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Interannual Variability of Atmospheric Carbon Dioxide
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What is a Benchmark?
RU BISCO

e A benchmark is a quantitative test of model
function achieved through comparison of model
results with observational data N e

e Acceptable performance on a benchmark is a o
necessary but not sufficient condition for a fully }/°7¢s oftenjailfo capture the ampiitude of

the seasonal cycle of atmospheric CO,
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Detrended CO, mixing ratio (ppm)

Sand Island, Midway, USA
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functioning model A L
e Functional relationship benchmarks offer tests e 5
of model responses to forcings and yield insights gwoo— i
into ecosystem processes el :
e Effective benchmarks must draw upon a broad set 5 S
of independent observations to evaluate model Tt ww e me 8
performance at mu|tip|e scales Models may reproduce correct responses over

only a limited range of forcing variables
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RU BISCO

Why Benchmark Models?

To quantify and reduce uncertainties in carbon cycle feedbacks to improve
projections of future climate change (Eyring et al., 2019; Collier et al., 2018)
To quantitatively diagnose impacts of model development on hydrological
and carbon cycle process representations and their interactions

To guide synthesis efforts, such as the Intergovernmental Panel on Climate
Change (IPCC), by determining which models are broadly consistent with
available observations (Eyring et al., 2019)

To increase scrutiny of key datasets used for model evaluation

To identify gaps in existing observations needed to inform model
development

To accelerate delivery of new measurement datasets for rapid and
widespread use in model assessment
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What is ILAMB?

A community coordination activity created to:

e Develop internationally accepted benchmarks
for land model performance by drawing upon
collaborative expertise

e Promote the use of these benchmarks for
model intercomparison

e Strengthen linkages between experimental,
remote sensing, and Earth system modeling
communities in the design of new model tests
and new measurement programs

e Support the design and development of open
source benchmarking tools
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First ILAMB Workshop was held in Exeter, UK, on June 22-24, 2009
Second ILAMB Workshop was held in Irvine, CA, USA, on January 24-26, 2011

o ~45 researchers participated from the US, Canada, UK, Netherlands, France, Germany,
Switzerland, China, Japan, and Australia

O

Developed methodology for model-data comparison and baseline standard for performance of
land model process representations (Luo et al., 2012)
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v A A Framework for Benchmarking Land Models

e A benchmarking framework for
evaluating land models emerged and
included (1) defining model aspects to be
evaluated, (2) selecting benchmarks as

Process Parameter
* Biophysics * State variables

* Hydrology * Rate variables
* Biogeochemistry * Responses
* Vegetation dynamics * Feedback

standardized references, (3) developing S Benchmarks

: i ; * Temporal scale
a scoring system to measure model : Eparimenial ity g‘: Spata cover
performance, and (4) stimulating model bbbl B

Improvement I
e Based on this methodology and prior S --
work on the Carbon-LAnd Model & Matrices of performance skills |

Intercomparison Project (C-LAMP)
(Randerson et al., 2009), a prototype
model benchmarking package was

developed for ILAMB

— e T

NATIONAL LABORATORY

NAL LABORATORY

&

» A priori thresholds
¢ Scoring systems
considering weights for

different processes and
data sets

To determine model’s

e Acceptability

* Ranking

e Strength and deficiency
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2016

International Land Model
Benchmarking (ILAMB)
Workshop Report
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2016 Internatlonal Land ModIBenchmar(ILA)Workshop
May 16-18, 2016, Washington, DC
Third ILAMB Workshop was held May 16-18, 2016
e Workshop Goals

Design of new metrics for model benchmarking

Model Intercomparison Project (MIP) evaluation needs
Model development, testbeds, and workflow processes
Observational datasets and needed measurements

e Workshop Attendance

o 60+ participants from Australia, Japan, China, Germany,
Sweden, Netherlands, UK, and US (10 modeling centers) p I
o ~25remote attendees at any time (Hoffman et al., 2017)
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Development of ILAMB Packages

e ILAMBvV1 released at 2015 AGU Fall Meeting Town Hall,
doi:10.18139/ILAMB.v001.00/1251597
e ILAMBV2 released at 2016 ILAMB Workshop, Wb
. Gross Primary Productivit
doi:10.18139/ILAMB.v002.00/1251621
Global Net Ecosystem Carbon Balance
. . . Net Ecosystem Exc.han'ge
e Open Source software written in Python; runs in Eeosyslem Bepiiahion
parallel on laptops, clusters, and supercomputers .
Terrestrial Water Storage Anomaly
. . . Albedo
e Routinely used for land model evaluation during Surface Upward SW Radatin
development of ESMs, including the E3SM Land Mode|  surace Upward LW Radiation
(Zhu et al., 2019) and the CESM Community Land T
Surface Air Temperature
Model (Lawrence et al., 2019) Précipitation
Surface Downward SW Radiation
. . . Surface Downward LW Radiation
e Models are scored based on statistical comparisons

and functional response metrics
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ILAMB Produces Diagnostics and Scores Models
RUBISCO

e |LAMB generates a top-level portrait plot of models scores

e For every variable and dataset, ILAMB can automatically produce

o Tables containing individual metrics and metric scores (when relevant to the data), including
Benchmark and model period mean

Bias and bias score (S, )

Root-mean-square error (RMSE) and RMSE score (S )

Phase shift and seasonal cycle score (Sphase)

Interannual coefficient of variation and IAV score (S, )

Spatial distribution score (S, )

m Overall score (S ) > Soverall _ Sbias + 2Srmse + Sphase + Siav + Sdist

overall
o Graphical diagnostics LA+t l4d

m Spatial contour maps
m Time series line plots
m Spatial Taylor diagrams (Taylor, 2001)

e Similar tables and graphical dlagnostlcs for functional relationships
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RUBISCO

ILAMBv2.6 Package Current Variables

Biogeochemistry: Biomass (Contiguous US, Pan Tropical Forest), Burned area (GFED3),
CO, (NOAA GMD, Mauna Loa), Gross primary production (Fluxnet, GBAF), Leaf area index
(AVHRR, MODIS), Global net ecosystem carbon balance (GCP, Khatiwala/Hoffman), Net
ecosystem exchange (Fluxnet, GBAF), Ecosystem Respiration (Fluxnet, GBAF), Soil C (HWSD,
NCSCDv22, Koven)

Hydrology: Evapotranspiration (GLEAM, MODIS), Evaporative fraction (GBAF), Latent heat
(Fluxnet, GBAF, DOLCE), Runoff (Dai, LORA), Sensible heat (Fluxnet, GBAF), Terrestrial water
storage anomaly (GRACE), Permafrost (NSIDC)

Energy: Albedo (CERES, GEWEX.SRB), Surface upward and net SW/LW radiation (CERES,
GEWEX.SRB, WRMC.BSRN), Surface net radiation (CERES, Fluxnet, GEWEX.SRB,
WRMC.BSRN)

Forcing: Surface air temperature (CRU, Fluxnet), Diurnal max/min/range temperature
(CRU), Precipitation (CMAP, Fluxnet, GPCC, GPCP2), Surface relative humidity (ERA), Surface
down SW/LW radiation (CERES, Fluxnet, GEWEX.SRB, WRMC.BSRN)
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R U B I s c o ° Ecosystem and Carbon Cycle
Biomass - -

Burned Area
Carbon Dioxide
Gross Primary Productivity

e The CMIP6 suite of land models (right) n

Net Ecosystem Exchange

has improved over the CMIP5 suite of -

Hydrology Cycle

Evapotranspiration .
| a n d m O d e | S ( | eft) Evaporative Fraction
Latent Heat

. Runoff -
e The multi-model mean outperforms any [

Terrestrial Water Storage Anomaly

R . Permafrost

single model for each suite of models
Albedo

Surface Upward SW Radiation

Surface Net SW Radiation

e The multi-model mean CMIP6 land Surtace Upvard LW e

Surface Net LW Radiation

o i 17} Surface Net Radiation
model is the “best model” overall

Surface Air Temperature
Diurnal Max Temperature

o . 7 Diurnal Min Temperature
e Why did CMIP6 land models improve:
Precipitation
Surface Relative Humidity
Surface Downward SW Radiation
Surface Downward LW Radiation

Relationships
Relative Scale BurnedArea/GFEDAS

...- GrossPrimaryProductivity/ GBAF

Worse Value  Better Value LERIATERIn EUAVHIER
LeafArealndex/MODIS

Evapotranspiration/GLEAM
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seasonal GBAF estimates

bce-csmi-1 [] 123. [112. |114. [8.79 0.0945 0.238 1.51 1.01 0.484 0.435 0.830 0.955 0.628

BCC-CSM2-MR [-] 114. 107. 113. 5.88 0.671 -0.0233 |1.52 | 1.11 0.479 0.447 0.817 0.941 0.626

e \We can see , ,
CanESM5 [-] 141. 128. 114. 10.1 0.730 1.87 1.60 0.449 0.418 0.710 0.948 0.589 Sp at| al Taylor D| a gr am

CESM1-BGC [] 129. 123. 113. 5.55 0.660 0.379 166 1.20 0.426 0.468 0.765 0.889 0.603 | m p rove m e ntS (Po 0.1
2.0’ 1 05

CESM2 [-] 110. 104. 113. 5.57 0.642 -0.0542 1.62 1.32 0.458 0.466 0.774 0.933 0.619

CanESM2 [-] 129. 117. 114. 9.54 0.0601 2.31 2.00 0.388 0.437

o
GFDL-ESM2G  [-] 167. 152. 114. 12.4 126 2.78 1.38 0.377 4 0.735 0.897 a C OSS ge e at O S 1.8
GFDL-ESM4  [-] 105. 99.0 114. 6.18 -0.177 159 1.49 0.495 0.403 0.702 0.939 0.588 r n r I n

IPSL-CM5A-LR  [-] 165. 150. 113. 11.7 0.515 1.18 2.68 1.20 0.781 0.896 Of m Od e | S (e g kS
IPSL-CM6A-LR  [-] 115. 109. 113. 5.27 0.708 0.111 139 1.14 0.790 0.961 ’ ! 1.4
MeanCMIP5 [-] 121. 115. 114. 6.65 0.574 1.41 0.981 0.799 0.965 C E S IVI 1 VS . C E S M 2 1.2
MeanCMIP6 [-] 116. 110. 114. 6.26 0.129 1.17 0.931 0.826 0956 !

=

MIROC-ESM  [-] 129. 118. 102. 9.04 11.4 0.396 1.90 1.27 0.463 0.435 0.767 0.920 0.604 | PS L_C M SA VS 6A)
[ ]

MIROC-ESM2L  [] 116. 104. 113. 9.90 0.119  -0.0111 1.95 1.99  0.409 0.920 0,543 0.8
MPI-ESM-LR  [-] 169. 159. 104. 8.91 9.81 136 236 129 0402 0.371 0.715 0.930 0.558

MPI-ESM1.2-LR [] 141. 133. 104. 6.89 9.81 0725 206 113  0.409 0.393 0.769 0.925 0.578 o Th e mea n CM | P6 0
NOrESM1-ME  [:] 129. 120. 114. 7.82 0.386 1.86 125 0.387 0.456 0.761 0.583 0.4
NorESM2-LM  [] 107. 97.5 114. 7.59 -0.0828 1.63 131  0.443 0.472 0.791 0.623 a n d C M I P5 m Od e | S

UK-HadGEM2-ES []] 137. 130. 113. 6.93 0.848  0.602 201 110 |0.389 0.388 0.820 0.568 02

perform best gl A .

0.0 0.2 0.4 0.6 0.8 1.0 12 1.4 1.6 1.8 2.0
Normalized standard deviation
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UKESM1-0-LL  [-] 126. 119. 113. 7.06 0.825 0.387 1.77 1.16 0.436 0.419 0.791




Biases in GPP by Model

bce-csmil-1 BCC-CSM2-MR CanESM2 CanESM5

0
gm2d? gm2d! gm2d1 gm2d?

CESM1-BGC CESM2 GFDL-ESM2G GFDL-ESM4

-4 -3 2 a 0 1 2 3 4 0
gm-2d-! gm-2d-1 gm-2d-1 gm-2d-!
IPSL-CM5A-LR IPSL-CM6A-LR MeanCMIP5 MeanCMIP6

gm-2d-! gmZdt gm-2d-! gm-2d-!
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Functional Relationship Metrics (GPP vs. Precipitation, Temperature)
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Reasons for Land Model Improvements

ESM improvements in climate forcings (temperature, precipitation, radiation) likely
partially drove improvements exhibited by land carbon cycle models

S
3,

" ;?,.... ~e

Mean CMIP5

-1 0 1 2 =30 -20 -10 0 10 20
Precipitation Bias [mm d-1] Incoming Radiation Bias [W/m2]

” .i?;-;’r7 { = !‘p—“
l_?.i" d, = ol ey .

- N >
X!
L b 30
. i
- e
£y )
priit
0y »

Mean CMIP6

(Hoffman et al., in prep)




Reasons for Land Model Improvements

Mean CMIP5

Differences in bias
scores for
temperature, ¥ CrgembremmsSmel] PGl SomogBelnfege
precipitation, and

iIncoming radiation
were primarily
positive, further
indicating more
realistic climate
representation

Mean CMIP6

Improvement

e e =

-04 -03 -0.2 -0.1 00 01 02 03 04 -03 -02 -0.1 0.0 0.1 0.2 0.3 -0.20-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
Temperature Bias Score [1] Precipitation Bias Score [1] Incoming Radiation Bias Score [1]

(Hoffman et al., in prep)




Reasons for Land Model Improvements

W Forcings ® CanESM5 ® MIROC-ES2L
A Relationships ® CESM2 ® MPI-ESM1.2-HR
. . ® Other ® UKESM1-0-LL ® NorESM2-LM
e While forcings got better, the largest o BCCCSM2MR @ IPSL-CMGALR

improvements were in s P el improvement i 210

0.6 1 A _ nt
variable-to-variable relationships, o s B i i
suggesting that increased land model .- S et
complexity was also partially -
responsible for higher CMIP6 model g o0z
scores s

e These results suggest that rigorous A
model evaluation & benchmarking ]

with tools like ILAMB and IOMB can 135 datasetimodel pairs degrade .
lead to model improvements

mean degradation per pairis 0.035 *

0.0 0.2 0.4 0.6 0.8 1.0
CMIP5 Overall Score

(Hoffman et al., in prep)




CMIP5 vs. CMIP6 Evaluation

(a) Land Benchmarking Results

Land Ecosystem & Carbon Cycle |o.

Biomass
Burned Area

(a) International Land Model Benchmarking Leat Area Index
(ILAMB) and (b) International Ocean Model e Ecomptem Exchnge
Benchmarking (IOMB) tools were used to Gbycm;pd
evaluate how land and ocean model i
performance changed from CMIP5 to CMIP6

Evapotranspiration
Evaporative Fraction

Terrestrial Water Storage Anomaly

Permafrost |o.

Model fidelity is assessed through comparison of ) ocean enchmarking Resus

Ocean Ecosystems
Chlorophyll

historical simulations with a wide variety of Oxygen, surface

Ocean Nutrients

contemporary observational datasets Nitrate, surface

Phosphate, surface
Silicate, surface

The UN's Intergovernmental Panel on Climate CcEENCRifion

Change (IPCC) Sixth Assessment Report (AR6) ;;gnt;tiggfi
from Working Group 1 (WG1) Chapter 5 contains

the full ILAMB/IOMB evaluation as Figure 5.22

Nitrate, surface/WOA2018
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CMIP6 ESMs
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Addressing Observational Uncertainty

e Few observational datasets provide complete uncertainties, but some are appearing
e |LAMB uses multiple datasets for most variables and allows users to weight them according
to a rubric of uncertainty, scale mismatch, etc.

® SurfaceDownwardRadiation ® Runoff ® Storage ® SensibleHeat
() ”_AMB Can a|SO use: ® NitrogenFixation ® Precipitation ® LatentHeat === Uncertainty Score = Score
o  Full spatial/temporal uncertainties 1.0 o ;-, &L° | 091 o« °
provided with the data os . A 408 .
o Fixed, expert-derived uncertainty for & o’ /| &or] *
20.8 il £ @
a dataset 5 e & 5 0.6 P
tee dert ' e S
o Uncertainties derived from A I A S 05 .
.. . " [ 4 77 A ,/’,
combining multiple datasets 2061 L% o* 2 0.41 R,
. . . o ) il 034 ¢ ..,,/
® Experiments with self-consistent Y P P
CLASS data (Hobeichi et al. 2020) and R A = eS|

Barnard's nitrogen fixation data demonstrate that while scores shift, including uncertainty
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RUBISCO Summary

e Model benchmarking is increasingly important as model complexity increases

e Systematic model benchmarking is useful for

o Verification - during model development to confirm that new model code improves
performance in a targeted area without degrading performance in another area

o Validation - when comparing performance of one model or model version to observations and
to other models or other model versions

e The ILAMB package employs a suite of in situ, remote sensing, and reanalysis
datasets to comprehensively evaluate and score land model performance,
irrespective of any model structure or set of process representations

e |ILAMB is Open Source, is written in Python, runs in parallel on laptops to
supercomputers, and has been adopted in most modeling centers

e Usefulness of ILAMB depends on the quality of incorporated observational data,
characterization of uncertainty, and selection of relevant metrics
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Model Evaluation Perspective on Recommendations Lesa

e \We need better characterization of uncertainties in observational and remote sensing data products
o Do the data help distinguish models from each other?
o Do the data help inform us about which combination of process representations are important?
e \We need to better characterize and understand the representativeness of observations
o Are in situ measurements representative of the data pixels / model grid cells?
o What additional data are useful for quantifying representativeness and can this inform or direct
measurement campaigns or sampling strategies (Matthias’ talk, for example)?
e \We need to better understand how processes scale across space and through time
o How do we use measurements from stomata to leaves to organisms to inform process representations at
the scales of cohorts to canopies to ecosystems to landscapes to watersheds?
o Can we maintain a constellation of observational systems that produce data at relevant scales over long
time periods as the climate changes?
e \We need to characterize plant traits, ecosystem community dynamics, and land use & land cover
change to inform demographic models
o Do the data help us understand important plant traits and cohort behavior?
o Can we capture enough data to inform / constrain models of disturbance and recovery?
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Questions for the Modeling Community

e How many different models or model configurations are needed to answer science questions?
o Are models designed to develop mechanistic understanding or address societally relevant questions?
o What evaluation metrics should be used for models designed for different purposes?
e How can we combine multisensor observational data to better inform process representations in models?
o Can we use Al/ML to derive synthesized or assimilated data products to constrain models?
o Can we use data-driven Al/ML approaches to produce online parameterizations, hybrid models, surrogate
models, and digital twins?
e How can we best evaluate long timescale processes with relatively short timescale remote sensing?
o Can we trade space for time from representativeness analyses with model ensembles?
o Does contemporary bias removal reduce future model spread?
o Can we weight models based on ILAMB scores?
e How can we better organize our communities to build better (not more?) models, address uncertainties,
engage observational community, prepare for CMIP7, 8, 9?
o 1st Land Surface Modeling Summit in Oxford (11-15 Sep 2022), Eleanor Blythe & Dave Lawrence
o 4th Carbon from Space Workshop in Frascati (25-28 Oct 2022), ESA & NASA
o 4th ILAMB Workshop in USA (Late 20237)
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