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Introduction

e Observations of the Earth system are increasing in spatial resolution and
temporal frequency, and will grow exponentially over the next 5-10 years

e With Exascale computing, simulation
output is growing even faster,
outpacing our ability to evaluate and
benchmark model results

e Explosive data growth and the promise
of discovery through data-driven
modeling necessitate new methods for
feature extraction, change detection, :
data assimilation, simulation, and Langford et al. (2019)
analysis
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2012 (Random Colors)
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Hargrove et al., in prep.




50 Phenoregions Persistence
and
50 Phenoregions Max Mode
(Similarity Colors)
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GSMNP: Spatial distribution of the 30 vege’ro [e”
Clusters across the national park w

Extracted canopy height and structure from
airborne LiDAR

10 km
I

Earthinsights Kumar et al., in prep.



GSMNP: 30 representative vertical structures
cluster centroids) identified

tall forests with low
understory vegetation

forests with slightly lower
mean height with dense
understory vegetation

low height grasslands and
heath balds that are small
in area but distinct
landscape type

Earthinsights
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Kumar et al., in prep.




Global Fire Regimes
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Regions that exhibit similar fire seasonality globally
From MODIS “Hotspots” from 2002-2018

Earthinsights Norman et al., in prep.




Arctic Vegetation Mapping from Multi-Sensor Fusion

Using Hyperion Multispectral and IfSAR-derived Digital Elevation Model
Trained with Alaska Existing tation Ecoregions (AKEVT)

BTE

—— Kougarok Watershed

Vegetation Type

Il Rock

B Water

[ Alder-Willow Shrub

I Mixed Shrub-Sedge Tussock Tundra
[ ] Dryas/Lichen Dwarf Shrub Tundra
[l Sedge-Willow-Dryas Tundra

Earthinsights | Langford et al., Remote Sensing, 2019



Watershed-Scale Plant Communities Determined from DNN and AVIRIS-NG

Teller

Earthinsights
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@ Alder-Willow Shrub © Sedge-Willow-Dryas Tundra
© Birch-Ericaceous-Lichen Shrub Tundra © Tussock-Lichen Tundra

@ Dryas-Lichen Dwarf Shrub Tundra © Wet Meadow Tundra

© Ericaceous Dwarf Shrub Tundra @ Wet Sedge Bog-Meadow
@ Mesic Graminoid-Herb Meadow O Willow Shrub
@ Mixed Shrub-Sedge Tussock Tundra @ Willow-Birch Shrub
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Konduri et al., in prep.




Hybrid ML/Process-based Modeling for Terrestrial Modeling
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Scale in ecological investigations

individual forest patch

cluster of forest patches

e © 2013 Encyclopaedia Britannica, Inc.



s A novel multiscale strategy fusing
EanhEdS@z process-resolving simulations and machine learning

* Tightly integrated role for machine learning

*® Synthesize spatially distributed model inputs from diverse data streams; use inverse modeling; apply
surrogate models across scales; co-design distributed sensor networks through feedback from modeling

Viachine learning approaches 1or integrating between and across scales.

East Riveré

| Y Delaware River
200 km 20 km — 2km ———  200mi| |

* Process-explicit integrated surface/subsurface flow and reactive transport codes

* Represent biogeochemical processes and their hydrologic controls at their native scales; leverage exascale
computing; exploit high throughput model-data integration
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Grand Challenge #1

Energy Demand Electric Grid Wind, Solar, and Biofuels Hydro Power
+ Higher summer temperatures drive * Winds, ice storms, and wildfires damage * Changes in wind patterns and solar « Drought and reduced runoff reduce

. o .
prem el e R Project environmental risk and develo
(primarily electricity) * Extreme heat reduces power line/trans- + Extreme winds damage wind and solar + Earlier snowmelt shifts peak production

+ Higher winter temperatures drive reduced former capacity infrastructure earlier in the year

demand for heating energy (including * Flooding can damage substations/trans- * Increasing temperatures reduce generat- + Flooding increases risk of damage

natural gas, oil, and electricity) formers/underground lines . iggtr(::r?\:cvi\gaudmught e and disruption A re Si I ie n cy i n a c h a n gi n g e nVi ro n m e nt

production

* Increasing frequency of weather
extremes and changing environment
pose risks to energy infrastructure and
the built environment

meere. [ Sparse observations and inadequate

el model fidelity limit the ability to

+ Inland and coastal flooding can disrupt

operation and damages equipment

‘ \ - . . L . L . .
OlGascos il ey S identify vulnerability, mitigate risks,
flooding disrupt/damage offshore and

onshore energy operations and facilties Pipelines
* Reduced water availability constrains

drilling, fracking, and mining operations
+ Thawing permafrost and subsidence

reduce access and impact production

* Flooding damages pumping stations,
undermine/scour river crossings

* Loss of electricity impacts pumping
operations

U.S. DEPARTMENT OF Office of
6 EN ERGY Science

Refineries

* Extreme weather/flooding damage
refineries

* Reduced water availability can constrain
fuel refining and processing

* Loss of electricity impacts refining
operations

Fuel Transport
* Inland and coastal flooding inundate low-lying
roads and rails, and can damage bridges,
river and coastal ports, and storage facilities
+ Reduced river runoff can impede barge traffic
xtreme weather, flooding, and blackouts can
disrupt distribution outlets and gas stations

and respond to disasters

Washington DC Town Hall

October 22-23



Grand Challenge #1

* New tools are needed to accelerate
projection of weather extremes and
impacts on energy infrastructure

* Building resiliency to address evolving
risks will benefit from integration of
smart sensing systems,
built-for-purpose models, ensemble
forecasts to quantify uncertainty, and
dynamic decision support systems for
critical infrastructure

EPR, U.S. DEPARTMENT OF Office of

ENERGY Science October 22-23




Grand Challenge #2

Characterize and modify subsurface conditions for
responsible energy production, CO, storage, and
ZL contaminant remediation

* National energy security and transition to renewable
energy resources relies on utilization of subsurface
reservoirs for energy production, carbon storage, and
spent nuclear fuel storage

e Subsurface data are uncertain, disparate, diverse, sparse,
and affected by scaling issues

* Subsurface process models are incomplete, uncertain,
and frequently unreliable for prediction

@ Femm

I akage pathway

saline aquifer:
porous rocks filled
with salty water (brine): wetting/adhesion

B, U.S. DEPARTMENT OF Offlce Of WaShlngton DC TOWh Ha"

@ ENERGY Science October 22-23



,__ Producing Wolls |

Grand Challenge #2

ey

* We need to substantially increase hydrocarbon
extraction efficiency, discover and exploit
hidden geothermal resources, reduce induced
seismicity and other impacts, improve geologic .. 8
CO, storage, and predict long-term fate and &
transport of contaminants

* Mitigating risks requires improved subsurface : v A
characterization and assimilation of real-time SRR L
data streams into predictive models of N
geological and ecological processes

U.S. DEPARTMENT OF Office of Washington Dc Town HaII
ﬁ ENERGY science October 22-23



Grand Challenge #3 Mﬂf \ =/ e I Sy

Develop a predictive understanding of the Earth

system under a changing environment

* To advance the nation’s energy and infrastructure Energy & Water Cycles
security, a foundational scientific understanding of
complex and dynamic hydrological, biological, and vodn i W ANRIN
geochemical processes and their interactions is o l
required (across atmosphere, ocean, land, ice) 065550 | s B | |

Bl ||| Rl

* Knowledge must be incorporated into Earth
system models to project future climate conditions
for various scenarios of population,

socioeconomics, and energy production and use o
Carbon & Biogeochemical Cycles

U.s. DEPARTUENT OF | Office of Washington DC Town Hall
ﬁ ENERGY science October 22-23
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Grand Challenge #3

_ * Accurate predictions are needed to
Earth System Modeling . . .
“geospatially-explicit, process-based, & coupled” qua ntlfy Chan gES |n atmOSpherIC and
ocean circulation and weather extremes,
, to close the carbon cycle, and to
i e—— understand responses and feedbacks of

i e & human, terrestrial, and marine ecosystems

THE DATA MODULES COMPUTATION ENGINE

THE MODELS AND CALCULATIONS e OFVARIRBEES

o

Hydroelectric

= #3 toenvironmental change

* Advances in genomics and bioscience data
need to be leveraged to provide detailed
understanding of plant—microbial
interactions and their adaptations and
feedbacks to the changing environment

Agriculture
Productivity

Soil Moisture

U.S. DEPARTMENT OF Office of Washington Dc Town HaII
ﬁ ENERGY science October 22-23



Grand Challenge #4

Diverse, Multi-scale Environmental Data

Ensure global water security under a V| (B
g Y Lo |

changing environment e e

ensin
Molecular » Global

Modeling

Spatial Scale

* Water resources are critical for energy |
production, human health, food
security, and economic prosperity

* Water availability and water quality are
impacted by environmental change, /
weather extremes, and disturbances Modeling
such as wildfire and land use change

"

U.s. DEPARTUENT OF | Office of Washington DC Town Hall
@ ENERGY science October 22-23



Grand Challenge #4

* Methods are needed to integrate
disparate and diverse multi-scale data
with models of watersheds, rivers, and
water utility infrastructure

* Predictions of water quality and
quantity require data-driven models
and smart sensing systems

* Water resource management must
account for changes in weather
extremes, population, and economic
growth

U.s. DEPARTUENT OF | Office of Washington DC Town Hall
ﬁ ENERGY science October 22-23



Accelerating Development

The near-term (5—10 years) priorities are to: :
* Develop hybrid process-based/Al modeling frameworks for Exascale systems

) DeveIOp Strategles for mapplng Hybrid Approaches to Earth Science Simulation (Reichstein et al., 2019)
hybrid components on GPU/CPU - b e Ao g
based on computational density . ETEE L FEE S
and communications patterns  |@EE - oo

* Develop physics / chemistry / — & |
biology-constrained ML | G ¥ | G~

*Develop explainable Aland ML g — | & B
methods for hypothesis e ﬂ e I e

Washington DC Town Hall

generation and testing
October 22-23

B, U.S. DEPARTMENT OF Office Of

@ ENERGY Science




Expected Outcomes

* Model testbeds and surrogate models are expected to yield insights into
process understanding across all Grand Challenges

* Data-driven and physics-constrained hybrid models are expected to stimulate
new discovery and bridge space and time scales A

* Integrated models of Earth system processes and
energy/built infrastructure will enhance national
energy and water security through simulation

* Al methods will enable effective use of large data .
streams for energy production, predictive process
understanding, and environmental resiliency

Office of Washington DC Town Hall

ﬁ ENERGY Science October 22-23
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Al for Earth System Predictability (AI4ESP):
A Vision for a Machine Learning Framework Enabling

End-to-End Earth System Predictability Research
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Developing Vision Enabling Al from Obs to Earth System Models

® What does the framework look like that combines DOE's experiment/observation and simulation

capabilities to quantify and reduce the uncertainty in high-resolution Earth systems models?

® Goal: Define the paradigm shift required to employ artificial intelligence and machine learning across

field, lab, modeling, and analysis activities. Non-incremental advancement built for the future EESSD
program needs (5-10yr).

@)

@)
@)
@)

Bridge the gap: state-of-the-art in AI/ML research & EESSD program needs
Harness Earth System Data including inter-agency resources
Harness DOE computing resources, i.e. Exascale

Domain-specific machine learning applications



DOE’s Model-Data-Experiment Enterprise
employing medoer | A—y iy, and

design benchmarking
® A
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Novel Al/ML Framework for Land-Atmosphere Interactions

e Domain-specific machine learning applications from field and lab
activities to models and analysis

e AI/ML at every aspect in the wheel (examples; not exhaustive)

O O O O O O

Simulation-guided experiment/sampling design

Dynamic/responsive Al-controlled measurement systems

Edge computing and 5G sensor networks

Pattern recognition and process discovery through large data

Hybrid process-/machine learning-based coupled Earth system modeling
Data-driven multiscale modeling and data-model integration and analytics



White Paper Call

Al methods in areas relevant to EESSD research emphasis on quantifying and

improving Earth system predictability (particularly the integrative water cycle and
associated water cycle extremes)

Focal Areas (helps organize the responses for designing workshops):

1. Data acquisition and assimilation enabled by ML, Al, and advanced methods

2. Predictive modeling using Al techniques and Al-derived model components;
use of Al and other tools to design a prediction system comprising of a
hierarchy of models

3. Insight gleaned from complex data (both observed and simulated) using Al, big
data analytics, and other advanced methods, including explainable Al and
physics- or knowledge-guided Al



DOE-BER-EESSD Al/ML Activity

e Core Team, Lab POCs, and DOE Management
will develop a vision for workshops based on

_—
° BROOKHEAVEN
Argonne NATIONAL LABORATORY

AI4ESP White Papers (submitted February 15) ronr o Kzg%g;
lan Foster erstin Kleese
for a new paradigm for Earth system i

Nationel /-P’LosAlamos

Gary Geernaert

predictability focused on enabling Y for UAEETUREETEE  f0i o N
P . . . . Andy Salinger Jennifer Arrigo Jeff Stehr Aric Hagberg
artificial intelligence and machine learning DOE MANAGEMENT
across field, lab, modeling, and analysis CORE TEAN
it CoNTACT B CoNTACT
activities o ey i
e How to engage: ot B o

David Womble Timo Bremer

o  Sign up for more information at
http://bit.ly/MLAI4earth

o Join Slack Workspace at
https://join.slack.com/t/ai4esp/signup

%OAK RIDGE |(Bawrencs Livermore
'National Laboratory 4 National Laboratory



http://bit.ly/MLAI4earth
https://join.slack.com/t/ai4esp/signup?x=x-p1540370080150-1553288442244-1664797419441

