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Introduction

Observations of the Earth system are increasing in spatial resolution and
temporal frequency, and will grow exponentially over the next 5-10 years

With Exascale computing, simulation
output is growing even faster,
outpacing our ability to analyze,
interpret and evaluate model results

Explosive data growth and the
promise of discovery through
data-driven modeling necessitate
new methods for feature extraction,
change/anomaly detection, data
assimilation, simulation, and analysis

Frontier at Oak Ridge National Laboratory is the #1 fastest
supercomputer on the TOP500 List (May 13, 2024) and the
first supercomputer to break the exaflop barrier (May 2022)



https://top500.org/

FOCUS NEXT-GENERATION

This article is the second in a two-part series.
The first part, “How to Build a Hypercomputer,” by
Thomas Sterling, appeared in the July 2001 issue.
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found a cheaper
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CLUSTER OF PCs at the
0Oak Ridge National
Laboratory in Tennessee
has been dubbed the
Stone SouperComputer.

/igp;guj 2001 Scientifig
BE—

Hargrove, W. W., F. M. Hoffman, and T. Sterling (2001), The
Do-It-Yourself Supercomputer, Sci. Am., 265(2):72-79,

https://www.scientificamerican.com/article/the-do-it-yvourself-superc/



https://www.scientificamerican.com/article/the-do-it-yourself-superc/

Multivariate Geographic Clustering

e Ecoregions have traditionally been
created by experts

e Qur approach has been to objectively
create ecoregions using continuous
continental-scale data and clustering

e We developed a highly scalable k-means
cluster analysis code that uses distributed
memory parallelism

e Originally developed on a 486/Pentium
cluster, the code now runs on the largest
hybrid CPU/GPU architectures on Earth

Hargrove, W. W., F. M. Hoffman, and T. Sterling (2001), The Do-It-Yourselfi
Supercomputer, Sci. Am., 265(2):72-79,
https://www.scientificamerican.com/article/the-do-it-yourself-superc/
OGS

MAKING MAPS WITH THE STONE SOUPERCOMPUTER

TO DRAW A MAP of the ecoregions in the continental U.S.,the Stone  thecellsinathi i ional d p d group them into four
| isticsof 7.8 gions. The f gion map divides the U.S. into recognizable

ercells. As a simple example, consider  zones (illustration B); a map dividing the country into 1,000 eco-
istic: regions provides far more detail (C). Another approach is to

levels of red, green and blue (D).

76 SCIENTIFIC AMERICAN AUGUST 2001
Copyright 2001 Scientific American, Inc.
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New Analysis Reveals
Representativeness
of the AmeriFlux Network

PAGES 529,535

The AmeriFlux network of eddy flux covari-
ance towers was established to quantify varia-
tion in carbon dioxide and water vapor exchange
between terrestrial ecosystems and the atmos-

BY WiLLiam W, HARGROVE, FORREST M. HOFFMAN,
AND BeVERLY E. Law

phere,and to understand the underlying mech-
anisms responsible for observed fluxes and
carbon pools.The network is primarily funded
by the U.S.Department of Energy, NASA, the
National Oceanic and Atmospheric Adminis-
tration, and the National Science Foundation.
Similar regional networks elsewhere in the

synthesis activities across larger geographic
areas [Baldocchi et al.,2001; Law et al.,2002]
The existing AmeriFlux network will also
form a backbone of “Tier 4” intensive measure-
ment sites as one component of a fourtiered
carbon observation network within the North
American Carbon Program (NACP).The NACP
seeks to provide long-term, mechanistically
detailed,spatially resolved carbon fluxes across
North America [Wofsy and Harriss, 2002]. For
both of these roles, the AmeriFlux network
should be ecologically representative of the
environments contained within the geographic
boundaries of the program. A new ecoregion-
scale analysis of the existing AmeriFlux net-
work reveals that, while central continental

Id—for example, C , AsiaFlux,
OzFlux, and Fluxnet Canada—participate in

are well
flux towers are needed to represent environmental

Fig. 1.The representativeness of an existing spatial array of sample locations or study sites—for example, the AmeriFlux network of carbon dioxide
eddy flux covariance towers—can be mapped relative (o a set of quantitative ecoregions, suggesting locations for additional samples or sites.
Distance in data space to the closest ecoregion containing a site quantifies how well an existing network represents each ecoregion in the map.
Environments in darker ecoregions are poorly represented by this network

Network Representativeness

e The n-dimensional space formed by the
data layers offers a natural framework for
estimating representativeness of
individual sampling sites

e The Euclidean distance between individual
sites in data space is a metric of similarity
or dissimilarity

e Representativeness across multiple
sampling sites can be combined to
produce a map of network
representativeness

Hargrove, W. W., and F. M. Hoffman (2003), New Analysis Reveals
Representativeness of the AmeriFlux Network, Eos Trans. AGU,

84(48):529, 535, doi:10.1029/2003E0480001.
TGS
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Optimizing Sampling Networks

e Our group produced this network
representativeness map for the authors
from global climate, edaphic, and

elevation and topography data

Dark areas, including most of the Indian
subcontinent, were poorly represented
by the constellation of eddy covariance
flux towers participating in FLUXNET in
the year 2007

Sundareshwar, P. V., et al. (2007), Environmental Monitoring Network

for India, Science, 316(5822):204-205, doi:10.1126/science.1137417.
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Environmental Monitoring

Network for India

P.V. SR G.

S.B.Verma, D. Agarwal, D. Baldocchi,

S. Singh, K. J. Ramesh, R. Ramesh,

. K. Baru, K. K. Baruah, G. R. Chowdhury, V. K. Dadhwal,

C.B.S. Dutt, J. Fuentes, Prabhat K. Gupta, W. W. Hargrove, M. Howard, C. S. Jha, S. Lal,
W.K. Michener, A. P. Mitra, J. T. Morris, R. R. Myneni, M. Naja, R. Nemani, R. Purvaja, S. Raha,
S.K. Santhana Vanan, M. Sharma, A. Subramaniam, R. Sukumar, R. R. Twilley, P. R. Zimmerman

nderstanding the consequences of glo-
I environmental change and its miti-
ation will require an integrated global

effort of comprehensive long-term data collec-
tion, synthesis, and action (/). The last decade

has seen a dramatic global increase in the num-
ber of networked monitoring sites. For exam-
ple, FLUXNET is a global collection of =300
micrometeorological terrestrial-flux research
sites (see re, right) that monitor fluxes of
CO,. water vapor, and energy (2-4). A similar,
albeit sparser, network of ocean observation
sites is quantifying the fluxes of greenhouse
gases (GHGs) from oceans and their role in the
global carbon cycle (5, 6). These networks are
aperated on an ad hoc basis by the scientific
community. Although FLUXNET and other
observation networks cover diverse vegetation
types within a 70°S to 30°N latitude band (3)
and different oceans (3, 6), there are not com-
prehensive and reliable data from African and
Asian regions. Lack of robust scientific data
from these regions of the world is a serious

fiment to efforts to understand and miti-

An integrated monitoring system is proposed
for India that will monitor terrestrial, coastal,
and oceanic environments.

Current monitoring sites in FLUXNET. Sites are shown in red, and global representativeness is estimated by
Global Multivariate Clustering Analysis (24-26). Darker areas are poorly represented by the existing FLUXNET
towers. Environmental similarity was calculated from a set of variables (precipitation, temperature, solar flux,
total soil carbon and nitrogen, bulk density, elevation, and compound topographic index) at a resolution of 4 km.

provide a scientific understanding (i) of the
coupling of atmospheric, oceanic, and terres-
trial environments in India; (ii) of the nature
and pace of environmental change in India;
and (iii) of subsequent impacts on provision of

gate impacts of climate and environmental
chang 7).

The Indian subcontinent and the surround-
ing seas, with more than 1.3 billion people and

unique natural resources, have a significant
impact on the regional and global environment
but lack a comprehensive environmental ob-
servation network. Within the government
of India, the Department of Science and Tech-
nology (DST) has proposed filling this gap
by establishing INDOFLUX, a coordinated
multidisciplinary environmental monitor-
ing network that integrates terrestrial,
coastal, and occanic environments (sce ()
figure, right).

In a workshop held in July 2006 (8), a
team of scientists from India and the United
States developed the overarching objectives

for the proposed INDOFLUX. These are to ﬂ

The authors were members of an indo-U.S. bilateral
workshop on INDOFLUX. Affiliations are provided in the
supporting online material.

*Author for correspondence. E-mail: pvs@sdsmt.edu
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ccosystem services. Also, in order to evaluate
what will enable India to sustain its natural
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resources, these goals include an assessment of
the vulnerability and consequent risks to its

social and natural systems.

Climate change will alter the regional bio-
sphere-climate feedbacks and land-ocean cou-
pling. Although global models reliably predict
the trend in the impact of climate change

on India’s forest resources, the magnitude
of such change is uncertain (9). Similarly,
whereas all oceans show the influence of
global warming (10), the Indian Ocean
has shown higher-than-average surface
warming, especially during the last

five decades (77, 12). This warm-

ing may have global impacts (13,

14), even though the impact on

the Indian summer monsoons is

not well understood (735, 76). These
uncertainties highlight the need for
regional models driven by regional data

As the hypoxia observed in the Gulf

n of Mexico is related to agricultural prac-
tices in the watershed (/7), Indian Ocean
studies also indicate couplings between
mainland activities and offshore and

A schematic of the INDOFLUX proposal.

Placement of stations reflects different

climactic, vegetation, and land-use areas.

Final locations will be determined as

part of the formal science plan.

www.sciencemag.org
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Fig. 1 Map of the CTFS-ForestGEO network illustrating its representation of bioclimatic, edaphic, and topographic conditions globally.
Site numbers correspond to ID# in Table 2. Shading indicates how well the network of sites represents the suite of environmental fac-
tors included in the analysis; light-colored areas are well-represented by the network, while dark colored areas are poorly represented.
Stippling covers nonforest areas. The analysis is described in Appendix S1.

Table 1 Attributes of a CTFS-ForestGEO census

Attribute

Utility

Very large plot size

Includes every fre di

Resolve community and population dynamics of highly diverse forests with many
rare species with sufficient sample sizes (Losos & Leigh, 2004; Condit ef al., 2006);
quantify spatial patterns at multiple scales (Condit ef al., 2000; Wiegand et al., 2007a,b;
Detto & Muller-Landau, 2013; Lutz et al., 2013); characterize gap dynamics
(Feeley et al., 2007b); calibrate and validate remote sensing and models, particularly
those wn]\ large spatial grain (Mascaro et al., 2011; Réjou-Méchain et al., 2014)

woody stem >1 cm DBH
All individuals identified
to species

Diameter measured on

all stems

Mapping of all stems and

fine-scale topography

Census typically repeated
every 5 years

C the abundance and diversity of understory as well as canopy trees; quantify
the demography of juveniles (Condit, 2000; Muller-Landau et al., 2006a,b).
Characterize patterns of diversity, species-area, and abundance distributions
(Hubbell, 1979, 2001; He & Legendre, 2002; Condit et al., 2005; John et al., 2007;
Shen et al., 2009; He & Hubbell, 2011; Wang et al., 2011; Cheng et al., 2012); test theories
of competition and coexistence (Brown et al., 2013); describe poorly known plant species
(Gereau & Kenfack, 2000; Davies, 2001; Davies et al., 2001; Sonké et al., 2002;
Kenfack et al., 2004, 2006)
Characterize size-abundance distributions (Muller-Landau et al., 2006b; Lai et al., 2013;
Lutzet al., 2013); combine with allometries to estimate whole-ecosystem properties
such as biomass (Chave et al., 2008; Valencia et al., 2009; Lin et al., 2012; Ngoet al., 2013;
Muller-Landau et al., 2014)
Characterize the spatial pattern of populations (Condit, 2000); conduct spatially explicit
analyses of neighborhood influences (Condit et al., 1992; Hubbell et al., 2001;
Uriarte et al., 2004, 2005; Riiger et al., 2011, 2012; Lutz et al., 2014); characterize microhabitat
specificity and controls on demography, biomass, etc. (Harms ef al., 2001; Valencia et al., 2004;
Chuyong et al., 2011; align on the ground and remote sensing measurements (Asner et al., 2011;
Mascaro et al., 2011).
Characterize demographic rates and changes therein (Russo ef al., 2005; Muller-
Landau et al., 2006a,b; Feeley et nl 2007a; Lai et al., 2013; Stephenson et al., 2014);
1 ize changes in ition (Losos & Leigh, 2004; Chave et al., 2008;
Feeley et al., 2011; Swenson et al., 2012; Chlsho]m et al., 2014); characterize changes in
biomass or productivity (Chave et al., 2008; Banin et al., 2014; Muller-Landau et al., 2014)

©2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12712

Optimizing Sampling Networks

e The CTFS-ForestGEO global forest monitoring
network is aimed at characterizing forest
responses to global change

e The figure at left shows the global

representativeness of the CTFS-ForestGEO
sites in 2014

e Non-forested areas are masked with
hatching, and as expected, they are
consistently darker than the forested
regions, which are represented to varying
degrees by the monitoring sites

Anderson-Teixeira, K. J., et al. (2015), CTFS-ForestGEO: A Worldwide Network
Monitoring Forests in an Era of Global Change, Glob. Change Biol.,
21(2):528-549, doi:10.1111/gcb.12712.
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Sampling Network Design

nnnnn

aaaaaaaaaaaa

o

“’—vf.a,s‘,‘gs B 'gw;,‘eﬁf’

2000-2009 2090-2000
Triple-Network Global Representativeness

NSF's NEON Sampling Domains

Gridded data from satellite and
airborne remote sensing, models, and
synthesis products can be combined to
design optimal sampling networks and
understand representativeness as it
evolves through time
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(Maddalena et al., in prep.)




50 Phenoregions for year
2012 (Random Colors)

250m MODIS NDVI
Every 8 days (46 images/year)
Clustered from year 2000 to present
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Earthinsights

day of year

50 Phenoregion Prototypes
(Random Colors)

(Hargrove et al., in prep.)




50 Phenoregions Persistence
and
50 Phenoregions Max Mode
(Similarity Colors)
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(Hargrove et al., in prep.)




GSMNP: Spatial distribution of the 30 vege’ro e’
Clusters across the national park a, AT

Extracted canopy height and structure from
airborne LiDAR

10 km
I

Earthinsights (Kumar et al., in prep.)



GSMNP: 30 representative vertical structures
cluster centroids) identified

tall forests with low
understory vegetation

|

Height (m)

forests with slightly lower
mean height with dense
understory vegetation

low height grasslands and
heath balds that are small
in area but distinct
landscape type

Earthinsights

Height (m) Height (m) Height (m)

Height (m)

[1]3.55% [2] 3.96% [3]2.42% [4]5.01% [5]5.81%
60 _ 60 _ 60 _ 60 __ 60
50 E 50 E 50 E 50 E 50
40 Z 4 = 4 = 40 Z 4
30 530 30 530 30
20 220 22 220 £ 20
10 /lu 10 10 10
o 0 0 0 0
0 10 20 30 0 10 20 30 40 0 10 20 30 40 0 10 20 30 10 20 30 40
% of Prof % of Profile % of Profile % of Profile % of Profile
[615.29% [712.35% (8] 2.82% [9] 2.00% [10] 4.83%
__ 60 __ 60 __ 60 __ 60
E 50 Es0 E 50 E 50
£ 40 = a0 = 40 Z 4
=30 S 30 S 30 =30
220 22 £ 20 £ 20
10 10 10 10
0 3 0 0
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 10 20 30 10 20 30 40
% of Profile % of Profile % of Profile % of Profile % of Profile
[11] 2.60% [12] 4.00% [13] 1.22% (14] 0.47% [15] 2.92%
60 _ 60 _ 60 _ 60
50 E 50 E 50 E S0
40 = 4 1 240 Z 4
30 S30 530 &30
20 22 220 £ 2
10 10 0 10
0 0 0 [
0 10 20 30 40 [ 0 0 10 20 30 10 20 30 4o
% of Profile % of Profile % of Profile
[16] 5.42% 18] 1.64% [19]3.83% [20]1.73%
60 __ 60 __ 60 _
50 E S0 E 50 E
40 = 40 = 40 =
30 30 |_S30 S
20 22 £ 20 z
10 10 10
0 0 0 0
30 40 0 10 20 30 40 10 20 30 0 10 20 30 40
% of Profile % of Profile % of Profile % of Profile
[21] 1.82% [22] 1.90% [23] 2.49% [24] 3.79% [25] 3.25%
60 _ 60 _ 60 _ 60 _ 60
50 E 50 E 50 E 50 E 50
40 Z 4 = 40 = 4 Z 4
30 530 530 530 P &30
20 220 22 220 / £ 2
10 10 10 10 10
0 [ [ o= 0
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 0 10 20 30 40
% of Profile % of Profile % of Profile % of Profile % of Profile
[26] 4.70% [27] 5.82% [28] 4.31% [29] 3.53% [30] 3.40%
60 __ 60 _ 60 __ 60 _60
50 Es0 E 50 Eso0 Es0
40 = 40 =40 = 40 = 40
30 S 30 30 S 30 S 30
20 220 22 220 220
10 10 10 10 10
0 0 0 0 0
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 0 10 20 30
% of Profile % of Profile % of Profile % of Profile % of Profile

* (Kumar et al., in prep.)




Global Fire Regimes

Regions that exhibit similar fire seasonality globally
From MODIS “Hotspots” at 1 km resolution from 2002-2018

Earthinsights (Norman et al., submitted)




Vegetation Distribution at Barrow Environmental Observatory

Phenology Representativeness

v

July 26, 2010 Representativeness

/!

Representativeness map for vegetation
sampling points in sites A, B, C, and D with
phenology (left) and without (right) from
WorldView2 multispectral imagery for the
year 2010 and LiDAR data

Example plant functional type (PFT)
distributions scaled up from vegetation
sampling locations

Site A Site B Site C

In situ data from field measurement activities inform the
development of wide-scale maps of vegetation distribution
through inference using remote sensing data as surrogate
variables, and relationships with environmental controls

can be extracted

Langford, Z. L., et al. (2016), Mapping Arctic Plant Functional Type
Distributions in the Barrow Environmental Observatory Using

Site D

Site A Site B

Site C

WorldView-2 and LiDAR Datasets, Remote Sens., 8(9):733,

doi:10.3390/rs8090733.

Site D

0sses

Wet Tundra Graminoid
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Arctic Vegetation Mapping from Multi-Sensor Fusion

Used Hyperion Multispectral and IfSAR-derived Digital Elevation Model, applied cluster analysis, and
trained a convolutional neural network (CNN) with Alaska Existing Vegetation Ecoregions (AKEVT)

—— Kougarok Watershed

Vegetation Type

Bl Rock

B Water

I Alder-Willow Shrub

I Mixed Shrub-Sedge Tussock Tundra
[ | Dryas/Lichen Dwarf Shrub Tundra
[ Sedge-Willow-Dryas Tundra

Langford, Z. L., et al. (2019), Arctic Vegetation Mapping Using Unsupervised Training Datasets and Convolutional Neural
Networks, Remote Sens., 11(1):69, doi:10.3390/rs11010069.
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Satellite Data Analytics Enables Within-Season Crop Identification

Earliest date for crop type classification
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USDA Crop Data Layer (CDL) shows similar patterns at —— Wl v " ',3'6 —
continental scale. b) Good spatial agreement is found at P 0 e® W et o (o0 pecdOgec®

three selected regions, but cluster-then-label crop maps Konduri, V. S., J. Kumar, W. W. Hargrove, F. M. Hoffman, and A. R.
lack sharpness at field boundaries due to coarser Ganguly (2020), Mapping Crops Within the Growing Season
resolution of MODIS data. Across the United States, Remote Sens. Environ., 251, 112048,

doi:10.1016/j.rse.2020.112048.
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Watershed-Scale Plant Communities Determined from DNN and AVIRIS NG

3T PR e

Kougarok o t, g “
Council

Teller

Legend
@ Alder-Willow Shrub © Sedge-Willow-Dryas Tundra
© Birch-Ericaceous-Lichen Shrub Tundra @ Tussock-Lichen Tundra

@ Dryas-Lichen Dwarf Shrub Tundra © Wet Meadow Tundra

© Ericaceous Dwarf Shrub Tundra © Wet Sedge Bog-Meadow

@ Mesic Graminoid-Herb Meadow O Willow Shrub

@ Mixed Shrub-Sedge Tussock Tundra X J thlow-Bu';h Shrub

At the Watershed scale, vegetation community distribution follows topograph/c and water controls.
At a fine scale, nutrients limit the distribution of vegetation types.

Earthinsights (Konduri et al., in pre

)



Climate Change Mitigation through Climate Intervention

The increasing severity of extreme events
and wildfire is threatening utilities, built
infrastructure, and economic & national
security

Loss of life and property is motivating
consideration of climate intervention or
geoengineering

In addition to carbon dioxide removal (CDR)
through direct air capture (DAC) and other
means, interest is growing in reducing or

stabilizing Earth's surface temperature 2 | Boenaray it ool

31 ;::‘CE:’rZ?:d(LJBCi(?::r:d burial 8 | Space mirrors
Solar radiation management (SRM) is an = e
approach to partially reduce warming, and A AR

7 | Direct air CO, capture and storage (DACCS)

stratospheric aerosol intervention (SAl) by

T _ A wide variety of natural solutions and geoengineering techniques are
injecting sulfur into the lower stratosphere proposed for mitigating the effects of climate change. Adopted from

is considered the most feasible scheme Lawrence et al. (2018).




Potential Ecological Impacts of Climate Intervention

Species %E\‘

Distributions?

Wildfire?
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Although some effects of SRM with SAI on climate are known from certain

SAl scenarios, the effects of SAl on ecological systems are largely unknown.

Adopted from Zarnetske et al. (2021).

e While climate research has focused on
predicted climate effects of SRM, few
studies have investigated impacts that
SRM would have on ecological systems

e Impacts and risks posed by SRM would
vary by implementation scenario,
anthropogenic climate effects,
geographic region, and by ecosystem,
community, population, and organism

e Atransdisciplinary approach is

essential, and new modeling
paradigms are required, to represent
complex interactions across Earth
system components, scales, and
ecological systems
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Climate Intervention Research
g 3

A 2021 report from the National Academies of ‘
Sciences, Engineering, and Medicine (NASEM)
concludes a strategic investment in research is
needed to advance policymakers’ understanding
of climate response options.

The US should develop a transdisciplinary ,.REﬂECtlng
research program, in collaboration with other Su n||g ht _
nations, to advance understanding of solar % “RE:ommendations for SOl
geoengineering’s technical feasibility and e
effectiveness, possible impacts on society and the

environment, and social dimensions such as
public perceptions, political and economic
dynamics, and ethical and equity considerations.




@'Y Geoengineering Increases the Global Land Carbon Sink

RUBISCO
Objective: To examine stratospheric aerosol intervention (SAl) impacts

on plant productivity and terrestrial biogeochemistry.

GEOENG-CTRL PgC

Approach: Analyze and compare simulation results from the
Stratospheric Aerosol Geoengineering Large Ensemble (GLENS) project - =
from 2010 to 2097 under RCP8.5 with and without SAI.  — o T —

Results/Impacts: In this scenario, SAl causes terrestrial ecosystems to —wo T
store an additional 79 Pg C globally as a result of lower ecosystem o -
respiration and diminished disturbance effects by the end of the 21%t ;E

century, yielding as much as a 4% reduction in atmospheric CO, mole  °

fraction that progressively reduces the SAl effort required to stabilize w0y °2

surface temperature. w0 a0 vk e w0z
Yang, C.-E., F. M. Hoffman, D. M. Ricciuto, S. Tilmes, L. Xia, D. G. MacMartin, B. Kravitz, J. H. Figure: The larger sink under SAl
Richter, M. Mills, and J. S. Fu (2020), Assessing Terrestrial Biogeochemical Feedbacks in a L’)‘;;%%S;dw'ﬁir;ﬂ Svitﬁéaffdﬁycﬁhigc
Strategically Geoengineered Climate, Environ. Res. Lett., doi:10.1088/1748-9326/abacf7. projected atmospheric CO, level,
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V[4)

Argonne° RS ’N ﬁ)sAlamos ﬁ NCAR

NATIONAL LABORATORY NATIONAL LABORATORY  watow RCH



http://iopscience.iop.org/10.1088/1748-9326/abacf7

Exploring Feedbacks of SAI

A no climate change mitigation + SAIl deployment

e To fill research gaps in understanding Earth system feedbacks of

SAl on ecosystems, we are conducting a series of increasingly ol il fé
complex geoengineering simulations with DOE’s Energy Exascale g - : =
Earth System Model (E3SM) g seonsiemimpacts |2
5 12
e Simulations will mimic effects of CDR, SAI, and CDR plus SAI 2 E
I9 |Temperature l ‘z_
e Start with SSP5-3.4-0OS mid-range overshoot CO, trajectory from ty
CMIP6, which prescribes a drawdown of CO, -
e Global surface temperatures will rise by >2.5°C around 2040, above B climate change mitigation + SAI peak shaving
the 2°C threshold that may induce irreversible impacts
‘ .\oo" .
e Next, introduce SAIl to simultaneously cool the surface until 9 _é\&“’s N
drawdown is sufficient to assure < 2°C warming, called g ¥ cutemissions &
temperature “peak shaving” g %, g
=% G
5 = P, o
e To quantify feedbacks from reducing, not increasing, atmospheric = " [ "’\fg
CO,, but may not capture all the as yet unobserved processes E
> O
Time TN



Leveraging Advances in Machine Learning for Earth Sciences

Existing machine learning techniques can improve understanding of biospheric
processes and representation in Earth system models

Machine learning tasks Earth science tasks Machine learning tasks Earth science tasks

c Video prediction Short-term forecasting
a Object classification and localization Pattern classification

Dog: 0.994

|Cat: 0.982,’:

Predict future visual
representation

b Super-resolution and fusion Statistical downscaling and blending » &)

e ¢ Xq)
e |
f;;u?( :azm;ﬁazs G{ﬁﬁﬂd el i i il W o , \VT/‘ d Language translation Dynamic time series modelling
A biEhah i wes T/ Er liebte zu essen . Real vs predicted humidity values

i REE oo \T//” Sotmax i H H W H N D
bz, - \| »,jk Decoder # A 'r/,\
7 : * + + 4 8 AN LN N
ANV

Er liebte zu essen Nul S

; ) ( . Encoder
\{\5 Embed ; ; ; ;

He loved to eat » Time

U

-

Figure 2 in Reichstein et al. (2019)



Machine Learning for Understanding Biospheric Processes

Widening adoption of deep neural networks and growth of climate data are fueling interest
in AlI/ML for use in weather and climate and Earth system models
ML potential is high for improving predictability when (1) sufficient data are available for

process representations and (2) process representations are computationally expensive
Example methods for improving ELM capabilities \‘°""”4/»

ON Ty,
by exploring ML and information theory é;,““ K
approaches: (SSHEDS }

o Soil organic carbon & radiocarbon <>~
o Wildfire

o Methane emissions

o Ecohydrology

All of these applications involve
unresolved, subgrid-scale e
processes that strongly influence
results at the largest scales

EAF TR4 /’

STOyy, 4’

EARTH SYSTEMS
PREDICTABILITY

®00ELS

"\\6’«‘“ -




Hybrid Modeling of Wildfire Activities

e Improve model simulations of wildfire
processes, including ignition, fire duration, and — ] [ o } [ — ]
spread rate with Deep Neural Network models

Ignition factors

E s + I
e Improve simulated wildfire emissions and e ;
their impacts on atmospheric properties, :
. . 1
including aerosols, greenhouse gases, |
Fuel conditions !

phosphorus transport, and pollutants (ree coverage,biomass, : S
1
I
I
I
I

Anthropogenic
suppression
(Gor}

fitter moisture, fitter
temperature}
e Improve the projection of near-future and F——
. . . ... [precipitation, temperature,
long-term dynamics of wildfire activities wind, humidy]

e Accelerate E3SM coupled land-atmosphere
modeling activities for wildfire research

Deep Neural Network surrogate model

e Explore online ML training/validation strategy Zhu et al. (2022)
for E3SM coupled model simulations




Hybrid ML/Process-based Modeling for Terrestrial Modeling

' Competition ! !

Dynamic
7 Biogeography
Dispersal

Age Structure

In the hierarchy of land
model processes, we start
with the photosynthesis
parameterization because

Atmosphere

Insects and Disease

Extremes (drought,
_cold ete)

Heterotrophs

e Multiple hypotheses N |

e Many leaf-level oY/ -Mmy
measurements w e

e Most computationally R Notdnt Bynamics

I nte n S IVe pa rt Of th e |a n d ( Snow and Ice ) Gum.—ophic R/espimﬁoa C Tran\;piraﬁm ) { Trace Gas Emissions )

Streams and Rivers)
il N

(o) | (e
(Figure from P. E. Thornton) (et )




Hybrid ML/Process-based Modeling for Terrestrial Modeling

Individual processes can be
represented in a
multi-hypothesis approach,
and ML provides an
opportunities for (1) a model
surrogate module or (2) a
data-derived module that
can be further explored or
used to calibrate other
hypotheses, when sufficient
data are available.

(Fisher and Koven, 2020)

/

Snow Physics | «—————— TC:;\?P: —> | Canopy Rad.
Aain < > D <« Transfer
[Agng ]
Phase Change ¢ / 1
Watershed i / < =1 k\\
atershe ;
Plant Physiolo
Hydrology pa /// \ Y 9y \\ o
\ Communit
Lateral Soil Physi Assembl
<> olLFhysics Leaf I—I
Photosynthesis Allometry ¢
Hydrology A= =i, |_Respiration |
/ N Stomatal Condf, | Phenology |
L | | Assimitation [_Cstorage | — Disturbance
River __rowt
/ e
Transport Vertical Transp. & Transpiration Jf i ceiie Nutrient —
[[Water Retent. | [Bvocs Stoichiometry [Tumover ] [ wind_]
& Evaporation Properties
¥~ [[Phase Change £ «>| [ Pest
< \ \
~ = Land Cover
w 1 e \
namics \
P — 4l \ Xylem [ Respiration | [ Allometry | |
~ All Processes . P ; = Transport
Represented viaa \_~ [ cstorage | [ Growth |

Multi-Hypothesis
Approach, e.g.:

Stomatal Cond.

Ball-Berry
| Plant Hydraulics

A New Hypothesis

It Machine Learning

Stub Model
(e.g., fixed
conductance)

Decomposition

Mineralisation

mmobilization|

Microbial Ecol.

Redox

Vertical
Transport
& Leaching

Tissue Nutrient I Turnover I

Stoichiometr:

= =—_
Roots ~|
Water Uptake —
| Respiration | [ Allometry |

|Nutr|entUptake | CStorage I Growth I

Tissue Nutrient]
Transport Stoichiometr

Agriculture

Irrigation

[Seed Production] [ Recruitment | [ Mortality |\\

v iy

(a) Process Schematic of a Possible Full-Complexity Configuration of a Land Surface Model




Hybrid Modeling of Photosynthesis and Ecohydrology

e Significant leaf-level data may be used to @ sl berry A7 = 0726 o ey 52— 067
train ML parameterizations to improve e
accuracy and computational performance ™ :

e Estimated stomatal conductance vs. ors- T

measured stomatal conductance for (a)
Ball-Berry, (b) Medlyn, (c) Random forest (with
Medlyn inputs), and (d) Random forest with

all inputs from Lin et al. (2015) T 00 o5 1t s - s ors 10 13
e Inputsto the Medlyn parameterization are (Cl)_zsi Random Forest (Medlyn), R? = 0.810 (01|_)257 Random Forest, R = 0.981 o

leaf-level CO,, photosynthesis, and vapor o

pressure deficit g . N -';.

Q.

e Random forest trained on these three inputs
(c) performs slightly better than Medlyn 5
e Random forest trained on more variables (d) 0z TS
achieves an R? of 0.98 oo BT

000 025 050 075 1.00 125 000 025 050 075 100 125

(Massoud, Collier, et al. in prep) Cond cond
e

Cond_rf




Hybrid Modeling of Photosynthesis and Ecohydrology

e Most process-based or empirical formulations are continuous
e But ML formulations may exhibit discontinuities in the multi-dimensional space of inputs
because of out-of-sample data or artifacts of sampling or precision

e For example, we can see such
discontinuities at right for
Random Forest in the VPD vs.
photosynthesis heat map for
stomatal conductance

e These discontinuities are likely to
have numerical consequences
when attempting to couple a ML
parameterization into a hybrid
empirical / ML Earth system
model

Medlyn Random Forest

2.6

24

2.2

2

VPD
o

1.8

1.6

1.4

0.06 0.08 010 0.12 014 0.16 0.18 0.20 0.22
Stomatal Conductance

(Massoud, Collier, et al. in prep)
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Daily Maximum
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Break-up date predictions for historical period

LSTM Temperature and Break Up Over Time

Change in Maximum Daily Temperature over Time Daymet Future Simulation

A8

Max Temperature
LSTM Prediction
True Break-up Date

2018

2019

2020 2021
Time

2022

Change in Maximum Daily Temperature over Time CanESM5 Historical Past Simulation

A10|AO0 |A9 |A14|A10(A0 |A3 |A8 |Al |A3 [A5 |A14|A13j]A13|A5 |A7 |Al |A6 |A11|A6 |A4 |A16)A11|A3 |A3 |A10|A3 |A19|A17

—— Max Temperature
LSTM Prediction
—— ‘True Break-up Date

1924

1920 1916 1912 1908

ime
Change in Maximum Daily Temperature over Time CanESMS5 Historical Future Simulation

1904 1900

A9 (A9 |A6

A14|A7 |AT7 |A12|A12

Al11(A8 [A10|A9 |A4 |A11|A4 |A2 |A7 |A9 [A15|A6 |A13|A12|A9 |A9 (A4 |AO (A1 (A1

—— Max Temperature
LSTM Prediction
—— True Break-up Date

1988

1992

1996 2000 2004

2008 2012

Model predicted break-up date within 1-14 days of observed

dates.

Break-up date predictions under future scenarios

Breakup Date over Time [SSP119 Simulation]

Days After Equinox
1004 ---- Vernal Equinox

2020 2030 2040 2050 2060 2070 2080 2090 2100
Time (Years)

Breakup Date over Time [SSP370 Simulation]

Days After Equinox
1001 ---- Vernal Equinox

2020 2030 2040 2050 2060 2070 2080 2090 2100
Time (Years)

Breakup Date over Time [SSP585 Simulation]

Days After Equinox
1004 ---- Vernal Equinox

2020 2030 2040 2050 2060 2070 2080 2090 2100
Time (Years)

Breakup Date over Time [SSP534-OVER Simulation]

Days After Equinox
1001 ---- Vernal Equinox

2020 2030 2040 2050 2060 2070 2080 2090 2100
Time (Years)

Projections suggested increasingly early break-up of river
ice under warming scenarios.
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ARTIFICIAL INTELLIGENCE FOR EARTH
SYSTEM PREDICTABILITY (AI4ESP):
CHALLENGES AND OPPORTUNITIES
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https://aidesp.org/

" AI4ESP

https://aidesp.slack.com/

Artificial Intelligence for Earth System
Predictability

A multi-lab initiative working with the Earth and Environmental Systems Science Division (EESSD) of the
Office of Biological and Environmental Research (BER) to develop a new paradigm for Earth system
predictability focused on enabling artificial intelligence across field, lab, modeling, and analysis activities.

White papers were solicited for development Earth System Predictability Sessions Workshop Report o ® -1
and application of Al methods in areas e Atmospheric Modeling e Posted on
relevant to EESSD research with an emphasis ® Land Modeling . aidesp.org row ot ot
on quantifying and improving Earth system e Human Systems & Dynamics e Executive on o ety
predictability, particularly related to the e Hydrology Summary | T
: . e Watershed Science e JoyHado bt S Flektanes
integrative water cycle and extreme events. e Long summary polrof oo rigo Ren Josph ot of
e Ecohydrology : 1oy g [ o it
e Aerosols & Clouds ° Earth science Xujing Dovis  Bob Vallario Mike Kuperberg
H ifiri, Steven Lee (ASCR) Randall Loviolette (ASCR)
How can DOE directly It_everage artlflcm{ e Climate Variability & Extremes chapters
mtelllg_ence (Al) t(_) engineer a substc_mtlal e Coastal Dynamics, Oceans & Ice e Computational A0 i
(paradigm-changing) improvement in Cross-Cut Sessions science chapters T Wi idoon  forsHlien ST
Earth System Predictability? e Data Acquisition e bt sy
) ) e Neural Networks AMS Special ot of ot of
156 white papers were received and read to e Surrogate models and emulators Collection i Voo Tino oo
plan the organization of the AI4ESP e Knowledge-Informed Machine Learning e Open submissions
Workshop on Oct 25-Dec 3, 2021 e Hybrid Modeling for new Al for the AQux oo e
PR e Explainable/Interpretable/Trustworthy Al Earth S W M
{zENERGY e Knowledge Discovery & Statistical Learning + SZAI4ESP
e Al Architectures and Co-design journa


https://ai4esp.org/
https://www.ametsoc.org/index.cfm/ams/publications/journals/artificial-intelligence-for-the-earth-systems/
https://www.ametsoc.org/index.cfm/ams/publications/journals/artificial-intelligence-for-the-earth-systems/

AI4ESP WORKSHOP HIGHLIGHTS

Scientific Understanding and Earth System Predictions Across Scales

Global

Spatial Scale

Theory
/" ?
-I|I| -

Molecular:

4 Observations

Modeling

© Obsersvations
~— Model with data assimilation

- Cross-cutting Capabllme siite
@ = = Model without data assimilation
\

Input

Distributions Distributions
N samples of X - Q )

= - —] -

= Nrealizations
n = — ofy == C{

- =T o
In Model 1= ™\ s =
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~n = Software Ecosystem Data Infrastructure
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AI4ESP WORKSHOP HIGHLIGHTS

Overview of priorities emerging from the AI4ESP workshop across 3 key themes.
These priorities will help address major challenges for Earth system predictability

Earth Science Priorities Computational Science Priorities

* New observations * Hybrid models

+ Al-ready data products » Fundamental math and

« Data-driven and hybrid models algorithms

* Analytical approaches * Interpretable, trustworthy Al

Programmatic and Cultural Priorities
+ Al research centers
+ Workforce development

+ Codesign infrastructure ﬁ

« Common standards, benchmarks

» Uncertainty quantification, model * Al-enabled data acquisition * Seed projects, integrate Al into programs
parametrization & calibration + Data, software, hardware infrastructure + Al ethics and policies

+ Significant data gaps * Physically consistent predictions for - Interdisciplinary scientific research

+ Scaling and heterogeneity data-driven models + Diverse organizational missions

« Extreme events « Computational costs of process models - Personnel lack training in Al/ML

* Representation of human activities * Sparse data, extreme values « Using data, communicating across

* Knowledge discovery * Identifying causality research domains, organizations

» Accurate high-resolution predictions with * Interpretable, trustworthy predictions « Data bias, model fairness, explainability
low bias, uncertainty + Data discovery, access, synthesis of predictions

+ Providing actionable, timely information for * Model development and comparison

decision making

EESA22-031

(7 ENERGY S AI4ESP



AI4ESP WORKSHOP HIGHLIGHTS

Idealized Roadmap for Success @ A I 4 E S P
Long Term (<10 years)

» Improved Earth system /9

understanding and predictions
* Supporting stakeholder needs == Mid Term (<5 years)
at relevant scales for decision making
* Al research centers

* Measurable improvement in Earth
system models with better
representation of human activities

* New Al techniques tailored for
Earth science applications

« Established interdisciplinary workforce

Near Term (<2 years)
+ Open benchmark datasets

» Al-enabled observations and data
products based on gaps
* Seed efforts to demonstrate

potential of Al in existing programs
and modeling frameworks

« Cross-disciplinary collaborations
to initiate activities

using standards, co-developed models

EESA22-033

* Open science culture with data sharing

I4AESP



Highlights Across All Sessions

Science

e Al/ML can accelerate next-generation integrated models to support decision-making that incorporate
complex natural and human processes at sufficient resolutions

Broad consensus on need for deep integration of process-based and ML models (hybrid models)
Challenges: scaling, sub-grid representation, model calibration/UQ, extreme events, human systems
Data gaps are vast — more observations informed by model needs, Al-ready products

Results must be robust, explainable, & trustworthy

Data, Software, Infrastructure

e Need benchmark data and model intercomparison approaches
e Computational infrastructure for integration of process & ML models, data assimilation and synthesis
e Use ML to accelerate data-model and model-observation pipelines

Culture

e Workforce development across domain and computational scientists
e Interdisciplinary research centers focused on AI4ESP
(W ENERGY

o

AI4ESP

{



AI4ESP WORKSHOP HIGHLIGHTS

Codesign Is Critical

Codesign advanced computing, software, hybrid Al Stack
ML/physical models, observations and future Earth .o v

system modeling capabilities g% nnnnn
= Common/consistent language & format =

= Merged products (standardization, interoperability)

= Adaptive data & parameter selection

= Computation using large datasets without moving

College of Engineering, Carnegie Mellon University

= Specialized AlI/ML code & architecture

= Training and benchmarking datasets and hybrid
model design

i@

(ZENERGY 38 =~ AI4AESP



AI4ESP WORKSHOP HIGHLIGHTS

Infrastructure Investment Is Imperative

=  Workforce development
;'$~<‘

=  Multi-agencyl/institution coordination, cooperation, P %}“
collaboration et %ﬁ
: f =3 ? L:m
=  Codesign, creation, implementation & maintenance "'

:h-/\« é"
ﬁ.& % b ’

— Computational resources

— Training, benchmarking, & combined datasets
_ Al methodology development image from technologynetworks.com

— Interoperable frameworks for data & hybrid modeling

=  FAIR/Equitable data & software practices
= QObservations covering normal & capturing rare & extreme events

=  Adaptive observatories, data assimilation, & modeling

&

39

S/AI4ESP


https://www.technologynetworks.com/

AI4ESP WORKSHOP HIGHLIGHTS

Cultural Change Is Compulsory

Assessment et AN Metadata

=  Communities excited to work together
— need combined purpose and early success S
¢

= Existing & upcoming workforce development

Acquistion -2 <- Standards

09 P
. ’
efa N

Modular Data Ecosystem to enable data
interoperability for Al. Courtesy of Prakash & Serbin

= Common terminology across groups & scales
in AI4ESP space

= Transfer learning for different domains & scales
= Achieve & maintain FAIR, equitable data access

= Open science community effort pulling in an ultimately
singular direction

= Environmental justice throughout the system

o

e
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AI4ESP WORKSHOP HIGHLIGHTS

Uncertainty Quantification & Propagation Is Underlying

= Digital twin mindset
= Common understanding of uncertainty
» Defined uncertainty

= Capture beginning with instrument/sensor
calibration/operation

» Propagation requires formatting and transfer
standards

» Assimilation, parameterization, surrogate,
emulator, hybrid modeling

@ ENERSY 4

N‘ Patterns and
n
OWledge from daty’ knowledge

Velocity &Pﬁ
sc‘;“;ne";gf 3 Real-time critical
in some areas, not all
i 3
Variety 3 @ Integrated across
Diversedata . o disciplines
sources R '_ &
el . S 4
i Confidence

Veracity

dge’

Data challenges in the earth sciences: different data sources, small data / big
data challenges, and uncertainty in the data. Figure taken from (Reichstein, M.
etal. 2019)
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AI4ESP WORKSHOP HIGHLIGHTS

Human System Integration Is Significant

» Inclusion of complex human processes & decisions

= Capture complex feedbacks between all components
= Build decision-relevant process models

» Ethically sensitive data synthesis and gap filling

= Representation of human systems and dynamics in
models

» Results must be robust, explainable, & trustworthy

globalchange.gov

» Results must be shared efficiently (both positive &
negative)

o¥
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