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Data-Model Integration Objectives

e Inter-/Intra-network data for uncertainty quantification and scaling
o Understanding the continental and global representativeness of AmeriFlux and Fluxnet sites

and networks
o Developing footprint, regional, and global gridded flux data products with machine learning

o Employing remote sensing products and spectral decomposition to reduce data uncertainty

e Model-data fusion for constraining and improving models
o Using data products to initialize, constrain, and benchmark models
o Developing fused gridded flux data products with machine learning and environmental

response functions (ERF)
o Assimilation of flux data products with DART + CLM to constrain processes and parameters

e Accessible and machine-parsable metadata and biological data



Environmental response function virtual control volume

Multivariate responses of surface-atmosphere interactions
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Spatial representativeness of flux observations
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Flux Site and Network Representativeness

e Maps of AmeriFlux representativeness
have been produced at least since 2003

e Light areas are well represented by the
sites and dark areas are poorly
represented by the sites

e Quantitative method based on climatic,
physiographic, and edaphic variables

e Enables similarity analysis (e.g., maps of
Smokies-ness) and provides quantitative
basis for upscaling fluxes

Smokies-ness

AmeriFlux Representativeness ca. 2003 .

Hargrove, Hoffman, and Law (2003)




Defining the 20 NEON Domains

NEON Sampling
Design
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Uncertainty reduction through optimal site placement

sites across eco-climatic regions .. detecting extreme events
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Sampling Network Design for Alaska )

e Quantitative methodology based on .

multivariate clustering for
o  Stratifying sampling domains
o Informing site selection
o Determining the representativeness of
measurement sites and networks Oy
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Multi-Network Representativeness
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Convolutional neural
network (CNN)
approach for mapping

Arctic vegetation using

multi-sensor remote
sensing fusion.

Langford et a'I. (201 6)
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Global extrapolation of fluxes

GPP [gC/m2/yr]

Monthly GPP (gC/m?*/month)
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Representativeness of Belowground Processes & Global Land C Cycle
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Identify Key Biophysical
Drivers of Soil C Storage &
Fluxes and Quantify their
Relative Importance (Data

Mining, SEM )

Track Sources & Fates of C
Pools & Fluxes (*3C, 4C,
Root Exclusion, Girdling)

Identify Key Trends across
Wide Spatial & Temporal
Ranges (Data Mining,
SEM, Clustering Analysis)

Benchmark Datasets (e.g.,
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https://daac.ornl.gov/ISLSCP_II/guides/edc_landcover_xdeg.html

Data and metadata standards for data assimilation
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