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Next-Generation Ecosystem Experiments (NGEE Arctic)
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Integrating Across Scales

» NGEE Arctic process studies and observations are strongly linked to
model development and application for improving process
representation, initialization, calibration, and evaluation.

» A hierarchy of models will be deployed at fine, intermediate, and
climate scales to connect observations to models and models to
each other in a quantitative up-scaling and down-scaling framework.

Hydrologic and Geomorphic Features at Multiple Scales. At the scale of (A) a high-resolution ESM, (B) a single ESM grid cell, (C) a 2 x 2 km
domain of high-resolution Light Detection and Ranging (LiDAR) topographic data, and (D) polygonal ground. Yellow outlines in panel A show
geomorphologically stable hydrologic basins, connected by stream channels (blue). Colored regions in panels B and C show multiple drained thaw
lake basins within a single 10 x 10 km grid cell (B) or a 2 x 2 km domain (C), with progressively more detailed representation of stream channels
(blue). Colors in panel D represent higher (red) to lower (green) surface elevations for a fine-scale subregion, with very fine drainage features
(white). [Los Alamos National Laboratory, University of Alaska Fairbanks, and University of Texas at El Paso]




Quantitative Sampling Network Design

» Resource and logistical constraints limit the frequency and
extent of observations, necessitating the development of a
systematic sampling strategy that objectively represents
environmental variability at the desired spatial scale.

> Required is a methodology that provides a quantitative
framework for informing site selection and determining the
representativeness of measurements.

» Multivariate spatiotemporal clustering (MSTC) was applied at
the landscape scale (4 km?) for the State of Alaska to
demonstrate its utility for representativeness and scaling.

» An extension of the method applied by Hargrove and Hoffman
for design of National Science Foundation's (NSF's) National
Ecological Observatory Network (NEON) domains.



Table: 37 characteristics averaged for the present (2000-2009) and the
future (2090-2099).

Description Number/Name Units Source
Monthly mean air temperature 12 °C GCM
Monthly mean precipitation 12 mm GCM
mean day of year GCM

Day of freeze standard deviation days
mean day of year GCM

Day of thaw standard deviation days
Length of growing season mean days GeM

& & £ standard deviation days
Maximum active layer thickness 1 m GIPL
Warming effect of snow 1 °C GIPL
Mean annual ground temperature 1 oC GIPL

at bottom of active layer
Mean annual ground surface tem-

1 °C GIPL
perature
Thermal offset 1 °C GIPL
Limnicity 1 % NHD
Elevation 1 m SRTM




10 Alaska Ecoregions, Present and Future

2000-2009 2090-2099
(Hoffman et al., 2013)

Since the random colors are the same in both maps, a change in
color represents an environmental change between the present and
the future.

At this level of division, the conditions in the large boreal forest
become compressed onto the Brooks Range and the conditions on
the Seward Peninsula “migrate” to the North Slope.



20 Alaska Ecoregions, Present and Future

2000-2009 2090-2099
(Hoffman et al., 2013)

Since the random colors are the same in both maps, a change in
color represents an environmental change between the present and
the future.

At this level of division, the two primary regions of the Seward
Peninsula and that of the northern boreal forest replace the two
regions on the North Slope almost entirely.



50 and 100 Alaska Ecoregions, Present

k = 50, 2000-2009 k = 100, 2000-2009
(Hoffman et al., 2013)

Since the random colors are the same in both maps, a change in
color represents an environmental change between the present and
the future.

At high levels of division, some regions vanish between the present
and future while other region representing new combinations of
environmental conditions come into existence.



NGEE Arctic Site Representativeness

> This representativeness analysis uses the standardized
n-dimensional data space formed from all input data layers.

> In this data space, the Euclidean distance between a sampling
location (like Barrow) and every other point is calculated.

» These data space distances are then used to generate
grayscale maps showing the similarity, or lack thereof, of every
location to the sampling location.

> In the subsequent maps, white areas are well represented by
the sampling location or network, while dark and black areas
as poorly represented by the sampling location or network.

» This analysis assumes that the climate surrogates maintain
their predictive power and that no significant biological
adaptation occurs in the future.



Present Representativeness of Barrow or “Barrow-ness”
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(Hoffman et al., 2013)

Light-colored regions are well represented and dark-colored regions
are poorly represented by the sampling location listed in red.



Present vs. Future Barrow-ness
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2000-2009 2090-2099
(Hoffman et al., 2013)

As environmental conditions change, due primarily to increasing
temperatures, climate gradients shift and the representativeness of
Barrow will be reduced in the future.



Network Representativeness: Barrow + Council

1000 km
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(Hoffman et al., 2013)

Light-colored regions are well represented and dark-colored regions
are poorly represented by the sampling location listed in red.



Network Representativeness: All 8 Sites

«Toolik Lake

elvotuk

1000 km
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(Hoffman et al., 2013)

Light-colored regions are well represented and dark-colored regions
are poorly represented by the sampling location listed in red.



State Space Dissimilarities: 8 Sites, Present (2000-2009)

Table: Site state space dissimilarities for the present (2000-2009).

Toolik Prudhoe
Sites Council Atqasuk Ivotuk Lake Kougarok Bay Fairbanks

Barrow 9.13 453 590 5.87 7.98 3.57 12.16

Council 8.69 6.37 7.00 2.28 8.15 5.05
Atgasuk 5.18 5.23 7.79 1.74 10.66
Ivotuk 1.81 5.83 4.48 7.90
Toolik Lake 6.47 4.65 8.70
Kougarok 7.25 5.57
Prudhoe Bay 10.38

(Hoffman et al., 2013)



State Space Dissimilarities: 8 Sites, Present and Future

Table: Site state space dissimilarities between the present (2000-2009)

and the future (2090-2099).

Future (2090-2099)

Toolik Prudhoe
Sites Barrow Council Atqasuk lvotuk Lake Kougarok Bay Fairbanks
@ Barrow 3.31 9.67 4.63 6.05 b5.75 9.02 3.69 11.67
S Council 838 1.65 8.10 591 6.87 3.10 7.45 5.38
< Atqasuk 6.01 9.33 242 546 5.26 8.97 2.63 10.13
S lvotuk 7.06 7.17 5.83 153 2.05 7.25 4.87 7.40
& Toolik Lake 7.19 7.67 6.07 248 1.25 7.70 5.23 8.16
% Kougarok 7.29  3.05 6.92 557 6.31 2.51 6.54 5.75
& Prudhoe Bay 5.29 8.80 3.07 4.75 4.69 8.48 1.94 9.81
a Fairbanks 12.02 5.49 10.36 7.83 8.74 6.24 10.10 1.96

(Hoffman et al., 2013)



Representativeness: A Quantitative Approach for Scaling

» MSTC provides a quantitative framework for stratifying
sampling domains, informing site selection, and determining
representativeness of measurements.

> Representativeness analysis provides a systematic approach for
up-scaling point measurements to larger domains.

RESEARCH ARTICLE
Representativeness-based sampling network design
for the State of Alaska

Forrest M. Hoftman - Hitendea Kursa -
Richard T, Ml - Wilam W. Hargrove

Hoffman, F. M., J. Kumar, R. T. Mills, and
W. W. Hargrove (2013), “Representativeness-
Based Sampling Network Design for the State
of Alaska.” Landscape Ecol., 28(8):1567-1586.
doi:10.1007/s10980-013-9902-0.
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Barrow Environmental Observatory (BEO)
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(Langford et al., in prep)

Representativeness map for vegetation sampling points in A, B, C, and D
sampling area with phenology (left) and without (right), based on
WorldView? satellite images for the year 2010 and LiDAR data.



Barrow Environmental Observatory (BEO)

Dry Tundra Sedge

(Langford et al., in prep)

Example plant functional type (PFT) distributions scaled up from
vegetation sampling locations.



ForestGEO Network Global Representativeness

x v z
(Anderson-Teixeira et al., 2015)

Map illustrating ForestGEO network representation of 17 bioclimatic,
edaphic, and topographic conditions globally. Light-colored regions are
well represented and dark-colored regions are poorly represented by the
ForestGEO sampling network. Stippling covers non-forest areas.


http://dx.doi.org/10.1111/gcb.12712

Triple-Network Global Representativeness

(Maddalena et al., in prep)

Map indicates which sampling network offers the most representative
coverage at any location. Every location is made up of a combination of

three primary colors from Fluxnet (red), ForestGEO (green), and
RAINFOR (blue).
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What is a Benchmark?

Interannual Variability of Atmospheric Carbon Dioxide

» A Benchmark is a quantitative i‘% 4 o 1
test of model function achieved o2 kel
through comparison of model % 72:
results with observational data. g Ll

> Acceptable performance on § Tsa"TISI\i"d\'M:MT“Tﬂ L1 0]
benchmarks is a necessary but A

. o age Models often fail to capture the amplitude of the
not sufficient condition for a seasonal cycle of atmospheric CO».
fully functioning model. T T T

» Functional benchmarks offer 100 IR 1
tests of model responses to og
forcings and yield insights into £7T |
ecosystem processes. :iL sool. |

» Effective benchmarks must draw £
upon a broad set of independent 3

0 L L L L
0 500 1000 1500 2000
Precipitation (mm yr”)

observations to evaluate model

performa nce on multiple Models may reproduce correct responses over only a
limited range of forcing variables.

temporal and spatial scales. (Randerson et al., 2009)



Why Benchmark?

>

to demonstrate to the science community and public that the
representation of coupled climate and biogeochemical cycles in
Earth system models (ESMs) is improving;

to quantitatively diagnose impacts of model development in related
fields on carbon cycle processes;

to guide synthesis efforts, such as the Intergovernmental Panel on
Climate Change (IPCC), in the review of mechanisms of global
change in models that are broadly consistent with available
contemporary observations;

to increase scrutiny of key datasets used for model evaluation;
to identify gaps in existing observations needed for model validation;

to accelerate incorporation of new measurements for rapid and
widespread use in model assessment;

to provide a quantitative, application-specific set of minimum
criteria for participation in model intercomparison projects (MIPs).



An Open Source Benchmarking Software System

>

T T % f

GCP TRENDY CMIP5 Future MIPs IPCC ARG

C-LAMP
LBA-DMIP
NACP Interim
MsTMIP

» Human capital costs of making rigorous model-data comparisons is
considerable and constrains the scope of individual MIPs.

» Many MIPs spend resources “reinventing the wheel” in terms of
variable naming conventions, model simulation protocols, and
analysis software.

> Need for ILAMB: Each new MIP has access to the model-data
comparison modules from past MIPs through ILAMB (e.g., MIPs
use one common modular software system). Standardized
international naming conventions also increase MIP efficiency.



GLOBAL Giobal
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> We co-organized inaugural meeting and ~45 researchers participated from the
United States, Canada, the United Kingdom, the Netherlands, France, Germany,
Switzerland, China, Japan, and Australia.

> ILAMB Goals: Develop internationally accepted benchmarks for model
performance, advocate for design of open-source software system, and
strengthen linkages between experimental, monitoring, remote sensing, and
climate modeling communities. /Initial focus on CMIP5 models.

» Provides methodology for model-data comparison and baseline standard for
performance of land model process representations (Luo et al., 2012).



General Benchmarking Procedure

arameter
* State variables
* Rate variables
* Responses
* Feedback

Process
* Biophysics
* Hydrology
* Biogeochemistry
* Vegetation dynamics

l Observations
Experimental results
Data-model products

* Temporal scale
* Spatial cover
* Error structure

Relationship and patterns

Metrics of performance skills

* A priori thresholds
= Scoring systems

considering weights for
different processes and
data sets

To determine model’s
* Acceptability

/* Ranking

¢ Strength and deficiency

(Luo et al., 2012)



ILAMB 1.0 Benchmarks

Annual | Seasonal | Interannual
Mean Cycle Variability | Trend ‘ Data Source
Atmospheric CO»
Flask/conc. + transport | v v [ v [NOAA, SIO, CSIRO
TCCON + transport | v v [ v ] Caltech
Fluxnet
GPP, NEE, TER, LE, H,RN [ v v v [ [ Fluxnet, MAST-DC
Gridded: GPP |V v ? | [ MPI-BGC
Hydrology/Energy
runoff ratio (R/P) —riverflow— v v GRDC, Dai, GFDL
global runoff/ocean balance v Syed /Famiglietti
albedo (multi-band) v v MODIS, CERES
soil moisture v v de Jeur, SMAP
column water v v GRACE
snow cover v v v v AVHRR, GlobSnow
snow depth/SWE v v v v CMC (N. America)
Tar & P v v v v CRU, GPCP and TRMM
Gridded: LE, H v v MPI-BGC, dedicated ET
Ecosystem Processes & State
soil C, N v HWSD, MPI-BGC
litter C, N v LIDET
soil respiration v v v v Bond-Lamberty
FAPAR v v MODIS, SeaWIFS
biomass & change v v Saatchi, Pan, Blackard
canopy height v Lefsky, Fisher
NPP v EMDI, Luyssaert
Vegetation Dynamics
fire — burned area v v v GFED3
wood harvest v v Hurtt
land cover v MODIS PFT fraction




Example Benchmark Score Sheet from C-LAMP

Models ——>

Uncertainty  Scaling  Total

Metric Metric cc of obs. score  Sub-score CASA’ CN
LAI Matching MODIS observations 15.0 135 12.0
e Phase (assessed using the month of maximum LAI) Low Low 6.0 51 4.2
o8} « Maximum (derived separately for major biome classes) Moderate Low 5.0 46 4z
m o Mean (derived separately for major biome classes) Moderate Low 4.0 38 3.
O NPP Comparisons with field observations and satellite products 10.0 8.0 8.2
« Matching EMDI Net Primary Production observations ~ High High 20 15 16
U  EMDI comparison, i by precipitati 4.0 3.0 3.
m o Correlation with MODIS (?) High Low 2.0 16 14
= « Latitudinal profile comparison with MODIS t) High Low 2.0 1.9 1.8
m CO, annual cycle  Matching phase and amplitude at Globalview flash sites 15.0 10.4 7.7
wn * 60°-90N Low Low 6.0 4.1 28
D *30-60°'N Low Low 6.0 4.2 3.2
—t * 0°-30N Moderate Low 3.0 21 17
w Energy & CO fluxes Matching eddy covariance monthly mean observations 30.0 17.2 16.6
« Net ecosystem exchange Low High 6.0 25 21
« Gross primary production Moderate  Moderate 6.0 3.4 3.
 Latent heat Low Moderate 9.0 6.4 6.2
* Sensible heat Low Moderate 9.0 4.9 4.€
Transient dynamics Evaluating model processes that regulate carbon exchange 30.0 16.8 13.8
on decadal to century timescales
« Aboveground live biomass within the Amazon Basin Moderate  Moderate 10.0 53 5.
« Sensitivity of NPP to elevated levels of GQzomparison Low Moderate 10.0 79 4.1
to temperate forest FACE sites
« Interannual variability of global carbon fluxes: High Low 5.0 36 3.0
comparison with TRANSCOM
« Regional and global fire emissions: comparison to High Low 5.0 0.0 17
\/ GFEDv2
Total: 100.0 65.9 58.3

(Randerson et al., 2009)
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ILAMB Prototype Diagnostics System

An initial [ILAMB prototype has been developed by Mingquan Mu at UCL.
> Current variables:

Aboveground live biomass (North America FIA, tropical Saatchi et al.), Burned
area (GFED3), CO> (NOAA GMD, Mauna Loa), Global net land flux (GCP),
Gross primary production (Fluxnet-MTE), Leaf area index (AVHRR, MODIS),
Net ecosystem exchange (Fluxnet), Respiration (Fluxnet), Soil C (HWSD,
NCSCDv2), Evapotranspiration (LandFlux, GLEAM, MODIS), Latent heat
(Fluxnet-MTE), Soil moisture (ESA), Terrestrial water storage change
(GRACE), Precipitation (GPCP2), Albedo (MODIS, CERES), Surface up/down
SW/LW radiation (CERES, WRMC.BSRN), Sensible heat (Fluxnet), Surface
air temperature (CRU).

» Graphics and scoring systems:
e Annual mean, Bias, RMSE, seasonal cycle, spatial distribution, interannual
coeff. of variation and variability, long-term trend scores

e Global maps, variable to variable, and time series comparisons

> Software:
Freely distributed, designed to be user friendly and to enable easy addition of
new variables (Mu, Hoffman, Riley, Koven, Lawrence, Randerson)

P ONE

Los Alamos



ILAMB Prototype Layout: Global Variables

Global Variables (Info for Weightings)

MeanModel | bec-comllm | BNU-ESM || CanESM2 | CESMI-BGC | GFDLESM2G | HadGEM2ES | inmemd | IPSL-CMSALR | MIROC-ESM | MPLESMIR | MRIESMI | NorESM1-MI
‘Aboveqround Live
060 055 043 o068 061 057 068 062 o7 057 055 062 061
Cross Primary 077 073 0714 072 065 071 070 0.6 067 053 071
Burned Area 0.56 = - - 056 - = - 055 B 0356
Carbon Diexide 0.94 - o088 o088 0.90 095 B B B B 0.88 B
Leaf Area Index 0.65 o063 045 064 057 049 061 067 065 058 065 048 053
Global Net
e 052 - 018 025 036 020 030 022 028 035 o038 016 033
Balance
Net Ecomstem
e 030 030 047 o041 050 X 050 045 052 o048 o048 050 o049
Ecosystem
= 071 072 072 068 o068 o7 069 065 065 066 066 o044 068
Seil Carbon 051 o 043 057 037 053 050 051 053 051 042 o052 038
Summary 065 o050 053 059 059 057 056 053 056 0514 05t 052 051
| Evapotranspiration 075 074 072 073 072 071 073 075 073 074 071
Latent Heat 075 073 070 072 071 073 075 o7 074 070
e o061 051 L 0.60 050 0355 051 058 036 058 061 058 057

. [0)
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ILAMB Prototype Layout: Global Variables

Global Variables (Info for Weightings)

[ | MeanModel |[ bec-csmi-1-m || BNU-ESM | CanEsM2 | CESM1-BGC | GFDL-ESM2G || HadGE
| bl ‘ 0.69 | 0.55 ‘ 0.43 ‘ 0.68 ‘ 0.64 | 0.57 | 0.
Biomass
[ECoeE i 0.77 0.73 0.74 0.65 0.72 0.65 o.
Productivity
Burned Area 0.56 - - - 0.56
| carbon Dioxide | 0.94 [ - [ oss [ oss ‘ 0.90 [ 0.96 [
| Leafareamdex | 0.65 [ 0.63 ‘ 0.45 [ oss ‘ 0.57 [ 0.49 [ o.
Global Net
Ecosystem Carbon 0.52 - 0.18 0.25 0.36 0.20 o.
Balance
%ﬂtﬁﬂ 0.50 0.50 0.47 0.41 0.50 0.44 o
| L-Lﬂ;l%m‘ ‘ 0.74 | 0.72 ‘ 0.72 ‘ 0.68 ‘ 0.68 | 0.71 | o.
| seilcarbon | 0.51 [ 0.49 ‘ 0.43 [ o057 ‘ 0.37 [ 0.53 [ o.
[ summary ‘ 0.65 [ 0.60 [ oss [ o5 ‘ 0.59 [ 0.57 [ 0.
[ Exapotranspiration | 0.75 [ 0.74 | 0.72 | 0.73 | 0.72 [ 0.71 I o.
[ Latent meat | 0.75 [ 0.73 | 0.70 | 0.72 | 0.71 [ 0.69 I o.
Tsiiz:“t::l‘:“::’ 0.61 0.54 0.44 0.60 0.59 0.55 o
Summary 0.70 0.67 0.62 0.68 0.67 0.65
Albedo 0.74 0.72 0.64 0.72 0.73 0.71 o.
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ILAMB: Gross Primary Productivity (GPP) Diagnostics

Diagnostic Summary for Gross Primary Productivity: Model vs. FLUXNET-MTE

Global Patterns Regional Scoring (Info)
Phase N
Annual Mean oo RMSE Euase Reqional . Spatial Interannual
‘Ggoyn  BisS(QUM)  (pggmoy  Difference o Global Bias  RMSE Distatution  Varizbility Overall
Benchmark sccess to
Jung et al. 184 - - 00 - - - - - .
(20101 plots
MeanModel 1706 a7 0z socase to 075 070 085 091 - 019
bec-csmi-1-m 1224 20 50 03 fried 072 065 082 090 -
BNU-ESM 5.4 270 80 iots” on 066 om 086 - 073
canksmz 1207 25 06 a0 06 060 070 070 - 06
cesm1-BGC 1415 59 00 a0 on 066 o8 085 - 072
GFDL-ESM2G 2225 1081 100 03 access o 062 51 081 o - 065
HadGEM2-ES 166.0 7.6 72 02 accessto 070 062 081 08 - on
inmema 136.9 185 57 01 frieg 072 064 080 291 - 074
IPSL-CMSA-LR 2230 1006 23 01 iots” 060 052 082 084 - o066
MIROC-ESM 12902 53 access o 068 061 om 0 - on
MPI-ESM-LR 169.7 51.3 2.2 02 a:cle;:sto 0.60 0.55 0.79 0.88 - 0.67
access to
MRLESM1 2806 171, 122 et 5 53 -
NorESM1-ME 165.8 3] 1 accessto o068 062 080 081 - on

Notes: In calculating overall score, rmse score contributes double in comparison with all other scores.
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ILAMB: GPP Annual Mean Diagnostics

Models vs. FLUXNET-MTE

1SOW120W SOW GOW 30W O 30E 60E 90 120 150E
‘Annual Mean for GPP (gC/m2/day): BNU-ESM, 1982:2005

1SOW120W SOW 60W 30W O 30E 60E 90 120 150E
Annual Mean for GPP (qC/m2/day): HadGEM2-ES, 19822005

150W120W 90W 6OW 0W O G0E 60E 90E 120E 150E
‘Annual Mean for GPP (gC/m2/day): NoTESMI1-ME, 18522005
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ILAMB: GPP Temperate North America Diagnostics

ITEPIIA (I'I'err:perlane IMurllh Almerlic:a)I

Model Annual Bias RMSE
FLUXNET-MTE = 2.36 -999.00 -999.00
MeanModel 3.15 079 0.88
bee-csmi-1-m  1.80 -056 1.24
BNU-ESM 267 0.31 0.62

GFDL-ESM2G 285 049 0.98
HadGEM2-ES 212 -0.24 0.62

IPSL-CM5A-LR 424 188 214

GPP (gC/m2/day)

MPI-ESM-LR 433 197 241
MRI-ESM1  6.79 443 5.14
NorESM1-ME 2.99 0.63 0.77
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ILAMB: CESM1-BGC GPP for Temperate North America

ITEPII.A (;I'errrperlne Portlh »l\lmerlica)l

‘GPP (gC/m2/day)
w
i=J
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Model Annual

FLUXNET-MTE
MeanModel
bce-csmi-1-m
BNU-ESM

GFDL-ESM2G
HadGEM2-ES
IPSL-CM5A-LR
MPI-ESM-LR

MRI-ESM1
NorESM1-ME

3.15
1.80
2.67

2.85
2.12
424
433

6.79
2.99

236 -999.00 -999.00

Bias RMSE
079 0.88
-0.56 1.24
031 0.62
049 0.98
-0.24  0.62
188 214
197 241
443 5.14
063 0.77
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Next Steps for ILAMB Development

» ILAMB information is available at http://www.ilamb.org/

» The ILAMB prototype, based on the NCAR Command
Language (NCL), is available at
http://redwood.ess.uci.edu/mingquan/www/ILAMB/

> A next generation ILAMB system is under development in
Python (NumPy, SciPy, Matplotlib + Basemap)

» Development of the next generation system is ongoing using a
GitHub repository with documentation in Sphinx

» A community meeting is being planned for this winter

> Information about the DOE-sponsored
Biogeochemistry—Climate Feedbacks Project is available at
http://www.bgc-feedbacks.org/
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Take Home Message

» Modelers: Confront models with data. Just like voting, do
this early and often!
» Make model evaluation tools and data free and open,
facilitating community contributions. It takes a village!
» Design model experiments and analyses to identify weaknesses
and inspire new measurements.
» Data Gatherers: Make data available early and characterize
and report all measurement uncertainties.
» Confront the environment with new sensors, drones, and aerial

and space-based instrumentation to answer key questions
about mechanisms.

» Conduct measurements to improve our understanding of
processes and inform model development.
> Integrated Assessors: Creatively employ multi-model
projections and use results of model evaluation as a lens
through which to view predictions of the future.
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