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Rapidly increasing atmospheric carbon dioxide (CO3)
concentrations are altering Earth's climate.

Perturbation of the carbon cycle could induce feedbacks on
future CO2 concentrations and climate.
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Rapidly increasing atmospheric carbon dioxide (CO3)
concentrations are altering Earth’s climate.

Perturbation of the carbon cycle could induce feedbacks on
future CO» concentrations and climate.

Climate-carbon cycle feedbacks are highly uncertain and
potentially large.

Prediction of feedbacks requires knowledge of mechanisms
connecting carbon and nutrients with the climate system.



Research Objectives

Objective 1
Quantify climate-carbon cycle feedback responses in global models

contributing to the Coupled Model Intercomparison Project Phase
5 (CMIP5) for the IPCC Fifth Assessment Report.
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Research Objectives

Objective 1

Quantify climate-carbon cycle feedback responses in global models
contributing to the Coupled Model Intercomparison Project Phase
5 (CMIP5) for the IPCC Fifth Assessment Report.

Objective 2

Reduce the range of uncertainty in climate predictions by
improving the model representation of feedbacks through
comparisons with contemporary observations.
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Feedback Analysis

> Friedlingstein et al. (2003, 2006) defined the climate-induced
change in atmospheric COs in terms of the change due to direct
addition of COy,

ACH = T2-ACE (1)

where g is the gain of the climate-carbon cycle feedback.
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Feedback Analysis

> Friedlingstein et al. (2003, 2006) defined the climate-induced
change in atmospheric COs in terms of the change due to direct
addition of COy,

1
AC; = —ACH 1
where g is the gain of the climate-carbon cycle feedback.
» The effect of changing CO, on temperature is approximated,
AT = aACy, (2)

where « is the climate sensitivity to CO, in K ppm~!.
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Feedback Analysis

> Friedlingstein et al. (2003, 2006) defined the climate-induced
change in atmospheric COs in terms of the change due to direct
addition of COy,

1
ACi = ——ACy 1
where g is the gain of the climate-carbon cycle feedback.
» The effect of changing CO, on temperature is approximated,
AT = aACy, (2)

where « is the climate sensitivity to CO, in K ppm~!.

» The change in land carbon storage,
ACP = BLACO; + 7 ATS, (3)

where f3; is the sensitivity to the change in CO,, and ~, is the
sensitivity to climate change.
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The 11 C*MIP models varied by a factor of
» 8 in the gain of the carbon cycle feedback (g),

Atmospheric CO2 Difference (ppm)

> 9 in the climate sensitivity of land storage (7.), and

» 14 in the concentration sensitivity of land storage ().
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land carbon uptake (right) from 11 models participating in the C*MIP Experiment.
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From Friedlingstein et al. (2006, Figure 1).
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The 11 C*MIP models varied by a factor of
» 8 in the gain of the carbon cycle feedback (g),
> 9 in the climate sensitivity of land storage (7.), and

» 14 in the concentration sensitivity of land storage ().
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Spread in the projected atmospheric CO> increase due to feedbacks (left) and total
land carbon uptake (right) from 11 models participating in the C*MIP Experiment.
From Friedlingstein et al. (2006, Figure 1).

No comparisons were made with observations.
This is the next crucial step for reducing uncertainties!
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Reducing Uncertainties Using Observations

To reduce feedback uncertainties using contemporary observations,

1. there must be a relationship between contemporary variability
and future trends on longer time scales within the model, and
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Reducing Uncertainties Using Observations

To reduce feedback uncertainties using contemporary observations,

1. there must be a relationship between contemporary variability

and future trends on longer time scales within the model, and

. it must be possible to constrain contemporary variability in
the model using observations.
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Reducing Uncertainties Using Observations

To reduce feedback uncertainties using contemporary observations,

1. there must be a relationship between contemporary variability
and future trends on longer time scales within the model, and

2. it must be possible to constrain contemporary variability in
the model using observations.

Hall and Qu (2006) evaluated the SAFin cimat change ana
strength of the springtime snow

albedo feedback (SAF; Aas/ATs)
from 17 models used for the IPCC
AR4 and compared them with the
observed springtime SAF from
ISCCP and ERA-40 reanalysis.
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Persistence of Atmospheric CO, Biases

Objective: Quantify and diagnose persistence of atmospheric CO,
biases in Earth System Model (ESMs).

Biases in prognostic atmospheric COy are persistent on decadal
time scales because carbon-concentration feedbacks in ESMs (0,
and (o) are related to processes that do not change rapidly.

Approach:

» Quantify CO; biases in emissions-forced CMIP5 historical
(esmHistorical) and future (esmrcp85) simulation results.

» Use observationally based estimates of ocean carbon
inventories from Sabine et al. (2004) and Khatiwala et al.
(2009, 2012) to diagnose causes of biases.

» Use model results to develop an atmospheric CO; trajectory
with reduced bias and uncertainty range.
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Schematic Summary of CMIP5 Long-Term Experiments

ensembles:
AMP&20C Ao,

E-driven
RCP8.5

E-driven
control& 20C

1%IyrCO, (140 yrs)
abrupt4XCO, (150 yrs)
fixed SST with 1x & 4xCO,

Arbg, All simulations are forced by

N ¢
Coupled carbon-cycle TXCOE (;' ffe Seeg prescribed concentrations
climate models only 2OC+RC,§’/W or except those "E-driven” (i.e.,
4.5) emission-driven)
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ESM Historical Atmospheric CO, Mole Fraction
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Total Carbon (Pg C)

Observed Carbon Accumulation Since 1850
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Observational estimates of anthropogenic carbon accumulation in
atmosphere, ocean, and land reservoirs for 1850-2010 using adjusted
ocean uptake estimates from Khatiwala et al. (2012).
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ESM Historical Ocean and Land Carbon Accumulation
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Ocean (1850-2010)

Atmosphere (1850-2010)
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Future vs. Contemporary Atmospheric CO, Mole Fraction
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R2 of Multi-model Bias Structure
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The coefficients of determination (R?) of the multi-model bias structure
relative to the set of CMIP5 model atmospheric CO,, ocean, and land
predictions for 2010 is statistically significant for 1910-2100.
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Contemporary CO, Tuned Model (CCTM)
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Multi-model estimates and contemporary observations can be used to
reduce uncertainties in future scenarios.
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The width of the
probability density is
much smaller for the
CCTM, by almost a
factor of 6 at 2060
and almost a factor of
5 at 2100, indicating
a significant reduction
in the range of
uncertainty for the
CCTM prediction.
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Implications for Radiative Forcing and Temperature

Projections for Individual CMIP5 Models CCTM Relative to the Multi —Model Mean
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Implications for CO,, Radiative Forcing, and Temperature

CO2 Mole Radiative Cumulative AT
Fraction (ppm) Forcing (Wm~2) AT (°C) Bias (°C)
Model 2010 2060 2100 2010 2060 2100 2010 2060 2100 2010 2060 2100

BCC-CSM1.1 390 603 945 1.70 4.03 6.43 0.97 2.39 4.02 0.03 0.02 —-0.01
BCC-CSM1.1-M 396 619 985 1.78 4.16 6.65 1.04 2.49 4.16 0.10 0.12 0.13
BNU-ESM 382 602 963 1.59 4.02 6.53 0.90 2.33 4.07 -0.04 —0.04 0.04
CanESM2 r1 394 641 1024 1.75 436 6.86 0.98 2.58 4.30 0.04 0.21 0.27
CanESM2 r2 392 641 1023 1.72 435 6.85 0.98 2.57 4.30 0.04 0.20 0.27
CanESM2 r3 396 641 1025 1.78 4.35 6.87 1.01 2.58 4.30 0.07 0.21 0.27
CESM1-BGC 407 697 1121 1.92 480 7.34 1.12 2.85 4.64 0.18 0.48 0.61
FGOALS-s2.0 404 636 993 1.89 431 6.70 1.09 2.57 4.23 0.15 0.20 0.20
GFDL-ESM2G 395 616 967 1.77 4.14 6.56 1.04 2.49 4.12 0.10 0.12 0.09
GFDL-ESM2M 400 621 964 1.83 4.18 6.54 1.09 2.52 4.13 0.15 0.15 0.10
HadGEM2-ES 411 636 983 1.98 431 6.64 1.18 2.60 4.20 0.24 0.23 0.17
INM-CM4 386 591 897 1.64 392 6.15 0.92 236 3.86 —0.02 —0.01 —0.17
IPSL-CM5A-LR 375 573 908 1.48 3.75 6.22 0.86 2.21 3.87 —0.08 —0.16 —0.16
MIROC-ESM 398 658 1121 1.81 450 7.35 1.06 2.67 4.58 0.12 0.30 0.55
MPI-ESM-LR r1 383 590 948 1.60 3.91 6.45 0.95 2.31 4.03 0.01 —0.06 0.00
MRI-ESM1 361 516 778 1.28 3.20 539 0.74 1.89 3.33 —-0.20 —0.48 —0.70
NorESM1-ME 391 667 1070 1.72 457 7.09 0.98 2.68 4.46 0.04 031 0.43

Multi-model Mean 392 621 980 1.72 4.18 6.63 1.00 2.48 4.17 0.06 0.11 0.14
CCTM Estimate 385 600 948 1.62 4.01 6.45 0.94 2.37 4.03 — — —
Historical + RCP 8.5 385 590 917 1.63 3.91 6.27 0.94 2.32 3.93 0.00 —0.05 —0.10
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Discussion and Conclusions

» Ordering among model predictions of atmospheric CO, persisted on
the order of several decades.

» Underestimate of ocean CO, uptake likely contributes to a
persistent and growing atmospheric CO, bias in most ESMs.

» Similar deficiencies in land models—including the response of GPP
to CO; concentration, allocation to woody pools, nutrient
limitation, response of heterotrophic respiration to temperature, and
land use change—further contribute to an atmospheric CO; bias.

» Future fossil fuel emissions targets designed to stabilize CO; levels
would be too low if estimated from the multi-model mean of ESMs.

» Value in tuning models: The CCTM projection provided a 6-fold
reduction in uncertainty at 2060 and a 5-fold reduction at 2100.

» Models could be improved through extensive comparison with
observations using a community benchmarking system like planned
for the International Land Model Benchmarking (ILAMB) project.
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Why Benchmark?

» to show the broader science community and the public that the
representation of the carbon cycle in climate models is improving;

> to provide a means, in Earth System models, to quantitatively
diagnose impacts of model development in related fields on carbon
cycle and land surface processes;

> to guide synthesis efforts, such as the Intergovernmental Panel on
Climate Change (IPCC), in the review of mechanisms of global
change in models that are broadly consistent with available
contemporary observations;

> to increase scrutiny of key datasets used for model evaluation;
> to identify gaps in existing observations needed for model validation;

> to provide a quantitative, application-specific set of minimum
criteria for participation in model intercomparison projects (MIPs);

> to provide an optional weighting system for multi-model mean
estimates of future changes in the carbon cycle.
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An Open Source Benchmarking Software System

N\

T T % fﬁ>

GCP TRENDY CMIP5 Future MIPs IPCC ARG

C-LAMP
LBA-DMIP
NACP Interim
MsTMIP

» Human capital costs of making rigorous model-data comparisons is
considerable and constrains the scope of individual MIPs.

» Many MIPs spend resources “reinventing the wheel” in terms of
variable naming conventions, model simulation protocols, and
analysis software.

> Need for ILAMB: Each new MIP has access to the model-data
comparison modules from past MIPs through ILAMB (e.g., MIPs
use one common modular software system). Standardized
international naming conventions also increase MIP efficiency.
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Measurement community

Working groups

Modeling community

International Land Model Benchmarking project and diagnostic system
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What is a Benchmark?

» A benchmark is a quantitative test sfi] R 0 N
of model function, for which the of ook el
uncertainties associated with the oL 4 4L i
observations can be quantified. oL e »

(d)

(©)
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> Acceptable performance on
benchmarks is a necessary but
not sufficient condition for a
fully functioning model.

| carrex
I O O

b &

Detrended CO, mixing ratio (pprn)

» Since all datasets have strengths
and weaknesses, an effective Sy
benchmark is one that draws upon
a broad set of independent
observations to evaluate model
performance on multiple temporal
and spatial scales.

0
)
T

(Randerson et al., 2009)
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Example Benchmark Score Sheet from C-LAMP

Models ——>

Uncertainty  Scaling  Total

Metric Metric cc of obs. score  Sub-score CASA’ CN
LAI Matching MODIS observations 15.0 135 12.0
e Phase (assessed using the month of maximum LAI) Low Low 6.0 51 4.2
o8} « Maximum (derived separately for major biome classes) Moderate Low 5.0 46 4z
m o Mean (derived separately for major biome classes) Moderate Low 4.0 38 3.
O NPP Comparisons with field observations and satellite products 10.0 8.0 8.2
« Matching EMDI Net Primary Production observations ~ High High 20 15 16
U  EMDI comparison, i by precipitati 4.0 3.0 3.
Q-) e Correlation with MODIS (?) High Low 2.0 16 14
= « Latitudinal profile comparison with MODIS-t) High Low 2.0 1.9 1.8
m CO, annual cycle  Matching phase and amplitude at Globalview flash sites 15.0 10.4 7.7
wn * 60°-90N Low Low 6.0 4.1 28
D * 30-60°'N Low Low 6.0 4.2 3.2
—t * 0°-30N Moderate Low 3.0 21 17
w Energy & CO fluxes Matching eddy covariance monthly mean observations 30.0 17.2 16.6
« Net ecosystem exchange Low High 6.0 25 21
« Gross primary production Moderate  Moderate 6.0 3.4 3.
e Latent heat Low Moderate 9.0 6.4 6.2
* Sensible heat Low Moderate 9.0 4.9 4.€
Transient dynamics Evaluating model processes that regulate carbon exchange 30.0 16.8 13.8
on decadal to century timescales
« Aboveground live biomass within the Amazon Basin Moderate  Moderate 10.0 53 5.
« Sensitivity of NPP to elevated levels of GQzomparison Low Moderate 10.0 79 4.1
to temperate forest FACE sites
« Interannual variability of global carbon fluxes: High Low 5.0 36 3.0
comparison with TRANSCOM
« Regional and global fire emissions: comparison to High Low 5.0 0.0 17
\/ GFEDv2
Total: 100.0 65.9 58.3
(Randerson et al., 2009)
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» Meeting Co-organized by Forrest Hoffman (UC-Irvine and ORNL), Chris
Jones (UK Met Office), Pierre Friedlingstein (U. Exeter and IPSL-LSCE),
and Jim Randerson (UC-Irvine).

» About 45 researchers participated from the United States, Canada, the
United Kingdom, the Netherlands, France, Germany, Switzerland, China,
Japan, and Australia.
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General Benchmarking Procedure

Process Parameter

iophysics * State variables
* Hydrology * Rate variables
* Bi L

¥
* Vegetation dynamics

* Feedback

Observations Temporal scale
Experimental results Spatial cover

Data-model products Error structure
Relationship and patterns

Metrics of performance skills

* A priori thresholds To determine model’s
* Scoring systems * Acceptability
considering weights for /¢ Ranking

different processes and « Strength and deficiency
data sets

(Luo et al., 2012)

Science Institute

@ Climate Change #- OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY



ILAMB 1.0 Benchmarks Now Under Development

Annual | Seasonal | Interannual
Mean Cycle Variability | Trend Data Source
Atmospheric CO,
Flask/conc. + transport | [ v [ v [ v [NOAA,SIO, CSIRO
TCCON + transport | | v | v | v | Caltech
Fluxnet
GPP,NEE, TER,LEH.RN| v [ v [ v | [ Fluxnet, MAST-DC
Gridded: GPP | v | v | ? | | MPI-BGC
Hydrology/Energy
runoff ratio (R/P) —riverflow— v v GRDC, Dai, GFDL
global runoff/ocean balance v Syed/Famiglietti
albedo (multi-band) v v MODIS, CERES
soil moisture v v de Jeur, SMAP
column water v v GRACE
snow cover v v v v AVHRR, GlobSnow
snow depth/SWE v v v v CMC (N. America)
T &P | 7 7 7| CRU, GPCP and TRMM
Gridded: LE, H v v MPI-BGC, dedicated ET
Ecosystem Processes & State
soil C, N v HWSD, MPI-BGC
litter C, N v LIDET
soil respiration v v v v Bond-Lamberty
FAPAR v v MODIS, SeaWIFS
biomass & change v v Saatchi, Pan, Blackard
canopy height v Lefsky, Fisher
NPP v EMDI, Luyssaert
Vegetation Dynamics
fire — burned area v v v GFED3
wood harvest v v Hurtt
land cover v MODIS PFT fraction

*— 0OAK RIDGE NATIONAL LABORATORY
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» Our international collaboration has made significant progress
on development of metrics and diagnostics for ILAMB 1.0.

» As CMIP5 papers come out, we need to collect cost functions
and algorithms for integration into an ILAMB 1.0 package.
» Much more work is needed on

» diagnostics for full suite of variables and time scales,

» combining metrics into model skill scores,

> applying skill scores to weight models for multi-model
statistics, and

> writing papers.

» Greater participation is welcome!
» ILAMB Meeting in 20137 With ICDC-9 or GLASS/GSWP?

International Land Model Benchmarking (ILAMB) Project
http://www.ilamb.org/ J
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