing ESM performance r?s?sDEEoLs “ > GRID FEDERATION
« E35M Earth System Modeling Community
e Design, develop, and release the International Land e R0 et of Ervirenmer

Model Benchmarking (ILAMB) and International Ocean The RUBISCO SFA works with the measurements and
the modeling communities to use best-available data to

Model Benchmarking (IOMB) tools for systematic evaluate the fidelity of ESMs. RUBISCO identifies model
evaluation of model fidelity gapsland Weak?fesses, in(;‘orms new model
. . evelopment efforts, and suggests new measurements
e Conduct and evaluate CMIP6 experiments with ESMs and ﬁe?d campaigns. 5
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@'Y RUBISCO SFA Nine Partner Institutions

RUBISCO
e 5 National Labs

o Argonne

Brookhaven
Los Alamos
Lawrence Berkeley und

Oak Ridge AN BN

O O O O

e 3 Universities LBNL NCAR
o UCIrvine A
o U. Michigan “Luci S - ORNL

o N. Arizona U. '

e National Center
for Atmospheric
Research (NCAR)
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U.S. DEPARTMENT OF

ENERGY

Soil Carbon Dynamics Working Group

e Formed after community recommendation Eata t|°d Knowledge to Erzdlct;ved.
. nowieage naerstandin
from the 2016 International Land Model . Data . . S
. Synthesize existing Perform simulations to Design functional relationship
Benchma rklng (ILAMB) WOI’kShOp Report data from collaborative e test hypotheses and metrics to confront models and
° Objective is to apply data and models to networks, archives, characterize model apply data-driven approaches to

and publications structural uncertainties model formulation

improve predictive understanding
e June and September conference calls led to

meeting at ORNL in October 2018 Global Data Synthesis Theme

B e Combine field observations from collaborative sampling
AL~ networks and databases, including International Soil Carbon

2018 RUBTS mmup Meeting Network (ISCN) and published literature
k) Rkl A LRI o  Quantify vertical distribution of SOM and responses to

Oak Ridge, Tennessee, USA October 3-5, 20138
& o controlling mechanisms
Model-Data Integration Theme
e Develop consistent datasets for initializing, forcing, and
benchmarking microbially explicit soil carbon models
e Characterize model structural uncertainty through software
frameworks to understand controlling mechanisms

For more information, see 2018 Fall Meeting Report (June 26, 2019)
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https://drive.google.com/file/d/19YeNJbV3eHqEshQgsfMaF5gQoELHCV6c/view?usp=sharing

RUBISCO-AmeriFlux Working Group

RUBISCO

e Formed after community recommendation from Four key areas of research emerged from the Working Group
the 2016 International Land Model Meeting:
Benchmarking (ILAMB) Workshop Report e Ecosystem trend spotting - employing long ecosystem carbon

e  Objective is to use AmeriFlux data to improve and water flux records to detect trends in ecosystem
process understanding and to develop, metabolism and to disentangle responses of ecosystems to
parameterize, and test models elevated CO,, climate change, and human disturbances

e Multiple conference calls led up to a meeting at e Ecosystem responses to extreme events - use long-running
the UC Berkeley Botanical Garden (outside AmeriFlux measurements, which include ecosystem responses
LBNL) on October 15-17, 2019 to extreme weather conditions, to evaluate models

e Untangling contributions to carbon exchange - use
complementary measurements of respiration fluxes and
satellite-derived vegetation indices to improve partitioning
methods for eddy covariance estimates of GPP and R__

e Scaling up from sites to ecosystems - combine bottom-up
and top-down approaches for scaling fluxes across spatial
scales

For more information, see Measuring, Monitoring, and Modeling
Ecosystem Cycling in Eos Trans. AGU (August 5, 2020)
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https://eos.org/science-updates/measuring-monitoring-and-modeling-ecosystem-cycling
https://eos.org/science-updates/measuring-monitoring-and-modeling-ecosystem-cycling

Ro DOE’s Model-Data-Experiment Enterprise (aka MODEX)
oploning mi | d— ety and

design benchmarking
/ \ Data

Advanced FATES  GCAM 4
computational it AME assimilation
methods Amanzi-ATS P
A Py-ART -diags 4
ParFlow LASSO TECA
CrunchFlow CMEC PMP
COMMUNITY DATA, MODELS, _
AND ANALYSIS CAPABILITIES
Datal.synthes;ils, v Watershed Research ppc;  AmeriFlux UV-COAT _ Identification of
scaling, and ™ i "> key knowledge gaps
integration ExoSheds o n  CMIPG NGEE-Tropics
NGEE-Arctic
e ESS DIVE
« & PCMDI  ESGF
¥ ARM Data Center
Field measurements ¥ ¥ Process research, site

and manipulative characterization, and
experiments H experimental design (Hoffman et al., 2017)
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RuUBIsco accuracy of soil carbon stocks
Objective: To identify accurate methods for SOC prediction and

regions of higher uncertainty in the northern circumpolar

permafrost region.

Approach: Combine large dataset of field observations and
environmental factors to evaluate prediction accuracy of machine
learning (ML) techniques in comparison to a widely used

approach, regression kriging.

Results/Impacts: The ensemble ML approach provides greater
spatial details and higher prediction accuracy in comparison to
regression kriging and other individual ML approaches. Areas
with high uncertainty in predicted SOC stocks were found in small
patches in Southern Alaska and in larger areas of the Southern
and Western Russian permafrost region.

Mishra, Umakant, Sagar Gautam, William J. Riley, and Forrest M. Hoffman (2020), Ensemble Machine

Learning Approach Improves Predicted Spatial Variation of Surface Soil Organic Carbon Stocks in

Data-Limited Northern Circumpolar Region, Front. Big Data, 3:40, doi:10.3389/f
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Ensemble machine learning approach produces greater spatial prediction

= Root mean square error  —e—Pearson's correlation coefficient

Gradient Multivariate  Random Forest Support vector Multiple linear  Regression
boosting adaptive ressi
machine  regression

S0C stock (kg m?)
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machine regression

Prediction approaches
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Figure 1: Prediction accuracy obtained from
different machine learning approaches.

Uncertainty in predictions

in the northern circumpolar permafrost

region.
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Figure 2: Uncertainties in surface SOC stocks



https://doi.org/10.3389/fdata.2020.528441
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Plant-physiological responses to rising CO, increase tropical flood risk
Rugr!tgﬁg Precipitation Change Annual Mean Runoff Change * Assessments of future flood risk based Oﬂ|y
% ' ' ' on precipitation changes ignore land
processes

e Higher CO, may reduce stomatal conductance
and transpiration
e We assessed relative impacts of
| 'ﬂ}l‘“ ) ( ; : I plant-physiological and radiative- greenhouse
L*é%/ \\ : bt - ;QFV: effects on changes in daily runoff intensity
Radiation 4. : over tropical continents using CESM
e Extreme percentile rates increase more than
\‘Vgr , mean runoff
\ W/ \ e Plant-physiological effects have a small impact
""""°'°9"1 : A on precipitation intensity, but are a dominant
2 E 0 1 2 driver of runoff intensification

Kooperman, G. J., M. D. Fowler, F. M. Hoffman, C. D. Koven, K. Lindsay, M. S. Pritchard, A. L. S. Swann, and J. T. Randerson
(2018), Plant-physiological responses to rising CO, modify simulated daily runoff intensity with implications for global-scale

flood risk assessment, Geophys. Res. Lett., 45(22): 12457 12,466. doi:10.1029/2018GL079901.
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https://doi.org/10.1029/2018GL079901

Soil moisture variability intensifies and prolongs eastern Amazon E SSM

temperature and carbon cycle response to El Nino-Southern Oscillation
RUBISCO p cy p a. Temperature b. Carbon

Wet season (JFM) Dry season (JAS) Wet season (JFM) Dry season (JAS)

Objective: To understand how land-atmosphere coupling
influences temperature and carbon cycle contrasts between
El Niflo and La Nifia conditions in the Amazon.

AMIP
AMIP

Approach: Use the Energy Exascale Earth System Model (E3SM
v0.3) to simulate land and atmosphere with observed SSTs
during 1982-2016. Three simulations explored variability
caused by full coupling (AMIP), sea surface temperatures only
(SST ), and soil moisture only (SM

SSTyar
SSTyar

SMyar
SMyar

var) .

75°W 60°W 75°W 60°W

Results/Impacts: During the wet season (January-March), the
contrast between El Nifio and La Nifia is driven by coupled
ocean-atmospheric teleconnections. Soil moisture anomalies ~ Figure: a. The difference between the mean temperature

o } anomalies of El Nifio years and those of La Nifia years. Monthly
persist into the subsequent dry season in the eastern Amazon, anomalies are averaged across the wet season (JFM, left column)

; ; and dry season (JAS, right column). Each experiment (row) is
Strengthenmg a”q eXtendmg temperature and carbon Cyde described in the Approach section of the text. b. Same as a., but for
responses to forcing by ENSO. monthly anomalies of net ecosystem exchange (positive is a flux to

the atmosphere).
Levine, P. A,, J. T. Randerson, Y. Chen, M. S. Pritchard, M. Xu, and F. M. Hoffman (2019), Soil moisture variability intensifies and prolongs eastern
Amazon temperature and carbon cycle response to El Nifio-Southern Oscillation, J. Clim., 32(4):1273-1292, doi:10.1175/]CLI-D-18-0150.1.
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https://doi.org/10.1175/JCLI-D-18-0150.1

International Land Model Benchmarking
(ILAMB)



nterannual Variability of Atmospheric Carbon Dioxide
T T T T T 1T T T 1T 1T
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What is a Benchmark?
RUBISCO

e A benchmark is a quantitative test of model
function achieved through comparison of model
results with observational data N e
e Acceptable performance on a benchmark is a S e
necessary but not sufficient condition for a fully /o9 oftenfallto capture the ampiitude of

the seasonal cycle of atmospheric CO,

o N
|

0
|

4
=8

Detrended CO, mixing ratio (ppm)

Sand Island, Midway, USA
|
1: 2

functioning model A I
e Functional relationship benchmarks offer tests %i 5
of model responses to forcings and yield insights éwoo— i
into ecosystem processes ; ool :
e Effective benchmarks must draw upon a broad : g
set of independent observations to evaluate -5 55;%;]3;2?0“ (;if(’yﬂf("“ g
model performance at multiple scales Models may reproduce correct responses over

only a limited range of forcing variables
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Why Benchmark Models?
RU BISCO

e To quantify and reduce uncertainties in carbon cycle feedbacks to improve
projections of future climate change (Eyring et al., 2019; Collier et al., 2018)

e To quantitatively diagnose impacts of model development on hydrological
and carbon cycle process representations and their interactions

e To guide synthesis efforts, such as the Intergovernmental Panel on Climate
Change (IPCC), by determining which models are broadly consistent with
available observations (Eyring et al., 2019)

e Toincrease scrutiny of key datasets used for model evaluation

e To identify gaps in existing observations needed to inform model
development

e To accelerate delivery of new measurement datasets for rapid and
widespread use in model assessment
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What is ILAMB?

RUBISCO
A community coordination activity created to:

Argon ne° BROOKHRVEN :\|\

Develop internationally accepted benchmarks
for land model performance by drawing upon
collaborative expertise

Promote the use of these benchmarks for Energy and Water Cycles
model intercomparison . s
Strengthen linkages between experimental,
remote sensing, and Earth system modeling

communities in the design of new model tests
and new measurement programs

Support the design and development of open \
source benchmarking tools Carbon and Biogeochemical Cycles

Emissions
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Date | Office of
DOE/SC-XXXX | doi:10.7249/XXXXXXXX b NERGY Science

2016

International Land Model
Benchmarking (ILAMB)
Workshop Report

2016 Internatlonal LandModeIBenchmarklng (ILAMB) Workshop
May 16-18, 2016, Washington, DC
Third ILAMB Workshop was held May 16-18, 2016
e Workshop Goals
o Design of new metrics for model benchmarking
o Model Intercomparison Project (MIP) evaluation needs
o Model development, testbeds, and workflow processes
o Observational datasets and needed measurements
e Workshop Attendance
o 60+ participants from Australia, Japan, China, Germany,
Sweden, Netherlands, UK, and US (10 modeling centers)
o ~25remote attendees at any time (Hoffman et al., 2017)
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Development of ILAMB Packages

RUBISCO
e ILAMBV1 released at 2015 AGU Fall Meeting Town s g 5 5 8 §
Hall, doi:10.18139/ILAMB.v001.00/1251597 552888 §n2344
e ILAMBV2 released at 2016 ILAMB Workshop,  oumeanl W
doi:10.18139/ILAMB.v002.00/1251621 T et e o o

Global Net Ecosystem Carbon Balance

Net Ecosystem Exchange

e Open Source software written in Python; runs in Beomysiegi Fesrliation
Evapotranspiration

parallel on laptops, clusters, and supercomputers Laterit Heat

"=

Terrestrial Water Storage Anomaly

. ) . Albedo
e Routinely used for land model evaluation during i T
development of ESMs, including the E3SM Land SUSES LOWeniEn Rese o

Model (Zhu et al., 2019) and the CESM Community A
Surface Air Temperature

Land Model (Lawrence et al., 2019) Precipitation

Surface Downward SW Radiation
Surface Downward LW Radiation

. : |
e Models are scored based on statistical comparisons
0 02505075 1 -2 -1 +0 +1 +2

and functional response metrics YaraDeseor  MenAbe S

~ OAK 1 y Vi
Argonne° RS ’N ﬁjsAlamos h NCAR =¥RIDGE M

NATIONAL LABORATORY NATIONAL LABORATORY  namow



https://dx.doi.org/10.18139/ILAMB.v001.00/1251597
https://dx.doi.org/10.18139/ILAMB.v002.00/1251621

ILAMB Produces Diagnostics and Scores Models
RUBISCO

e [LAMB generates a top-level portrait plot of models scores

e For everyvariable and dataset, ILAMB can automatically produce
o Tables containing individual metrics and metric scores (when relevant to the data), including
Benchmark and model period mean
Bias and bias score (S,, )
Root-mean-square error (RMSE) and RMSE score (Srmse)
Phase shift and seasonal cycle score (Sphase)
Interannual coefficient of variation and IAV score (S, )
Spatial distribution score (S )
m Overallscore(S ) =———fp G =
o Graphical diagnostics
m Spatial contour maps
m Time series line plots
m Spatial Taylor diagrams (Taylor, 2001)

e Similar tables and graphical diagnostics for functional relat|onsh|ps

OAK %
RIDGE

Sbias + 2SI‘IIIS€ + Sphase + Siav + Sdist
1+42+1+1+41
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RUBISCO

.
Argonne° RROROEN ﬁjsAlamos h NCAR

ILAMBv2.6 Package Current Variables

Biogeochemistry: Biomass (Contiguous US, Pan Tropical Forest), Burned area (GFED3),
CO, (NOAA GMD, Mauna Loa), Gross primary production (Fluxnet, GBAF), Leaf area index
(AVHRR, MODIS), Global net ecosystem carbon balance (GCP, Khatiwala/Hoffman), Net
ecosystem exchange (Fluxnet, GBAF), Ecosystem Respiration (Fluxnet, GBAF), Soil C
(HWSD, NCSCDv22, Koven)

Hydrology: Evapotranspiration (GLEAM, MODIS), Evaporative fraction (GBAF), Latent heat
(Fluxnet, GBAF, DOLCE), Runoff (Dai, LORA), Sensible heat (Fluxnet, GBAF), Terrestrial
water storage anomaly (GRACE), Permafrost (NSIDC)

Energy: Albedo (CERES, GEWEX.SRB), Surface upward and net SW/LW radiation (CERES,
GEWEX.SRB, WRMC.BSRN), Surface net radiation (CERES, Fluxnet, GEWEX.SRB,
WRMC.BSRN)

Forcing: Surface air temperature (CRU, Fluxnet), Diurnal max/min/range temperature
(CRU), Precipitation (CMAP, Fluxnet, GPCC, GPCP2), Surface relative humidity (ERA),
Surface down SW/LW radiation (CERES, Fluxnet, GEWEX.SRB, WRMC.BSRN)
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2 FEFOENIT o FY
VS 0 e S FFILETETE S LTS EEE
R U B I s Co o Ecosystem and Carbon Cycle -
Biomass

Burned Area
Carbon Dioxide

e The CMIP6 suite of land models (right) Gros Prmary Produciy

Leaf Area Index

Global Net Ecosystem Carbon Balance | ]

has improved over the CMIP5 suite of

Ecosystem Respiration

Soil Carbon

land models (left)
Evapotranspiration
Evaporative Fraction
Latent Heat

e The multi-model mean outperforms

Sensible Heat

Terrestrial Water Storage Anomaly

any single model for each suite of

Radiation and Energy Cycle

d | Albedo

m O e S Surface Upward SW Radiation
Surface Net SW Radiation
Surface Upward LW Radiation

e The multi-model mean CMIP6 land e

Forcings
1 " b t d |' Y | | Surface Air Temperature
model is the “best model” overa e e
Diurnal Min Temperature
. . 7 Diurnal Temperature Range
Why did CMIP6 land model
. y I a n m O e S I m p rove ° Surface Relative Humidity
Surface Downward SW Radiation
Surface Downward LW Radiation
Relationships
Relative Scale BurnedArea/GFEDAS

-... GrossPrimaryProductivity/GBAF

Worse Value  Better Value Leatarealnded AVHRR
LeafArealndex/MODIS
. o . Evapotranspiration/GLEAM
(H Offm an et a I oy N p re p) Missing Data or Error Evapotranspiration/MODIS l_l




bce-csmi-1 BCC-CSM2-MR CanESM2 CanESM5

gm2d1 gm2dt gm2d1 gm-2d1

CESM1-BGC CESM2 GFDL-ESM2G GFDL-ESM4

-4 -3 -2 -1 0 1 2 3 4 -a -3 -2 -1 0 1 2 3 4
gm2d-t gm2d-t gm2dl gm2d

IPSL-CM5A-LR IPSL-CM6A-LR MeanCMIP5 MeanCMIP6




. Gross Primary Productivity

e Multimodel GPP is compared with global

seasonal GBAF estimates

bee-csmil-1 [-] 123. 112. 114. 8.79 0.0945 0238 151 1.01 0.484 0.435 0.830 0.955 0.628

BCC-CSM2-MR  [:] 114. 107. 113. 5.88 0.671 -0.0233 152 1.11 0.479 0.447 0.817 0.941 0.626

etz e We can see _ ,
CanESM5 [-] 141. 128. 114. 10.1 0.730 1.87 1.60 0.449 0.418 0.710 0.948 0.589 Spat|a| Taylor Dlagram

CESM1-BGC  [] 129. 123. 113. 555 0.660 0.379 1.66 1.20  0.426 0.468 0.765 0.889 0.603 | m p rove m e nts §0_o01
2.0 v 0.2

CESM2 [-] 110. 104. 113. 557 0.642 -0.0542 1.62 1.32 0.458 0.466 0.774 0.933 0.619

CanESM2 [-] 129. 117. 114. 9.54 0.0601 2.31 2.00 0.388 0.437=

.

GFDL-ESM2G  [] 167. 152. 114. 124 126 278 138 0377 0735 0.897= g t 18

GFDL-ESM4  [] 105. 99.0 114. 6.8 -0.177 159 149  0.495 0.403 0.702 0.939 0.588 a CrOSS e N e ra IO n S -

IPSL-CM5A-LR  [] 165. 150. 113. 117 0515 118 268 120 0.781 0.896 f d I ( g i

IPSL-CMBA-LR  [:] 115. 109. 113. 527 0708  0.111 139 114 0.790 0.961 O m O e S e. o 14

MeanCMIP5  [] 121. 115. 114. 6.65 0574 1.41 0.981 0.799 0.965 [0 C ES M 1 VS. C ES M 2, i

MeanCMIP6  [-] 116. 110. 114. 6.26 0129 1.17 0931 0.826 0.956

MIROC-ESM  [-] 129. 118. 102. 9.04 114 0396 190 1.27 0463 0435 0.767 0.920 I PS L_C M 5 A VS. 6 A) 1.0

MIROC-ESM2L [:] 116. 104. 113. 9.90 0.119  -0.0111 1.95 199  0.409 0.920 0,543 o

MPI-ESM-LR  []] 169. 159. 104. 8.91 9.81 136 236 129 0402 0371 0.715 0.930 0558

MPI-ESM12-LR [:] 141. 133. 104. 6.89 9.81 0725 206 113  0.409 0.393 0.769 0.925 0.578 (] Th e m ea n C M I P6 0.6

NOrESML-ME  [] 129. 120. 114. 7.82 0386 1.86 125 |0.387 0.456 0.761 0583 a

NOrESM2-LM  [:] 107. 97.5 114. 7.59 -0.0828 1.63 1.31  0.443 0.472 0.791 0.938 0.623 a n d C M | P5 m Od e | S %
0.2

UK-HadGEM2-ES [-] 137. 130. 113. 6.93 0.848 0.602 2.01 1.10 0.389 0.388 0.820 0.568

UKESM1-0-LL  [] 126. 119. 113. 7.06 0.825 0.387 1.77 1.16 0.436 0.419 0.791 0.924 0.598 pe rfo rm beSt 0.0 T L /

s A
00 02 04 06 08 10 1.2 14 16 1.8 20

Normalized standard deviation

g
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& Reasons for Land Model Improvements
RUBISCO

ESM improvements in climate forcings (temperature, precipitation, radiation) likely

Mean CMIP5

-10 10

Incoming Radiation Bias [W/m2]

Mean CMIP6

(Hoffman et al., in prep)
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Reasons for Land Model Improvements
RUBISCO

Mean CMIP5

Differences in bias
scores for
temperature, ¥ CepbwemesSae] | EecplbmbheSerell] oo Bedation esgemet)
precipitation, and

incoming radiation
were primarily
positive, further
indicating more
realistic climate
representation

Mean CMIP6

Improvement
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(Hoffman et al., in prep)
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RU BISCO

While forcings got better, the largest

Improvements were in

variable-to-variable relationships,
suggesting that increased land model
complexity was also partially responsible

for higher CMIP6 model scores

Overall Score Improvement

Reasons for Land Model Improvements

W Forcings ® CanESM5 ® MIROC-ES2L
A Relationships ® CESM2 ® MPI-ESM1.2-HR
® Other ® UKESM1-0-LL ® NorESM2-LM
® BCC-CSM2-MR ® IPSL-CM6A-LR
A 393 dataset/model pairs improve
0.6 - A total improvement is 21.0
mean improvement per pair is 0.054
A
- A
0.4 1 ° ot
®
0.2 -
0.0 -
—0.2 A
135 dataset/model pairs degrade
total degradation is 4.7 & ®
mean degradation per pair is 0.035
0.0 0.2 0.4 0.6 0.8 1.0

CMIP5 Overall Score




CMIP5 ESMs CMIP6 ESMs

ILAMB & IOMB CMIP5 vs 6 Evaluation

(a) Land Benchmarking Results
Land Ecosystem & Carbon Cycle |o.
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Burned Area -0.87, 0.10[0.83]

Leaf Area Index |o.200.64 0.01{0.30/0.01 [AREBL0.16 | 0.27 [0.08 [0.34 | 0.70[1.20[0.82 0.46 |0.37 0.69 | 1.0

Soil Carbon |027 0.07[0750.47}0.03}1.24[0.07 [0.23 [B88 0.99] 0.900.75/-0.17/0.24 | 1.01

® (a) I LAM B an d (b) | O M B h ave be en u Sed to Gross Primary Productivity [05e[123[0.01 EER 77| 0.04]0.59 ] 0.38[1.27[1.02 =0

Net Ecosystem Exchange [o.42f#8#.0.21].0.65(1.10/-0.24/0.80{0.02 [1.03}1.02}-1.190.59 168} .0.42[0.63 | 0.211.08

Ecosystem Respiration [0.90}056/0.86.0.24 099/-0.01/:0.94) 0.81 [0.59(0.51 0.79/0.90|-0.21}-1.24/ 0.43 |0.94]
eVa | u a te h OW I a n d a n d O Ce a n m O d e I Carbon Dioxide 0.36) 0.74] L0.00[0.37 ’Tn.m 0.420.26 [0.39{0.59|1.10}-0.87(0.21 |0.69 0.09 |-0.07

Global Net Carbon Balance 0.88/-1.13(0.17 [-0.310.38/-0.50(0.24 023 0.17 0.
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RUBISCO Summary

e Model benchmarking is increasingly important as model complexity increases

e Systematic model benchmarking is useful for

o Verification - during model development to confirm that new model code improves
performance in a targeted area without degrading performance in another area

o Validation - when comparing performance of one model or model version to observations and
to other models or other model versions

e The ILAMB package employs a suite of in situ, remote sensing, and reanalysis
datasets to comprehensively evaluate and score land model performance,
irrespective of any model structure or set of process representations

e [LAMB is Open Source, is written in Python, runs in parallel on laptops to
supercomputers, and has been adopted in most modeling centers

e Usefulness of ILAMB depends on the quality of incorporated observational data,
characterization of uncertainty, and selection of relevant metrics
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@%GFZ Design and implementation principles

e Open architecture and protocols
o Enable substitution of alternative implementations

e Leverage highly available and scalable central services
o Reduce complexity, increase reliability, provide economies of scale

e Use proven, modern security technologies and practices
o Integrated access control; protect against attacks and intrusions

e Use case approach to design, implementation, and evaluation
o Ensure that solutions meet real user needs

e Integrated instrumentation
o Metrics drive data management, data access features, capability development

e Focus on performance to deal with big data
o High-speed data transfer, search, server-side processing
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ENERGY SCIENCES NETWORK

ESnet representative, Eli Dart, is part of our Resource & Project Liaisons group
=== = ESGF2 will make use of the === === Data will be automatically ‘ ESnet
high bandwidth between DOE migrated and cached ?{7

labs and HPC centers across ORNL, ANL, and
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&%GFZ Outreach Activities

e Organize Webinars, Tutorials, and ESGF2 Bootcamps

o Data management lessons learned
o Ingest best practices
o Data discovery and access

e Hackathons and Workshops

o Data standards
o Data node deployment
o User compute resources
o Hold at large relevant conferences, e.g.,
AGU Fall Meeting, EGU, and AMS Annual Meeting

e Organize and host an annual
ESGF Developer and User Conference




Artificial Intelligence for Earth System
Predictability (AI4ESP)



https://ai4esp.org/ https://ai4esp.slack.com/

Artificial Intelligence for Earth System
AI4ES P Predictability

A multi-lab initiative working with the Earth and Environmental Systems Science Division (EESSD) of the
Office of Biological and Environmental Research (BER) to develop a new paradigm for Earth system
predictability focused on enabling artificial intelligence across field, lab, modeling, and analysis activities.

White papers were solicited for development and Earth System Predictability Sessions B

application of Al methods in areas relevant to EESSD Atmospheric Modeling o

research with an emphasis on quantifying and Land Modeling . o

improving Earth system predictability, particularly Human Systems & Dynamics CONEY Ko Ko

i i Hydrolo Ll
related to the integrative water cycle and extreme y &y :
events s y Watershed Science ) Gory Geemae

@ Nt Jay Hnilo Jeff Stehr { ~§s Alamos
Ecohydrology bl PoiNT OF POINT OF
Aerosols & Clouds T NGBS xujing Dovis  Bob Vallario  Mike Kuperberg  Yeelobiiad)

CONTACT Jennifer Arrigo  Renu Joseph CONTACT
HOW can DOE dlreCtIy Ieverage artlflc'al Cl I mate Va rla b I | lty & EXtrem es Steven Lee (ASCR) Randall Loviolette (ASCR)

intelligence (Al) to engineer a substantial Coastal Dynamics, Oceans & Ice
(paradigm-changing) improvement in Earth Cross-Cut Sessions
System Predictabi’ity? Data Acquisition R Nicki Hickmon  Forrest Hoffman

Harvko Wainwright
Scott Collis

POINT OF POINT OF
CONTACT CONTACT
David Womble

) ) Neural Networks
156 white papers were received and read to plan the Surrogate models and emulators

organization of a workshop in Fall 2021. Knowledge-Informed Machine Learning
Hybrid Modeling

AI4ESP Workshop: Oct 25-Dec 3, 2021 Explainable/Interpretable/Trustworthy Al S
! Knowledge Discovery & Statistical Learning e




Oak Ridge National Laboratory (ORNL)
and the
Computational Earth Sciences Group



Spallation Neutron Source (SNS) = ™ :

Summit at Oak Ridge National Laboratory, #2 fastest
supercomputer on the TOP500 List (November 2021).



https://top500.org/

N .3 The Computational Earth Sciences Group (CESG)

- A improves process understanding of the global Earth system
N by developing and applying models, machine learning, and

e - P computational tools at scale; integrating observational data;

Forrest M. Hoffman and q.uantlfyl.ng .Earth S){stem predictability and uncertainty
Group Leader associated with interactions between water, energy,

biogeochemical cycles, and aerosols.

e Advances predictive understanding and simulation of atmospheric,
terrestrial, cryospheric, and marine coupled systems

e Quantifies interactions and feedbacks within and between the Earth
system and terrestrial, marine, and subsurface biogeochemical cycles

e Develops and applies methods and tools, including Al and machine
learning, for quantitative assessment and benchmarking of coupled,
multiscale Earth system models at global and regional scales

e Provides metrics for stakeholders through projects that connect to
integrated and vulnerability assessment and adaptation projects

Precipitation (mmy/day)

4612 0804 0 04 08 12 16
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(Batibeniz et al., Earth’s Future, 2020)
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! _=  Monsoon Onset Changes (2080 to 2099)

(Ashfaq et al., Clim. Dyn., 2020)




Sensitivity of ENSO Teleconnection to Extremes: Model Resolution and Air-sea Coupling

ENSO Impact on Storm Tracks
MERRA2
0 e

Objective: Evaluate representation of ENSO teleconnection to precipitation
extremes over North America in DOE E3SM historical simulations.

New Science: Extreme value analysis reveals that high resolution models
generally improve the simulation of precipitation extremes over North
America. However, the improvement in ENSO teleconnection to
precipitation extremes is marginal. Model bias over Western North America
and Southeastern US is associated with a stronger and more widespread
reduction of extratropical cyclone activity during El Nino years than
observed. Air-sea coupling enhances this behavior as evident from
prescribed SST simulations.

Results/Impacts: The deficiencies in the simulation of ENSO teleconnection
to precipitation extremes appears to be due to ENSO associated large scale
atmospheric drivers of precipitation extremes. Improving mid-latitude
atmosphere-ocean coupled response to ENSO events in models could

alleviate these biases. N . y
egression: Nino3.4 on extratropical cyclone activity

Mahajan, Salil, Q. Tang, N. Keen, C. Golaz, L. Van-Roekel (2020), Sensitivity el e
of the simulation of ENSO teleconnections to precipitation extremes over ENSO impacts on extra-trapical cyclone (storm track) activity in MERRA2

North America in an ESM: Model resolution and air-sea coupling, Journal of reanalysis product (1980-2018), and low-resolution (1-degree) E3SM v1
Climate (In preparation). coupled and prescribed SST (uncoupled) historical ensembles (1979-2015).




Revisiting Recent U.S. Heat Waves in a Warmer and More Humid Climate

Humid versus Dry Heat Wave Characteristics over the

Contact: Deeksha Rastogi, E-mail: rastogid@ornl.gov Southeast U.S. during 2010 and 2012 Summers
Objective: Investigate the characteristics of temperature-based (dry) a6 e e Hest Waves Ve AT minusT._ during Heat Waves
and temperature-humidity-based (humid) temporally compounded heat D Southeast p o e
waves in present and a warmer climate across the United States using a 2 /\\;\ K{L\
pair of high resolution spectrally nudged numerical model simulations. 2l iV 0o
Days during summer
— Observations AT__ HWs — Model AT__ HWs _(
NeW SCIence: —- Observations T, HWs  —- Model T__HWs oz 4 6 8
mw 2012 N Southeast
1)  We show that humidity exacerbated the geographical footprint of =L
heat waves more for some years (e.g. higher humidity impacts were IS
. e . s (d) )
identified during 2010 as compared to 2012 over the Southeast). N L . _
2) In awarmer climate, dry heat waves are projected to become drier, Figure: Daily maximum temperature (T, ) and daily maximum apparent
. . . . . temperature (AT, ) heatwaves during 2010 and 2012 summer over the southeast
while humid heat waves remain humid. However, the overall increase United States. Line plots show mean percentage area under heatwaves over the
In dally maXImum temperature IntenSIerS the heat StreSS durlng both Southeast United States for summer (June-July-August) during (a) 2010 (d) 2012.
Spatial maps show average differences between AT and T__ during the

heatwave days in 2010 for (b) model (WRF) and (I) observations (PRISM) and
2012 for (m) model and (n) observations.

future humid and dry heat waves across all regions.

Funding:
Significance: There is a projected increase in apparent (or feels like) Energy Exascale Earth System Model (E3SM), US DOE, Office of Science, Office
temperature and human exposure to extreme heat by the 215t century. of Biological and Environmental Research (BER)
This study utilized a set of high-resolution numerical simulations with Advance Study Program fellowship awarded by Graduate Visitor Program at
large-scale circulation constrained, to emphasize the importance of NateaNGRURl R itmospheric Research (NCAR).
thermodynamic drivers in determining future heat wave characteristics. Support for data storage and analysis is provided by Computational Information

Systems Laboratory at National Center for Atmospheric Research, Boulder, CO.
Citation - Rastogi, D., L_ehn(_er, F., & Ashfaq, .M. Revisiting Recent U.S. Heat Waves in a CLIMATE CHANGE SCIENCE INSTITUTE
Warmer and More Humid Climate. Geophysical Research Letters, 47,

OAK RIDGE NATIONAL LABORATORY

€2019GL086736, https://doi.org/10.1029/2019GL 086736
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Advancing a predictive understanding of large-scale earth
systems through machine learning

Time for training NNs (sec)

*Use limited expensive earth system model simulation W 1800
Objective data to build a fast-to-evaluate surrogate model for
accurate predictions in large-scale earth systems. 0.8 800
*Advanced singular value decomposition method has N 5] eng
been developed to produce a simple neural network &
_ (NN) surrogate model which greatly reduces the 0.4 400
New science | nymber of required training data. = . —
o . o ) ) 0.2 == of Case | with Ntrain=20 1200
«Efficient Bayesian optimization algorithm has been —e— R?of Case Il
developed to generate an accurate NN surrogate. —#— Training time of Case Il 0
Y 100 200
*An accurate and fast-to-evaluate surrogate enables Number of training data (Ntrain)
efficient model-data integration in earth system
Significance | modeling. The resulted simple and optimized NN
«Advanced application of machine learning techniques enables only 20 training data to produce
for Earth and environmental systems sciences. accurate predictions of regional GPPs
otherwise 200 data are needed for the

_ ™ o

%OAK RIDGE

National Laboratory




Monsoon seasons will shift and shrink at the higher levels of radiative forcing

S

Objective: Quantification of future changes in the global monsoons at v Y % ‘ 2
various levels of radiative forcing. ‘ - B G

New Science:
e For the first time, a global view of changes in monsoon characteristics
using an unprecedented ensemble of high-resolution regional
climate model experiments for two different radiative forcing

scenarios. :
e Aspatially robust delay in the start of global monsoons and shrinking S : ' L
of monsoon seasons at higher levels of radiative forcing. Delay in the start of global monsoons at higher

e Deeper boundary layer and reduced atmospheric saturation during  5gjative forcing levels
pre-monsoons suppress convective precipitation, which weakens
atmospheric diabatic heating and delays the transitioning of Part of the climate model simulations, analyses, and
monsoon regions into deep convective states. data storage were supported by the OLCF resources.

e No significant changes in monsoons at lower radiative forcing levels. Ashfaq, Moetasim, T. Cavazos, M. S. Reboita, J. A.

Torres-Alavez, E.-S. Im, C. F. Olusegun, L. Alves,

Significance: Two-thirds of global population relies on monsoons
Kesondra Key, M. O. Adeniyi, M. Tall, M. Bamba

precipitation. Projected changes in the global monsoons will impact energy, 12 Shahid Meh 4 0. 7af Das | Diallo. £

health, agricultural and water resource sectors and has the potential to >ylla, Shahid Me 'moo , Q. zafar, 5. Das, |. Diallo, E.
. . . - . Coppola, and F. Giorgi (2020), Robust late

disrupt global economic supply chains. The possibility that a major change ; e : :

. ) o ) twenty-first century shift in the regional monsoons in

m glgbal monsoons can be avoided at lower levels of radlatlvg forcing RegCM-CORDEX simulations, Clim. Dyn.,

highlights the urgent need for steps towards emissions stabilization. d0i:10.1007/500382-020-05306-2.
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The Earth Has Humans, So Why Don’t Our Climate Models?
RUBISCO

Objective: To inspire an interdisciplinary effort to couple @ e
models of human behavior and social systems with climate 5221V' \
models to overcome deficiencies in representing feedbacks. Behaworal

Approach: A multi-model approach that considers a range G
of theories and representations of human perception and C..mateMode.

behavior, driven by a suite of social factors, is proposed. \ /o
Results/Impacts: We describe the importance of linking concetsions” . e
social factors with climate processes and identify four Figure: Schematic diagram demonstrating a strategy
priorities for advancing the development of coupled for coupling social models with climate models.
social-climate models: 1) evaluate an array of behavioral theories, 2) identify regional climate
impacts on humans, 3) incorporate influence of diverse social systems, and 4) improve
representation of how perceptions and behavior influence greenhouse gas emissions.

Beckage, B., K. Lacasse, J. M. Winter, L. J. Gross, N. Fefferman, Forrest M. Hoffman, S. S. Metcalf, T. Franck, E. Carr, A. Zia, and
A. Kinzig (2020), The Earth Has Humans, So Why Don't Our Climate Models? Clim. Change, doi:10.1007/s10584-020-02897-X.
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A Semi-implicit Barotropic Mode Solver for the E35M Ocean Model Enables

Faster and More Stable Ocean Simulations

Objective: To solve the barotropic mode in the E3SM ocean
model more efficiently and stably as a competitor of an existing
scheme.

Approach: Implement the semi-implicit method for the
barotropic mode using a more scalable iterative method with an
optimized preconditioner.

Results/Impacts: Several numerical experiments demonstrate
that the semi-implicit barotropic mode solver has almost the
same accuracy and better parallel scalability compared with the
existing scheme while allowing faster and more stable
simulations. The semi-implicit solver accelerates the barotropic
mode up to 2.9 faster than the existing scheme on 16,320
processors. In addition, this semi-implicit solver provides a more
flexible choice of a time step size to model users.

Kang, H.-G., K. J. Evans, M. R. Petersen, and P. W. Jones (2020), A scalable barotropic
mode solver for the MPAS-Ocean, J. Adv. Model Earth Sy., in preparation.
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Figure: Strong scaling results for the
barotropic mode solved by the
explicit-subcycling scheme (ES, the existing
scheme) and the semi-implicit method (SI).
The MPAS-O model was run on the National
Energy Research Scientific Computing
Center’s Cori supercomputer.
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Geoengineering Increases the Global Land Carbon Sink

RUBISC
Objective: To examine stratospheric aerosol intervention (SAl) impacts

on plant productivity and terrestrial biogeochemistry.

GEOENG CTRL PgC

Approach: Analyze and compare simulation results from the
Stratospheric Aerosol Geoengineering Large Ensemble (GLENS) project
from 2010 to 2097 under RCP8.5 with and without SAlI.

Results/Impacts: In this scenario, SAl causes terrestrial ecosystems to — T
store an additional 79 Pg C globally as a result of lower ecosystem o

respiration and diminished disturbance effects by the end of the 215t ;E

century, yielding as much as a 4% reduction in atmospheric CO, mole  °

fraction that progressively reduces the SAl effort required to stabilize

surface temperature. oo ez 2
Yang, C.-E., F. M. Hoffman, D. M. Ricciuto, S. Tilmes, L. Xia, D. G. MacMartin, B. Kravitz, J. H. Figure: The larger sink under SAl
Richter,. M. Mills, and'J. S. Fu (ZQZO), Asses.sing Terrestrial B.iogeochemical Feedbacks in a E;;%%S;Cwﬁﬁﬂ sztlﬁ:ja;%:dzg?hzgc
Strategically Geoengineered Climate, Environ. Res. Lett., doi:10.1088/1748-9326/abacf7. projected atmospheric CO, level.
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Computational Earth Sciences Group Members
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16.

Moet Ashfaq <mashfag@ornl.gov> - regional climate modeling, climate change downscaling for societally relevant applications

Kevin Birdwell <pirdwellkr@ornl.gov> - ORNL/Heritage Center site meteorology, meteorological data acquisition systems, mesoscale modeling,
mountain meteorology, air pollutant dispersion, and Quaternary paleoclimate

Marcia Branstetter <pranstetterm@ornl.gov> - data processing and management, dataset synthesis, large scale simulation

Nathan Collier <collierno@ornl.gov> - applied math, numerical algorithms, land surface model-data comparison and benchmarking

Patrick Fan <fanm@ornl.gov> - machine learning, uncertainty quantification, subsurface flow and transport modeling, geomechanics modeling
Forrest Hoffman <hoffmanfm®@ornl.gov> - Earth system modeling, global biogeochemical cycles, model evaluation and benchmarking, artificial
intelligence/machine learning/data mining

Hyun Kang <kangh@ornl.gov> - Earth system modeling, dynamical core development, implicit solvers and numerical algorithms, high
performance computing

Gaurab Kc <kcgl@ornl.gov> - full stack software engineering, database development and management, DevOps engineering

Mike Kelleher <kelleherme@ornl.gov> - atmospheric science, ice sheet-atmosphere interactions, model analysis, model-data comparison
Youngsung Kim <kimy®@ornl.gov> - computational performance optimization, algorithm development, tools for computational kernel extraction
and performance management

Siyan Liu <lius1@ornl.gov> - postdoctoral scholar focused on groundwater modeling, machine learning, uncertainty quantification

Dan Lu <Jud1®@ornl.gov> - uncertainty quantification, machine learning, surrogate modeling, sensitivity analysis, high-dimensional optimization,
groundwater flow and transport modeling, optimal sensor network design

Salil Mahajan <mahajans@ornl.gov> - atmospheric science, models and analyzes atmospheric aerosols and cloud-aerosol interactions

Sarat Sreepathi <sarat@ornl.gov> - computational performance engineering, numerical methods and algorithms, systems design and deployment
Min Xu <xum1@ornl.gov> - land-atmosphere interactions with focus on global biogeochemical cycles and effects of changes in large-scale
circulation, computational technologies, and Earth system models

Wei Zhang <zhangw3®@ornl.gov> - cloud microphysics, cloud resolving models, refactoring and porting models to graphical processing unit (GPU)
supercomputers
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Administrative Professional

and Graduate Students

Gaurab KC

Located in the ORNL Climate Change

Staff and Postdoctoral Scholars Science Institute (CCSI) in

Building 4500N, F Corridor




University of Tennessee
and the Bredesen Center



University of Tennessee, Knoxville

»

l The Bredesen Center

The Bredesen Center for Interdisciplinary Research
and Graduate Education unites resources and
capabilities from the University of Tennessee and
Oak Ridge National Laboratory to promote advanced
research and to provide innovative solutions to global
challenges in energy, engineering, and computation
under the umbrella of the UT-Oak Ridge Innovation
Institute (UT-ORII).

Seeking to create opportunities for exceptional students to engage in
interdisciplinary research and education, the Bredesen Center offers a doctoral

degree in the following areas:

« Data Science and Engineering (DSE)




N
.
>
~

P> > THE UNIVERSITY OF TENNESSEE
QY Oak Ridge Innovation Institute

Leadership PhD Programs: Length and Cost:
- Energy Science & Engineering - Tuition-waiver, Insurance, Stipend
- Data Science & Engineering - Graduate Assistantship
- Genome Science & Technology - Estimated Completion in 4-6 years
Project Areas Include: Interdisciplinary Aspects:
* Quantum Information Science & *Research at ORNL
Autonomous Systems *Customizable Curriculum
* Energy Storage *Knowledge Breadth Courses
* Materials & Manufacturing *Team Science

* Predictive Biology

More Info (ESE/DSE): https://bredesencenter.utk.edu (GST): https://gst.tennessee.edu/

Timothy Guthrie | tguthrie@utk.edu | 865-974-1088
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