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Integrating Across Scales

» NGEE Arctic process studies and observations are strongly linked to
model development and application for improving process
representation, initialization, calibration, and evaluation.

» A hierarchy of models will be deployed at fine, intermediate, and
climate scales to connect observations to models and models to
each other in a quantitative up-scaling and down-scaling framework.

Hydrologic and Geomorphic Features at Multiple Scales. At the scale of (A) a high-resolution ESM, (B) a single ESM grid cell, (C) a 2 x 2 km
domain of high-resolution Light Detection and Ranging (LiDAR) topographic data, and (D) polygonal ground. Yellow outlines in panel A show
geomorphologically stable hydrologic basins, connected by stream channels (blue). Colored regions in panels B and C show multiple drained thaw
lake basins within a single 10 x 10 km grid cell (B) or a 2 x 2 km domain (C), with progressively more detailed representation of stream channels
(blue). Colors in panel D represent higher (red) to lower (green) surface elevations for a fine-scale subregion, with very fine drainage features
(white). [Los Alamos National Laboratory, University of Alaska Fairbanks, and University of Texas at El Paso]




Quantitative Sampling Network Design

» Resource and logistical constraints limit the frequency and
extent of observations, necessitating the development of a
systematic sampling strategy that objectively represents
environmental variability at the desired spatial scale.

> Required is a methodology that provides a quantitative
framework for informing site selection and determining the
representativeness of measurements.

» Multivariate spatiotemporal clustering (MSTC) was applied at
the landscape scale (4 km?) for the State of Alaska to
demonstrate its utility for representativeness and scaling.

» An extension of the method applied by Hargrove and Hoffman
for design of National Science Foundation's (NSF's) National
Ecological Observatory Network (NEON) domains.



Table: 37 characteristics averaged for the present (2000-2009) and the
future (2090-2099).

Description Number/Name Units Source
Monthly mean air temperature 12 °C GCM
Monthly mean precipitation 12 mm GCM
mean day of year GCM

Day of freeze standard deviation days
mean day of year GCM

Day of thaw standard deviation days
Length of growing season mean days GeM

& & £ standard deviation days
Maximum active layer thickness 1 m GIPL
Warming effect of snow 1 °C GIPL
Mean annual ground temperature 1 oC GIPL

at bottom of active layer
Mean annual ground surface tem-

1 °C GIPL
perature
Thermal offset 1 °C GIPL
Limnicity 1 % NHD
Elevation 1 m SRTM




10 Alaska Ecoregions, Present and Future

2000-2009 2090-2099
(Hoffman et al., 2013)

Since the random colors are the same in both maps, a change in
color represents an environmental change between the present and
the future.

At this level of division, the conditions in the large boreal forest
become compressed onto the Brooks Range and the conditions on
the Seward Peninsula “migrate” to the North Slope.



20 Alaska Ecoregions, Present and Future

2000-2009 2090-2099
(Hoffman et al., 2013)

Since the random colors are the same in both maps, a change in
color represents an environmental change between the present and
the future.

At this level of division, the two primary regions of the Seward
Peninsula and that of the northern boreal forest replace the two
regions on the North Slope almost entirely.



50 and 100 Alaska Ecoregions, Present

k = 50, 2000-2009 k = 100, 2000-2009
(Hoffman et al., 2013)

Since the random colors are the same in both maps, a change in
color represents an environmental change between the present and
the future.

At high levels of division, some regions vanish between the present
and future while other region representing new combinations of
environmental conditions come into existence.



NGEE Arctic Site Representativeness

> This representativeness analysis uses the standardized
n-dimensional data space formed from all input data layers.

> In this data space, the Euclidean distance between a sampling
location (like Barrow) and every other point is calculated.

» These data space distances are then used to generate
grayscale maps showing the similarity, or lack thereof, of every
location to the sampling location.

> In the subsequent maps, white areas are well represented by
the sampling location or network, while dark and black areas
as poorly represented by the sampling location or network.

» This analysis assumes that the climate surrogates maintain
their predictive power and that no significant biological
adaptation occurs in the future.



Present Representativeness of Barrow or “Barrow-ness”
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(Hoffman et al., 2013)

Light-colored regions are well represented and dark-colored regions
are poorly represented by the sampling location listed in red.



Present vs. Future Barrow-ness
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2000-2009 2090-2099
(Hoffman et al., 2013)

As environmental conditions change, due primarily to increasing
temperatures, climate gradients shift and the representativeness of
Barrow will be reduced in the future.



Network Representativeness: Barrow + Council

1000 km
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(Hoffman et al., 2013)

Light-colored regions are well represented and dark-colored regions
are poorly represented by the sampling location listed in red.



Network Representativeness: All 8 Sites

«Toolik Lake

elvotuk

1000 km
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(Hoffman et al., 2013)

Light-colored regions are well represented and dark-colored regions
are poorly represented by the sampling location listed in red.



State Space Dissimilarities: 8 Sites, Present (2000-2009)

Table: Site state space dissimilarities for the present (2000-2009).

Toolik Prudhoe
Sites Council Atqasuk Ivotuk Lake Kougarok Bay Fairbanks

Barrow 9.13 453 590 5.87 7.98 3.57 12.16

Council 8.69 6.37 7.00 2.28 8.15 5.05
Atgasuk 5.18 5.23 7.79 1.74 10.66
Ivotuk 1.81 5.83 4.48 7.90
Toolik Lake 6.47 4.65 8.70
Kougarok 7.25 5.57
Prudhoe Bay 10.38

(Hoffman et al., 2013)



State Space Dissimilarities: 8 Sites, Present and Future

Table: Site state space dissimilarities between the present (2000-2009)

and the future (2090-2099).

Future (2090-2099)

Toolik Prudhoe
Sites Barrow Council Atqasuk lvotuk Lake Kougarok Bay Fairbanks
@ Barrow 3.31 9.67 4.63 6.05 b5.75 9.02 3.69 11.67
S Council 838 1.65 8.10 591 6.87 3.10 7.45 5.38
< Atqasuk 6.01 9.33 242 546 5.26 8.97 2.63 10.13
S lvotuk 7.06 7.17 5.83 153 2.05 7.25 4.87 7.40
& Toolik Lake 7.19 7.67 6.07 248 1.25 7.70 5.23 8.16
% Kougarok 7.29  3.05 6.92 557 6.31 2.51 6.54 5.75
& Prudhoe Bay 5.29 8.80 3.07 4.75 4.69 8.48 1.94 9.81
a Fairbanks 12.02 5.49 10.36 7.83 8.74 6.24 10.10 1.96

(Hoffman et al., 2013)



Representativeness: A Quantitative Approach for Scaling

» MSTC provides a quantitative framework for stratifying
sampling domains, informing site selection, and determining
representativeness of measurements.

> Representativeness analysis provides a systematic approach for
up-scaling point measurements to larger domains.

» Methodology is independent of

o ot st o i resolution, thus can be applied

— from site/plot scale to

landscape/climate scale.

> It can be extended to include
finer spatiotemporal scales, more
geophysical characteristics, and
remote sensing data.

Hoffman, F. M., J. Kumar, R. T. Mills, and
W. W. Hargrove (2013), Representativeness-
based sampling network design for the State
of Alaska, Landscape FEcol., 28(8):1567-1586,
e doi:10.1007/s10980-013-9902-0.



http://dx.doi.org/10.1007/s10980-013-9902-0
http://dx.doi.org/10.1007/s10980-013-9902-0

Barrow Environmental Observatory (BEO)
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(Langford et al., in prep)

Representativeness map for vegetation sampling points in A, B, C, and D
sampling area including phenology (left) and for a single date (right),
based on WorldView?2 satellite images for the year 2010 and LiDAR data.



Barrow Environmental Observatory (BEO)

(Langford et al., in prep)
Mosses and wet tundra graminoids PFT % for Areas A, B, C, D.

Example plant functional type (PFT) distributions scaled up from vegetation
sampling locations.



ForestGEO Network Global Representativeness

x v z
(Anderson-Teixeira et al., 2015)

Map illustrating ForestGEO network representation of 17 bioclimatic,
edaphic, and topographic conditions globally. Light-colored regions are
well represented and dark-colored regions are poorly represented by the
ForestGEO sampling network. Stippling covers non-forest areas.


http://dx.doi.org/10.1111/gcb.12712

Triple-Network Global Representativeness

(Maddalena et al., in prep)

Map indicates which sampling network offers the most representative
coverage at any location. Every location is made up of a combination of

three primary colors from Fluxnet (red), ForestGEO (green), and
RAINFOR (blue).



Clustering MODIS NDVI into Phenoregions

» Hoffman and Hargrove previously used k-means clustering to detect
brine scars from hyperspectral data (Hoffman, 2004) and to classify
phenologies from monthly climatology and 17 years of 8 km NDVI
from AVHRR (White et al., 2005).

» This data mining approach requires high performance computing to
analyze the entire body of the high resolution MODIS NDVI record
for the continental U.S.

» >87B NDVI values, consisting of ~146.4M cells for the CONUS at
250 m resolution with 46 maps per year for 13 years (2000-2012),
analyzed using k-means clustering.

> The annual traces of NDVI for every year and map cell are
combined into one 327 GB single-precision binary data set of
46-dimensional observation vectors.

> Clustering yields 13 phenoregion maps in which each cell is classified
into one of k phenoclasses that represent prototype annual NDVI
traces.



50 Phenoregions for year 2012 (Random Colo




50 Phenoregion Prototypes (Random Colors)
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50 Phenoregions Mode (Random Colors)
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50 Phenoregions Max Mode (Similarity Colors)




50 Phenoregions Max Mode (Similarity Colors Legend)
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Phenoregions Clearinghouse

National Phenol Google Chrome

jonal Phenological

B
‘ » z [@;nnpf‘,-;www.qeobabble.org,-phenoreg\ons; ﬁ]
National Phenological Ecoregions (2000-2011)

T |

William W. Haigrove, Farrest M. Hoffman, Jitendra Kumar, Joseph P. Spruce, and Richard T. Mills
January 14, 2013

Jump to 50 National Phenoregions
Jump to 100 National Phenoregions
Jump to 200 National Phenoregions

Jump to 500 National Phenoregions

Jump to 1000 National Phenoregions

Jump to 5000 National Phenoregions

50 Most-Different National Phenological Ecoregions (2000-2011)




Detecting and Tracking Shifts in Phenoregions

See Jitu's talk this afternoon on a new application of Phenoregions
for detecting land cover change:

Detecting and Tracking Shifts in National Vegetation
Composition Across the MODIS Era

Jitendra Kumar, Oak Ridge National Laboratory

Monday, July 06, 2015 — 5:20 pm



Computational Approaches for Landscape Ecology

» Moore's Law is no longer sustainable since:
more transistors = more power = more heat loss.

> Speed is now a function of algorithm scalability.
» Future computational approaches must rely on:

» distributed memory and shared memory parallelism (threading)
» vectorization and cache reuse
» algorithm acceleration techniques

Insights into computational directions at Tuesday's poster session:

Scalable algorithms for analysis of large geospatiotemporal
data sets and applications to landscape ecology

Richard Mills, Intel Corporation

Tuesday, July 07, 2015 — 7:00 pm
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