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Introduction

Observations of the Earth system are increasing in spatial resolution and
temporal frequency, and will grow exponentially over the next 5-10 years

With Exascale computing, simulation
output is growing even faster,
outpacing our ability to analyze,
interpret and evaluate model results

Explosive data growth and the
promise of discovery through
data-driven modeling necessitate
new methods for feature extraction,
change/anomaly detection, data
assimilation, simulation, and analysis

Frontier at Oak Ridge National Laboratory is the #1 fastest
supercomputer on the TOP500 List and the first
supercomputer to break the exaflop barrier (May 30, 2022).



https://top500.org/

FOCUS NEXT-GENERATION

This article is the second in a two-part series.
The first part, “How to Build a Hypercomputer,” by
Thomas Sterling, appeared in the July 2001 issue.

Scientists have
found a cheaper
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CLUSTER OF PCs at the
0Oak Ridge National
Laboratory in Tennessee
has been dubbed the
Stone SouperComputer.

/igp;guj 2001 Scientifig
BE—

Hargrove, W. W., F. M. Hoffman, and T. Sterling (2001), The
Do-It-Yourself Supercomputer, Sci. Am., 265(2):72-79,

https://www.scientificamerican.com/article/the-do-it-yvourself-superc/



https://www.scientificamerican.com/article/the-do-it-yourself-superc/

Multivariate Geographic Clustering

e Ecoregions have traditionally been
created by experts

e Qur approach has been to objectively
create ecoregions using continuous
continental-scale data and clustering

e We developed a highly scalable k-means
cluster analysis code that uses distributed
memory parallelism

e Originally developed on a 486/Pentium
cluster, the code now runs on the largest
hybrid CPU/GPU architectures on Earth

Hargrove, W. W., F. M. Hoffman, and T. Sterling (2001), The Do-It-Yourselfi
Supercomputer, Sci. Am., 265(2):72-79,
https://www.scientificamerican.com/article/the-do-it-yourself-superc/
OGS

MAKING MAPS WITH THE STONE SOUPERCOMPUTER

TO DRAW A MAP of the ecoregions in the continental U.S.,the Stone  thecellsinathi i ional d p d group them into four
| isticsof 7.8 gions. The f gion map divides the U.S. into recognizable

ercells. As a simple example, consider  zones (illustration B); a map dividing the country into 1,000 eco-
istic: regions provides far more detail (C). Another approach is to

levels of red, green and blue (D).

76 SCIENTIFIC AMERICAN AUGUST 2001
Copyright 2001 Scientific American, Inc.
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Eos, Vol. 84, No. 48, 2 December 2003
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New Analysis Reveals
Representativeness
of the AmeriFlux Network

PAGES 529,535

The AmeriFlux network of eddy flux covari-
ance towers was established to quantify varia-
tion in carbon dioxide and water vapor exchange
between terrestrial ecosystems and the atmos-

BY WiLLiam W, HARGROVE, FORREST M. HOFFMAN,
AND BeVERLY E. Law

phere,and to understand the underlying mech-
anisms responsible for observed fluxes and
carbon pools.The network is primarily funded
by the U.S.Department of Energy, NASA, the
National Oceanic and Atmospheric Adminis-
tration, and the National Science Foundation.
Similar regional networks elsewhere in the

synthesis activities across larger geographic
areas [Baldocchi et al.,2001; Law et al.,2002]
The existing AmeriFlux network will also
form a backbone of “Tier 4” intensive measure-
ment sites as one component of a fourtiered
carbon observation network within the North
American Carbon Program (NACP).The NACP
seeks to provide long-term, mechanistically
detailed,spatially resolved carbon fluxes across
North America [Wofsy and Harriss, 2002]. For
both of these roles, the AmeriFlux network
should be ecologically representative of the
environments contained within the geographic
boundaries of the program. A new ecoregion-
scale analysis of the existing AmeriFlux net-
work reveals that, while central continental

Id—for example, C , AsiaFlux,
OzFlux, and Fluxnet Canada—participate in

are well
flux towers are needed to represent environmental

Fig. 1.The representativeness of an existing spatial array of sample locations or study sites—for example, the AmeriFlux network of carbon dioxide
eddy flux covariance towers—can be mapped relative (o a set of quantitative ecoregions, suggesting locations for additional samples or sites.
Distance in data space to the closest ecoregion containing a site quantifies how well an existing network represents each ecoregion in the map.
Environments in darker ecoregions are poorly represented by this network

Network Representativeness

e The n-dimensional space formed by the
data layers offers a natural framework for
estimating representativeness of
individual sampling sites

e The Euclidean distance between individual
sites in data space is a metric of similarity
or dissimilarity

e Representativeness across multiple
sampling sites can be combined to
produce a map of network
representativeness

Hargrove, W. W., and F. M. Hoffman (2003), New Analysis Reveals
Representativeness of the AmeriFlux Network, Eos Trans. AGU,

84(48):529, 535, doi:10.1029/2003E0480001.
TGS



https://doi.org/10.1029/2003EO480001

Sampling Network Design
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2000-2009 2090-2000
Triple-Network Global Representativeness

NSF's NEON Sampling Domains

Gridded data from satellite and
airborne remote sensing, models, and
synthesis products can be combined to
design optimal sampling networks and
understand representativeness as it
evolves through time
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(Maddalena et al., in prep.)




50 Phenoregions for year
2012 (Random Colors)

250m MODIS NDVI
Every 8 days (46 images/year)
Clustered from year 2000 to present
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Earthinsights

day of year

50 Phenoregion Prototypes
(Random Colors)

(Hargrove et al., in prep.)




50 Phenoregions Persistence
and
50 Phenoregions Max Mode
(Similarity Colors)
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L I I I I 1 1 I I I I

2 r z Principal Components
g |— " Analysis

PC1 ~ Evergreen

_ PC2 ~ Deciduous

" PC3 ~ Dry Deciduous

T T T
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month of Year

(Hargrove et al., in prep.)




GSMNP: Spatial distribution of the 30 vege’ro e’
Clusters across the national park a, AT

Extracted canopy height and structure from
airborne LiDAR

10 km
I

Earthinsights (Kumar et al., in prep.)



GSMNP: 30 representative vertical structures
cluster centroids) identified

tall forests with low
understory vegetation

|

Height (m)

forests with slightly lower
mean height with dense
understory vegetation

low height grasslands and
heath balds that are small
in area but distinct
landscape type

Earthinsights
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* (Kumar et al., in prep.)




Vegetation Distribution at Barrow Environmental Observatory

Phenology Representativeness

v

July 26, 2010 Representativeness

/!

Representativeness map for vegetation
sampling points in sites A, B, C, and D with
phenology (left) and without (right) from
WorldView2 multispectral imagery for the
year 2010 and LiDAR data

Example plant functional type (PFT)
distributions scaled up from vegetation
sampling locations

Site A Site B Site C

In situ data from field measurement activities inform the
development of wide-scale maps of vegetation distribution
through inference using remote sensing data as surrogate
variables, and relationships with environmental controls

can be extracted

Langford, Z. L., et al. (2016), Mapping Arctic Plant Functional Type
Distributions in the Barrow Environmental Observatory Using

Site D

Site A Site B

Site C

WorldView-2 and LiDAR Datasets, Remote Sens., 8(9):733,

doi:10.3390/rs8090733.

Site D

0sses

Wet Tundra Graminoid



https://doi.org/10.3390/rs8090733

Arctic Vegetation Mapping from Multi-Sensor Fusion

Used Hyperion Multispectral and IfSAR-derived Digital Elevation Model, applied cluster analysis, and
trained a convolutional neural network (CNN) with Alaska Existing Vegetation Ecoregions (AKEVT)

—— Kougarok Watershed

Vegetation Type

Bl Rock

B Water

I Alder-Willow Shrub

I Mixed Shrub-Sedge Tussock Tundra
[ | Dryas/Lichen Dwarf Shrub Tundra
[ Sedge-Willow-Dryas Tundra

Langford, Z. L., et al. (2019), Arctic Vegetation Mapping Using Unsupervised Training Datasets and Convolutional Neural
Networks, Remote Sens., 11(1):69, doi:10.3390/rs11010069.



https://doi.org/10.3390/rs11010069

Satellite Data Analytics Enables Within-Season Crop Identification

Earliest date for crop type classification
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USDA Crop Data Layer (CDL) shows similar patterns at —— Wl v " ',3'6 —
continental scale. b) Good spatial agreement is found at P 0 e® W et o (o0 pecdOgec®

three selected regions, but cluster-then-label crop maps Konduri, V. S., J. Kumar, W. W. Hargrove, F. M. Hoffman, and A. R.
lack sharpness at field boundaries due to coarser Ganguly (2020), Mapping Crops Within the Growing Season
resolution of MODIS data. Across the United States, Remote Sens. Environ., 251, 112048,

doi:10.1016/j.rse.2020.112048.



https://doi.org/10.1016/j.rse.2020.112048

Watershed-Scale Plant Communities Determined from DNN and AVIRIS NG

3T PR e

Kougarok o t, g “
Council

Teller

Legend
@ Alder-Willow Shrub © Sedge-Willow-Dryas Tundra
© Birch-Ericaceous-Lichen Shrub Tundra @ Tussock-Lichen Tundra

@ Dryas-Lichen Dwarf Shrub Tundra © Wet Meadow Tundra

© Ericaceous Dwarf Shrub Tundra © Wet Sedge Bog-Meadow

@ Mesic Graminoid-Herb Meadow O Willow Shrub

@ Mixed Shrub-Sedge Tussock Tundra X J thlow-Bu';h Shrub

At the Watershed scale, vegetation community distribution follows topograph/c and water controls.
At a fine scale, nutrients limit the distribution of vegetation types.

Earthinsights (Konduri et al., in pre

)



Machine Learning for Understanding Biospheric Processes

Widening adoption of deep neural networks and growth of climate data are fueling interest
in AlI/ML for use in weather and climate and Earth system models
ML potential is high for improving predictability when (1) sufficient data are available for

process representations and (2) process representations are computationally expensive
Example methods for improving ELM capabilities \‘°""”4/»

ON Ty,
by exploring ML and information theory é;,““ K
approaches: (SSHEDS }

o Soil organic carbon & radiocarbon <>~
o Wildfire

o Methane emissions

o Ecohydrology

All of these applications involve
unresolved, subgrid-scale e
processes that strongly influence
results at the largest scales

EAF TR4 /’
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EARTH SYSTEMS
PREDICTABILITY

®00ELS

"\\6’«‘“ -




Hybrid Modeling of Wildfire Activities

e Improve model simulations of wildfire
processes, including ignition, fire duration, and — ] [ o } [ — ]
spread rate with Deep Neural Network models

Ignition factors

E s + I
e Improve simulated wildfire emissions and e ;
their impacts on atmospheric properties, :
. . 1
including aerosols, greenhouse gases, |
Fuel conditions !

phosphorus transport, and pollutants (ree coverage,biomass, : S
1
I
I
I
I

Anthropogenic
suppression
(Gor}

fitter moisture, fitter
temperature}
e Improve the projection of near-future and F——
. . . ... [precipitation, temperature,
long-term dynamics of wildfire activities wind, humidy]

e Accelerate E3SM coupled land-atmosphere
modeling activities for wildfire research

Deep Neural Network surrogate model

e Explore online ML training/validation strategy Zhu et al. (2022)
for E3SM coupled model simulations




Hybrid ML/Process-based Modeling for Terrestrial Modeling

' Competition ! !

Dynamic
7 Biogeography
Dispersal

Age Structure

In the hierarchy of land
model processes, we start
with the photosynthesis
parameterization because

Atmosphere

Insects and Disease

Extremes (drought,
_cold ete)

Heterotrophs

e Multiple hypotheses N |

e Many leaf-level oY/ -Mmy
measurements w e

e Most computationally R Notdnt Bynamics

I nte n S IVe pa rt Of th e |a n d ( Snow and Ice ) Gum.—ophic R/espimﬁoa C Tran\;piraﬁm ) { Trace Gas Emissions )

Streams and Rivers)
il N

(o) | (e
(Figure from P. E. Thornton) (et )




Hybrid ML/Process-based Modeling for Terrestrial Modeling

Individual processes can be
represented in a
multi-hypothesis approach,
and ML provides an
opportunities for (1) a model
surrogate module or (2) a
data-derived module that
can be further explored or
used to calibrate other
hypotheses, when sufficient
data are available.

(Fisher and Koven, 2020)
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Hybrid Modeling of Photosynthesis and Ecohydrology

e Significant leaf-level data may be used to @ sl berry A7 = 0726 o ey 52— 067
train ML parameterizations to improve e
accuracy and computational performance ™ :

e Estimated stomatal conductance vs. ors- T

measured stomatal conductance for (a)
Ball-Berry, (b) Medlyn, (c) Random forest (with
Medlyn inputs), and (d) Random forest with

all inputs from Lin et al. (2015) T 00 o5 1t s - s ors 10 13
e Inputsto the Medlyn parameterization are (Cl)_zsi Random Forest (Medlyn), R? = 0.810 (01|_)257 Random Forest, R = 0.981 o

leaf-level CO,, photosynthesis, and vapor o

pressure deficit g . N -';.

Q.

e Random forest trained on these three inputs
(c) performs slightly better than Medlyn 5
e Random forest trained on more variables (d) 0z TS
achieves an R? of 0.98 oo BT

000 025 050 075 1.00 125 000 025 050 075 100 125

(Massoud, Collier, et al. in prep) Cond cond
e

Cond_rf




Hybrid Modeling of Photosynthesis and Ecohydrology

e Most process-based or empirical formulations are continuous
e But ML formulations may exhibit discontinuities in the multi-dimensional space of inputs
because of out-of-sample data or artifacts of sampling or precision

e For example, we can see such
discontinuities at right for
Random Forest in the VPD vs.
photosynthesis heat map for
stomatal conductance

e These discontinuities are likely to
have numerical consequences
when attempting to couple a ML
parameterization into a hybrid
empirical / ML Earth system
model

Medlyn Random Forest

2.6

24

2.2

2

VPD
o

1.8

1.6

1.4

0.06 0.08 010 0.12 014 0.16 0.18 0.20 0.22
Stomatal Conductance

(Massoud, Collier, et al. in prep)
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https://aidesp.org/

" AI4ESP

https://aidesp.slack.com/

Artificial Intelligence for Earth System
Predictability

A multi-lab initiative working with the Earth and Environmental Systems Science Division (EESSD) of the
Office of Biological and Environmental Research (BER) to develop a new paradigm for Earth system
predictability focused on enabling artificial intelligence across field, lab, modeling, and analysis activities.

White papers were solicited for development Earth System Predictability Sessions Workshop Report o ® -1
and application of Al methods in areas e Atmospheric Modeling e Posted on
relevant to EESSD research with an emphasis ® Land Modeling . aidesp.org row ot ot
on quantifying and improving Earth system e Human Systems & Dynamics e Executive on o ety
predictability, particularly related to the e Hydrology Summary | T
: . e Watershed Science e JoyHado bt S Flektanes
integrative water cycle and extreme events. e Long summary polrof oo rigo Ren Josph ot of
e Ecohydrology : 1oy g [ o it
e Aerosols & Clouds ° Earth science Xujing Dovis  Bob Vallario Mike Kuperberg
H ifiri, Steven Lee (ASCR) Randall Loviolette (ASCR)
How can DOE directly It_everage artlflcm{ e Climate Variability & Extremes chapters
mtelllg_ence (Al) t(_) engineer a substc_mtlal e Coastal Dynamics, Oceans & Ice e Computational A0 i
(paradigm-changing) improvement in Cross-Cut Sessions science chapters T Wi idoon  forsHlien ST
Earth System Predictability? e Data Acquisition e bt sy
) ) e Neural Networks AMS Special ot of ot of
156 white papers were received and read to e Surrogate models and emulators Collection i Voo Tino oo
plan the organization of the AI4ESP e Knowledge-Informed Machine Learning e Open submissions
Workshop on Oct 25-Dec 3, 2021 e Hybrid Modeling for new Al for the AQux oo e
PR e Explainable/Interpretable/Trustworthy Al Earth S W M
{zENERGY e Knowledge Discovery & Statistical Learning + SZAI4ESP
e Al Architectures and Co-design journa


https://ai4esp.org/
https://www.ametsoc.org/index.cfm/ams/publications/journals/artificial-intelligence-for-the-earth-systems/
https://www.ametsoc.org/index.cfm/ams/publications/journals/artificial-intelligence-for-the-earth-systems/

AI4ESP WORKSHOP HIGHLIGHTS

Scientific Understanding and Earth System Predictions Across Scales

Global

Spatial Scale

Theory
/" ?
-I|I| -
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4 Observations

Modeling

© Obsersvations
~— Model with data assimilation
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\
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Distributions Distributions
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Uncertainty Quantification
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AI4ESP WORKSHOP HIGHLIGHTS

Overview of priorities emerging from the AI4ESP workshop across 3 key themes.
These priorities will help address major challenges for Earth system predictability

Earth Science Priorities Computational Science Priorities

* New observations * Hybrid models

+ Al-ready data products » Fundamental math and

« Data-driven and hybrid models algorithms

* Analytical approaches * Interpretable, trustworthy Al

Programmatic and Cultural Priorities
+ Al research centers
+ Workforce development

+ Codesign infrastructure ﬁ

« Common standards, benchmarks

» Uncertainty quantification, model * Al-enabled data acquisition * Seed projects, integrate Al into programs
parametrization & calibration + Data, software, hardware infrastructure + Al ethics and policies

+ Significant data gaps * Physically consistent predictions for - Interdisciplinary scientific research

+ Scaling and heterogeneity data-driven models + Diverse organizational missions

« Extreme events « Computational costs of process models - Personnel lack training in Al/ML

* Representation of human activities * Sparse data, extreme values « Using data, communicating across

* Knowledge discovery * Identifying causality research domains, organizations

» Accurate high-resolution predictions with * Interpretable, trustworthy predictions « Data bias, model fairness, explainability
low bias, uncertainty + Data discovery, access, synthesis of predictions

+ Providing actionable, timely information for * Model development and comparison

decision making

EESA22-031

(7 ENERGY S AI4ESP



AI4ESP WORKSHOP HIGHLIGHTS

Idealized Roadmap for Success @ A I 4 E S P
Long Term (<10 years)

» Improved Earth system /9

understanding and predictions
* Supporting stakeholder needs == Mid Term (<5 years)
at relevant scales for decision making
* Al research centers

* Measurable improvement in Earth
system models with better
representation of human activities

* New Al techniques tailored for
Earth science applications

« Established interdisciplinary workforce

Near Term (<2 years)
+ Open benchmark datasets

» Al-enabled observations and data
products based on gaps
* Seed efforts to demonstrate

potential of Al in existing programs
and modeling frameworks

« Cross-disciplinary collaborations
to initiate activities

using standards, co-developed models

EESA22-033

* Open science culture with data sharing

I4AESP
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