

Workshop on Computational and Autonomous Workflows (CAW) ORNL

July 14, 2020

Speaker:

Forrest M. Hoffman Computational Earth Sciences Group

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

- 1. Describe a day in the life of an ORNL scientist in your area in terms of a typical end to end workflow to do your science
- In the Computational Earth Sciences Group, we improve process understanding of the global Earth system by
 - developing and applying models, machine learning, and computational tools at scale;
 - integrating observational data;
 - and quantifying Earth system predictability and uncertainty associated with interactions between water, energy, biogeochemical cycles, and aerosols
- In practical terms, we
 - develop numerical methods and program code on HPC
 - conduct simulations of Earth system models and regional climate models
 - analyze, evaluate, and benchmark simulations, often in comparison with in situ, remote sensing, and reanalysis data

2. What are the current challenges you face in your workflow?

- Developing model code with performance portability across architectures with and without accelerators
- Analyzing and synthesizing data from a wide variety of sources in a wide variety of formats for use in evaluating models
- Developing new analysis and scoring methodologies for benchmarking component models (atmosphere, land, ocean, sea ice, and land ice)
 Land Model Testbed (LMT)
- Conducting simulations of multiple models across multiple platforms that produce different equilibrium states, and benchmarking model results through comparison with observational data at multiple scales

3. Discuss opportunities for collaboration for ORNL workflow researchers

- Integrating complex model coupled model configuration, initialization, spin-up, and large simulation experiment execution on all HPC environments across institutions with Jupyter Notebooks / Jupyter Hub
- Integration of post-processing, benchmarking, and visualization with model assessment dashboards across multiple evaluation packages with Jupyter Notebooks / Jupyter Hub
- Completely automated retrieval of simulation experiment output (10s of TB) from HPSS and ESGF across all institutions from within Python analysis tools
- Writing and submitting manuscripts to Nature and Science

