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Introduction
● Observations of the Earth system are increasing in spatial resolution and 

temporal frequency, and will grow exponentially over the next 5–10 years

Frontier at Oak Ridge National Laboratory is the #1 fastest 
supercomputer on the TOP500 List and the first 
supercomputer to break the exaflop barrier (May 30, 2022).

● With Exascale computing, simulation 
output is growing even faster, 
outpacing our ability to analyze, 
interpret and evaluate model results

● Explosive data growth and the 
promise of discovery through 
data-driven modeling necessitate 
new methods for feature extraction, 
change/anomaly detection, data 
assimilation, simulation, and analysis

https://top500.org/
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https://www.scientificamerican.com/article/the-do-it-yourself-superc/


Multivariate Geographic Clustering
● Ecoregions have traditionally been 

created by experts
● Our approach has been to objectively 

create ecoregions using continuous 
continental-scale data and clustering

● We developed a highly scalable k-means 
cluster analysis code that uses distributed 
memory parallelism

● Originally developed on a 486/Pentium 
cluster, the code now runs on the largest 
hybrid CPU/GPU architectures on Earth

Hargrove, W. W., F. M. Hoffman, and T. Sterling (2001), The Do-It-Yourself 
Supercomputer, Sci. Am., 265(2):72–79, 
https://www.scientificamerican.com/article/the-do-it-yourself-superc/

https://www.scientificamerican.com/article/the-do-it-yourself-superc/


Network Representativeness
● The n-dimensional space formed by the 

data layers offers a natural framework for 
estimating representativeness of 
individual sampling sites

● The Euclidean distance between individual 
sites in data space is a metric of similarity 
or dissimilarity

● Representativeness across multiple 
sampling sites can be combined to 
produce a map of network 
representativeness

Hargrove, W. W., and F. M. Hoffman (2003), New Analysis Reveals 
Representativeness of the AmeriFlux Network, Eos Trans. AGU, 
84(48):529, 535, doi:10.1029/2003EO480001.

https://doi.org/10.1029/2003EO480001


(Maddalena et al., in prep.)

NSF’s NEON Sampling Domains

Triple-Network Global Representativeness
2000–2009 2090–2000
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Gridded data from satellite and 
airborne remote sensing, models, and 
synthesis products can be combined to 
design optimal sampling networks and 
understand representativeness as it 
evolves through time

Sampling Network Design



50 Phenoregions for year 
2012 (Random Colors)

250m MODIS NDVI
Every 8 days (46 images/year)

Clustered from year 2000 to present

50 Phenoregion Prototypes 
(Random Colors)

(Hargrove et al., in prep.)EarthInsights



50 Phenoregions Persistence
and

50 Phenoregions Max Mode 
(Similarity Colors)

(Hargrove et al., in prep.)EarthInsights

Principal Components 
Analysis

PC1 ~ Evergreen
PC2 ~ Deciduous
PC3 ~ Dry Deciduous



(Kumar et al., in prep.)EarthInsights

Extracted canopy height and structure from
airborne LiDAR 



(Kumar et al., in prep.)EarthInsights



Vegetation Distribution at Barrow Environmental Observatory

In situ data from field measurement activities inform the 
development of wide-scale maps of vegetation distribution 
through inference using remote sensing data as surrogate 
variables, and relationships with environmental controls 
can be extracted

Representativeness map for vegetation 
sampling points in sites A, B, C, and D with 
phenology (left) and without (right) from 
WorldView2 multispectral imagery for the 
year 2010 and LiDAR data

Example plant functional type (PFT) 
distributions scaled up from vegetation 
sampling locations

Langford, Z. L., et al. (2016), Mapping Arctic Plant Functional Type 
Distributions in the Barrow Environmental Observatory Using 
WorldView-2 and LiDAR Datasets, Remote Sens., 8(9):733, 
doi:10.3390/rs8090733.

https://doi.org/10.3390/rs8090733


Arctic Vegetation Mapping from Multi-Sensor Fusion
Used Hyperion Multispectral and IfSAR-derived Digital Elevation Model, applied cluster analysis, and
trained a convolutional neural network (CNN) with Alaska Existing Vegetation Ecoregions (AKEVT) 

Langford, Z. L., et al. (2019), Arctic Vegetation Mapping Using Unsupervised Training Datasets and Convolutional Neural 
Networks, Remote Sens., 11(1):69, doi:10.3390/rs11010069.

https://doi.org/10.3390/rs11010069


Satellite Data Analytics Enables Within-Season Crop Identification
Earliest date for crop type classificationa)

b)

Figure: a) Comparison of cluster-then-label crop map with 
USDA Crop Data Layer (CDL) shows similar patterns at 
continental scale. b) Good spatial agreement is found at 
three selected regions, but cluster-then-label crop maps 
lack sharpness at field boundaries due to coarser 
resolution of MODIS data.

Konduri, V. S., J. Kumar, W. W. Hargrove, F. M. Hoffman, and A. R. 
Ganguly (2020), Mapping Crops Within the Growing Season 
Across the United States, Remote Sens. Environ., 251, 112048, 
doi:10.1016/j.rse.2020.112048.

https://doi.org/10.1016/j.rse.2020.112048


Watershed-Scale Plant Communities Determined from DNN and AVIRIS-NG

(Konduri et al., in prep.)EarthInsights

At the watershed scale, vegetation community distribution follows topographic and water controls. 
At a fine scale, nutrients limit the distribution of vegetation types.



Machine Learning for Understanding Biospheric Processes
● Widening adoption of deep neural networks and growth of climate data are fueling interest 

in AI/ML for use in weather and climate and Earth system models
● ML potential is high for improving predictability when (1) sufficient data are available for 

process representations and (2) process representations are computationally expensive
● Example methods for improving ELM capabilities

by exploring ML and information theory
approaches:
○ Soil organic carbon & radiocarbon
○ Wildfire 
○ Methane emissions
○ Ecohydrology

● All of these applications involve
unresolved, subgrid-scale
processes that strongly influence
results at the largest scales



Hybrid Modeling of Wildfire Activities
● Improve model simulations of wildfire 

processes, including ignition, fire duration, and 
spread rate with Deep Neural Network models

● Improve simulated wildfire emissions and 
their impacts on atmospheric properties, 
including aerosols, greenhouse gases, 
phosphorus transport, and pollutants

● Improve the projection of near-future and 
long-term dynamics of wildfire activities

● Accelerate E3SM coupled land–atmosphere 
modeling activities for wildfire research

● Explore online ML training/validation strategy 
for E3SM coupled model simulations

Zhu et al. (2022)



Hybrid ML/Process-based Modeling for Terrestrial Modeling
In the hierarchy of land 
model processes, we start 
with the photosynthesis 
parameterization because

● Multiple hypotheses
● Many leaf-level 

measurements
● Most computationally 

intensive part of the land 
model

(Figure from P. E. Thornton)



Hybrid ML/Process-based Modeling for Terrestrial Modeling
Individual processes can be 
represented in a 
multi-hypothesis approach, 
and ML provides an 
opportunities for (1) a model 
surrogate module or (2) a 
data-derived module that 
can be further explored or 
used to calibrate other 
hypotheses, when sufficient 
data are available.

(Fisher and Koven, 2020)



Hybrid Modeling of Photosynthesis and Ecohydrology
● Significant leaf-level data may be used to 

train ML parameterizations to improve 
accuracy and computational performance

● Estimated stomatal conductance vs. 
measured stomatal conductance for (a) 
Ball-Berry, (b) Medlyn, (c) Random forest (with 
Medlyn inputs), and (d) Random forest with 
all inputs from Lin et al. (2015)

● Inputs to the Medlyn parameterization are 
leaf-level CO2, photosynthesis, and vapor 
pressure deficit

● Random forest trained on these three inputs 
(c) performs slightly better than Medlyn

● Random forest trained on more variables (d) 
achieves an R2 of 0.98

(Massoud, Collier, et al. in prep)

(a) (b)

(c) (d)



Hybrid Modeling of Photosynthesis and Ecohydrology

● For example, we can see such 
discontinuities at right for 
Random Forest in the VPD vs. 
photosynthesis heat map for 
stomatal conductance

● These discontinuities are likely to 
have numerical consequences 
when attempting to couple a ML 
parameterization into a hybrid 
empirical / ML Earth system 
model

(Massoud, Collier, et al. in prep)

● Most process-based or empirical formulations are continuous
● But ML formulations may exhibit discontinuities in the multi-dimensional space of inputs 

because of out-of-sample data or artifacts of sampling or precision
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https://ai4esp.org/ https://ai4esp.slack.com/

White papers were solicited for development 
and application of AI methods in areas 
relevant to EESSD research with an emphasis 
on quantifying and improving Earth system 
predictability, particularly related to the 
integrative water cycle and extreme events.

How can DOE directly leverage artificial 
intelligence (AI) to engineer a substantial 
(paradigm-changing) improvement in 
Earth System Predictability?

156 white papers were received and read to 
plan the organization of the AI4ESP 
Workshop on Oct 25–Dec 3, 2021

Earth System Predictability Sessions
● Atmospheric Modeling
● Land Modeling
● Human Systems & Dynamics
● Hydrology
● Watershed Science
● Ecohydrology
● Aerosols & Clouds
● Climate Variability & Extremes
● Coastal Dynamics, Oceans & Ice
Cross-Cut Sessions
● Data Acquisition
● Neural Networks
● Surrogate models and emulators
● Knowledge-Informed Machine Learning
● Hybrid Modeling
● Explainable/Interpretable/Trustworthy AI
● Knowledge Discovery & Statistical Learning
● AI Architectures and Co-design

Workshop Report
● Posted on 

ai4esp.org
● Executive 

Summary 
● Long summary
● Earth science 

chapters
● Computational 

science chapters

AMS Special 
Collection
● Open submissions 

for new AI for the 
Earth Systems 
journal

https://ai4esp.org/
https://www.ametsoc.org/index.cfm/ams/publications/journals/artificial-intelligence-for-the-earth-systems/
https://www.ametsoc.org/index.cfm/ams/publications/journals/artificial-intelligence-for-the-earth-systems/


AI4ESP WORKSHOP HIGHLIGHTS
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