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All BAU Points Plotted in a Climate State Space
When every monthly data point from all
5 Business−As−Usual (BAU) runs is
plotted in this three−dimensional
climate phase space, we can see the
portion of this space occupied by model
predictions.  In this phase space, we
see that the majority of points (land
grid cells) reside in a region of warm
temperatures, low precipitation, and
low soil moisture (near the front in the
upper left frame).  Discrete values of
high soil moisture (in polar and tropical regions) result in planes of points.
Points are colored by BAU model run, and the manifolds formed by each
run overlap since the same model was used for each run.

Trajectories are drawn with the similarity color of the climate regime to which
spider has just moved, but the links subsequently change to the color of the
spider that traversed them most frequently.  Line segments between states
become thicker with repeated traversal.

Now that a common set of clustered states has been obtained, the climate 
trajectories for a single geographic location can be shown as 5 different
‘‘spiders’’ (one for each BAU run) traversing a single shared set of climate
states.  Here, each spider, representing a single BAU, has a different color.
When two spiders occupy the same climate regime, the overlapping spiders
are colored black.

Five Climate Trajectories in a Common Climate State Space

The multiple spiders are often co−incident on the same climate state or regime in January and July, the climatic extremes of the year, but spread out across multiple states in spring and fall ‘‘transitional’’ months.  Spiders often
appear on opposite sides of the diamond−shaped seasonal orbit in both the soil moisture and the precipitation planes, but rejoin at the top and bottom of the diamonds in the summer and winter months.  Thus, the BAU run
predictions are similar with regard to temperature, but tend to be more variable with respect to soil moisture and precipitation.  This variability seems to increase to some degree as the simulation progresses.

Multivariate clustering is the division or

categories based on the similarities of
their properties.

Non−hierarchical clustering produces a
single level of division of objects into
some specified number of groups.

classification of objects into groups or

Multivariate Geographic Clustering
employs non−hierarchical clustering to
the classification of geographic areas.

Multivariate Spatio−Temporal Clustering is an application of Multivariate
Geographic Clustering across space and through time.

Multivariate Spatio−Temporal ClusteringIntroduction
A statistical clustering technique was used to analyze output from the
Parallel Climate Model (PCM) (Washington, et al.).  Five 100−year ‘‘business

were considered for this initial work:  surface temperature, precipitation,

as usual’’ scenario simulations were clustered individually and then in
combination into 32 groups or climate regimes.  Three PCM output fields

and soil moisture (root zone soil water).  Only land cells were considered in
the analysis.  The clustered climate regimes can be thought of as climate
states in an N−dimensional phase or state space.  These states provide a

This technique also makes it easy to see the long−term climatic trend in the
copious output (about 1200 monthly maps per run) that is otherwise masked
by the magnitude of the seasonal cycle.  The same approach may be useful

context for understanding the multivariate behavior of the climate system.

for comparing various model results with long time series observations to
better understand cloud processes and climate feedbacks.

The centroid coordinates of each of the clusters
represent the synoptic conditions of that climate

regime in the original measurement units.  The

contributes a red, green, or blue component.

first column of the table shows the random
colors for each regime used in the top row of

maps below.  The remaining columns are shown
in similarity colors, where each of the 3 variables

The clustering process establishes an exhaustive
set of occupied climate regimes (i.e., the 32

cluster centroids) which define the subset of
phase space occupied by the simulated

atmosphere/land surface at all points in space
and time.  Any geographic location will exist in

point in time.
only one of these climate regimes at any single

The top row of maps is colored randomly while

colored using similarity colors.  The first column
the bottom row depicts the same climate regimes

of maps is January 2080; the second column is
July 2080.

Because the same clustered sets of conditions
are identified through time, we can plot changes

in geographic area globally for any climate
regime as it evolves.  Many of the 32 regimes
remain relatively constant in area throughout
each model run.  These constant regimes are

not shown; only climate regimes experiencing
large area changes in each run are plotted.

A geographic location exists in only one climate
regime at any point in time.  By incrementing time,

any single geographic location will trace out a
trajectory or orbit among successively occupied

‘‘spider’’ representing the simulated atmsophere−
land surface sequentially moves among the

climate regimes leaving a thickening ‘‘web’’ out−
lining the trajectory.  When a geographic location

adopts a regime it never previously occupied, a

climate regimes in the climate phase space.  A

climatic change has occurred for that location.

Tracing out the entire seasonal and annual
trajectory for a single location yields a climate

‘‘manifold’’ in state space representing the shape
of the predicted climate occupancy for that

location.  The predicted climate extremes and the
frequencies of occupation are easily seen in this

graphical representation.

A Single Common Set

of Climate Regimes

for Direct Comparison

A Single Common Set

of Climate Regimes

for Direct Comparison

These 32 cluster centroids are a new set of
climate regimes resulting from the cluster
analysis of the output from all 5 BAU runs
taken together.  The visualizations below
are in terms of this common state space.

The 32 centroid coordinates represent the
synoptic conditions for the 32 climate
regimes.  Again, the first column shows the
random color associated with each regime
while the remaining columns show the
similarity color and the mean temperature,
precipitation, and soil moisture for each
regime.

BAU runs.  Any differences between
The maps appear very similar across all 5

model predictions.

the January maps or between the July
maps are due to climate variability in the

From these graphs it is easy to identify
which climte regimes experience large
changes in area for each BAU run.
Differences in the curves across runs is
due to predicted variability.  All 5 BAUs
indicate a growth in the hottest, driest
(desert) regime, and a shrinking of the
coldest Arctic and Antarctic regimes.
These changes are consistent with
increased desertification and a general
warming in polar regions.

These plots show the predicted climate
trajectories for a single location in the
Middle East from each BAU run in terms of
the common set of climate states.  The
‘‘spider’’ representing the Middle East
location spins a ‘‘web’’ among the climate
states or regimes.  Differences across runs
is due to predicted variability.  Because
output from runs start at different times,
some plots are shown at different angles.

Frequency of visitation for extremes are
easily seen around the edges of the
manifold.  For this location, all 5 BAUs
predict a decrease in visitation frequency
of the bottommost regime representing
very cold winter conditions.  In addition,
two of the runs predict significant−enough
warming and drying to push this location
into the hottest and driest regime near the
end of the simulations.

B05.12A Cluster Evolution, 5 Year Running Average, Similarity Colors - 32 Clusters
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B05.15A Cluster Evolution, 5 Year Running Average, Similarity Colors - 32 Clusters
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B05.18A Cluster Evolution, 5 Year Running Average, Similarity Colors - 32 Clusters
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B06.06A Cluster Evolution, 5 Year Running Average, Similarity Colors - 32 Clusters
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B06.09A Cluster Evolution, 5 Year Running Average, Similarity Colors - 32 Clusters

2020 2040 2060 2080
Year (2001-2098)

0

50

100

150

200

250
G

ri
d

 C
el

ls

    

0

2

4

6

8

P
er

ce
n

t 
L

an
d

 C
o

ve
r

B05.12 B05.15 B05.18 B06.06 B06.09
Ensemble Cluster Analysis

Climate Regime Definitions & Maps

Clustered Climate Regimes

Regime Area Changes

Climate Trajectories

Climate Manifolds

Clustering Method

Normal Clustering

One−pass Clustering with
single time series centroids

One−pass Clustering with
ensemble centroids

One−pass Clustering with
ensemble average centroids

normal classification and

Single Time Series

single time series centroids

normal classification

classification comparable to
ensemble classifications

Multiple Time Series (Ensemble) Ensemble Average Time Series

ensemble classifications and
ensemble centroids

normal classification and
ensemble average centroids

single time series classification
classifications comparable to classification comparable to

single time series classification

ensemble classifications
classification comparable to

ensemble classifications

classifications comparable to
ensemble average classification

normal classification

✱

✖
Obtained automatically from normal clustering (first row)
Contained at right if the ensemble contains the single time series
Data normalization requires that the input data be transformed to the phase space of the data used to generate the centroids✚

✱✖

✖✚

✚

✱

✚

✚

✚

✱classification comparable to
ensemble average classification ✖✚

Clustering Methods for Comparison of Time Series Data

January,

July,

December,

February
(DJF)

June,

August
(JJA)

Present Locations
with respect to

Difference

Future (2089−2098)Present (2001−2010)

Tracing out the entire seasonal and annual trajectory from the Ensemble
Average time series for the usual location in the Middle East, we see
that averaging the model results reduces the frequency of visitation to
extreme climate states.  Because of the predicted climate change and the
variability among the runs, the very cold winter state is never visited
by the Ensemble Average after about 25 years even though individual runs
predict occasional visitation.  Moreover, the desertification predicted
by some ensemble members is not strong enough to push the Ensemble
Average into this desert climate state.

Ten year time interval averages for the present (2001−2010) and the future (2089−2098) for two
seasons were created from the Ensemble Average time series.  These four snapshots were then
similarly classified using a one−pass clustering in conjunction with the previously−defined
climate states.  The resulting maps and regime histograms show where regime change has occurred
and which regimes experience significant area changes.  Stop−light color difference maps show
which climate regimes shrank from the present to the future (red), which regimes stayed the
same size globally (yellow), and which grew (green).  The difference maps show the location
of the affected climate regimes with respect to present predicted conditions.

Ensemble Cluster Evolution, 5 Year Running Average, Similarity Colors - 32 Clusters
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Ensemble Average Cluster Analysis
An Ensemble Average time series was generated using all 5 BAU model runs by averaging all runs
at each time interval for each grid cell.  To make the analysis of this single time series
comparable to the Ensemble Analysis results, a special type of clustering was performed.

Average time series into the single common set of climate
regimes already defined.  Once classified, the Ensemble
Average results were analyzed and displayed just like the
time series from the individual runs.

The Ensemble Average Regime Area Change graph at right
shows the climate regimes which undergo a significant
global area change.  These curves are directly comparable
to the individual Regime Area Change graphs for the
individual BAU runs shown at left because they are in
terms of the same single common set of climate states.

A One−pass Clustering was used to classify the Ensemble

Conclusions
Cluster analysis is a powerful tool which can provide a common basis for comparison across space
and through time for multiple climate simulations.  Because it runs efficiently on a parallel
supercomputer, the tool can be used to reveal long−term patterns in very large multivariate
data sets.  Given an array of equally−sampled variables, the technique statistically establishes
a common and exhaustive set of approximately equal−variance regimes or states in an N−dimensional
phase (or state) space.  These states are defined in terms of their original measurement units
for every variable considered in the analysis.

Clustering may be used not only to analyze and intercompare climate simulations, but also
to analyze observations and intercompare them with model results.  The area change graphs
above could show trends in cloud and climate states from long time series measurements.
The trajectory figures could show multivariate cloud behavior.  When measurements are clustered
in combination with model results, two trajectories could be seen to diverge when models and
measurements diverge and converge when models and measurements agree.  By analyzing long
time series measurements with model or reanalysis results, the manifold figures could show the
occupancy by a single ARM site in a ‘‘full’’ cloud/climate phase space yielding insights into
the representativeness of individual observation sites or the entire ARM observation network.
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