The Carbon-Land Model Intercomparison Project (C-LAMP): A Protocol and Metrics for Model-Data Comparison

Forrest M. Hoffman1, James T. Randerson2, Inez Fung3, Peter Thornton4, Jeff Lee4, Curt Covey5, David Erickson1, Gordon Bonan4, and Steve Running6

1Oak Ridge National Laboratory, 2University of California - Irvine, 3University of California - Berkeley, 4National Center for Atmospheric Research, 5Lawrence Livermore National Laboratory/PCMDI, and 6University of Montana

Introduction
As general circulation models (GCMs) evolve and improve, there is increasing interest in applying them to understand the potential for global climate change. The global carbon cycle is of particular importance since it may create a significant positive feedback on global warming. A wide array of carbon models have been coupled to GCMs, and recent work has shown that coupled interactive biogeochemical models can yield useful, but wide-ranging, results for climate change studies (e.g., Friedlingstein et al. 2005).

Described here are model-data intercomparison experiments of general use for measuring the scientific performance of biosphere models. Originally designed to test the performance of three such models coupled to the Community Climate System Model Version 3 (CCSM3), the Carbon-Land Model Intercomparison Project (C-LAMP) has evolved into an international protocol and a growing set of metrics for scoring the performance of models by comparison with best-available observational datasets, from satellite-based to leaf-scale measurements.

By making use of the wide variety of measurements made, collected, and distributed by government agencies, C-LAMP will identify areas in which improvements can be made to models as well as identifying needs for new kinds of measurements. In addition, all the C-LAMP model output will be distributed via the Earth System Grid (ESG) and model diagnostics will be available on the Web for use by the wider scientific community.

C-LAMP Protocol

Experiment 1: “off-line” biosphere models forced with new NCEP/NCAR
Reanalysis meteorological datasets (Qian et al. 2005)
- Spin-up run
- Control run (1978–2004)
- Climate varying run (1948–2004)
- Climate, carbon dioxide, and nitrogen deposition varying run (1978–2004)
- Climate, carbon dioxide, nitrogen deposition, and land use varying run (1978–2004)

Experiment 2: partially coupled land-atmosphere model runs with prescribed sea surface temperatures (SSTs) and sea ice cover
- Spin-up run
- Control run (1800–2004)
- Climate varying run (1800–2004)
- Climate, carbon dioxide, and nitrogen deposition varying run (1800–2004)
- Climate, carbon dioxide, nitrogen deposition, and land use varying run (1800–2004)

Special attention is being given to the development of model-data intercomparison metrics and diagnostics relevant to the terrestrial carbon cycle.

C-LAMP is producing a standard set of common output quantities for climate-carbon cycle models and recommendations for carbon accounting. These are being proposed as additions to the NetCDF Climate and Forecast (CF) Metadata Convention for output field names and units to be produced by terrestrial biogeochemical Earth System Models for IPCC AR5. C-LAMP is seeking community feedback on these naming conventions.

The complete protocol, metrics for evaluation, and output approach are described at http://www.climatemodeling.org/c-lamp

Preliminary Findings and Recommendations

Both CASA and CN should evaluate the sensitivity of the prognostic leaf area schemes to soil moisture and air temperatures.
- Can agreement with MODIS be improved in the Western U.S.? Both models have recently been corrected for low bias in high northern latitudes.

To match NOAA Globalview observations of the seasonal cycle, CASA may need to reduce the temperature sensitivity of heterotrophic respiration (Q10 for soil pools).

Including a prognostic growth and maintenance respiration model in CASA may improve its agreement with tropical NPP observations.

Critical datasets that are missing include:
- GPP from AmeriFlux and FLUXNET
- Albedo from AmeriFlux and MODIS
- Constraints on litter pool sizes and turnover rates

Climate/Carbon Cycle Visualization

In these simulations, the carbon dioxide from various sources is selected individually as tracers in the atmosphere model. Here, carbon dioxide from land, originating as the net ecosystem exchange shown in color on the land surface, is separately selected in the atmosphere shown as plumes above the land.